61 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Терморегулятор на микроконтроллере своими руками

Терморегулятор на микроконтроллере схема

Терморегулятор на микроконтроллере PIC16F628 с датчиком температуры DS1820

Особенность конструкции: Индикация на ЖК — дисплей текущей температуры. Возможность управления нагревательным элементом или другим мощным внешним прибором. Возможность работы в режиме термостата.

Сердцем схемы является микроконтроллер PIC16F628, поддерживающий постоянный обмен информацией с цифровым термометром DS1820 по протоколу 1-Wire, а также обрабатывает и анализирует эти данные и выводит ее на ЖК дисплей. В качестве дисплея используется модуль 16х2 MT16S2H фирмы «МЭЛТ»

Блок питания можно собрать самостоятельно на стабилизированное напряжение на 5 вольт. Чтоб узнать как запрограммировать датчик температуры DS1820 кликните мышкой на картинку выше с надписью терморегулятор схемы

Терморегулятор на микроконтроллере PIC16f84 для теплого пола с датчиком температуры DS1621

Устройство работает по интерфейсу l2C. В момент подачи питания, микроконтроллер сначала инициализирует внутренние регистры температурного датчика, а затем проводит его настройку.

Как только инициализация заканчивается, микроконтроллер считывает из энергонезависимой памяти заданные уровни температуры. Затем терморегулятор осуществляет циклический опрос температурного датчика и выводит значение температуры на светодиодный индикатор. Для отображения десятых долей температуры, десятичная точка у индикатора HG2 соединена через сопротивление R14 на общий провод. В конце сравнения заданного и фактического значений температуры программа формирует низкий или высокий уровень сигнала на второй выход RА3 микроконтроллера PIC16f84. Это сигнал и является управляющим для включения терморегулятора.

Требуемую температуру в память микроконтроллера PIC16F84A можно вносить с шагом в пол градуса Цельсия. Выбор нужного значения температуры осуществляется тумблерами SB1 и SB2, а ее запись в энергонезависимую память осуществляется нажатием и удержанием более 1 секунды кнопки SB3.

Температурный датчик DS1621 располагаем в подходящего по диаметру трубки и вблизи с нагревательным кабелем теплых полов. Соединение датчика и терморегулятора осуществляем 4-х проводным кабелем длинной до двух метров. Прошивку к микроконтроллеру скачивайте по ссылке чуть выше, а о программирование PIC микроконтроллеров читаем тут.

Непосредственное подключение терморегулятора можно сделать практически через любую выше рассмотренную схему, а можно использовать вот такой вариант:

Оптическая развязка цепей между термостатом и нагревательными элементами теплых полов выполнена на оптосимисторе MOC3041.

Величину температурного гистерезиса можно задавать в интервале от 1 до 10 градусов. Температурный максимум, поддерживаемый регулятором, около 70 градусов. При первом включении схемы в энергонезависимую память МК записывается гистерезис включения и выключения термостата — 5 градусов и поддерживаемая температура -40 градусов. После подачи питания должны загореться все сегменты цифрового индикатора кроме точек. Для задания температуры используются кнопки SB1 и SB2. SB1 — уменьшение, SB2 — увеличение. Гистерезис задается этими же кнопками, но при нажатой SB3. Функциональность кнопок SB1 и SB2 в данном случае такая же. Если задать температуру в сорок градусов, а гистерезис десять, то при сорока градусах будут срабатывать термонагреватели, а при 40+10 = 50 они отключатся.

Номиналы сопротивлений резисторов R8,R9,R10 могут лежать в интервале от 4,7кОм до 10кОм. А вот номиналы сопротивлений R5 и R6 — критичны и должны быть такими, чтобы общий ток, идущий через HL2 и оптрон U1, был не выше 25 миллиампер. Можно вообще HL2 выкинуть из схемы, достаточно и лампы HL1, и тем самым снизить нагрузку на выходе МК.

Блок питания лучше взять трансформаторный. , т.к он более устойчив к сетевым помехам, которые иногда приводят к зависанию прошивки микроконтроллера. Напряжение на входе стабилизатора DA1 должно обеспечивать необходимый уровенб для питания микроконтроллера. Прошивку, рисунок печатной платы и более качественный вариант принципиальной схемы можно забрать по ссылке выше.

Основа схемы — уже знакомый микроконтроллер PIC16F628A. В роли датчика температуры применен DS18B20, способный правильно функционировать до +125 градусов. Показания установленной и реальной температуры индицируется четырехразрядным семисегментным светодиодным индикатором с общим анодом.

Задание нужной температуры осуществляется при помощи двух кнопок SB1 и SB2. Коммутация нагрузки происходит с помощью оптотиристоров ТО125-12,5-6. При помощи сопротивления R1 задается ток протекающий через светодиоды оптронов, номиналом около 50мА. Оптотиристоры необходимо разместить на радиаторах, согнутых из полоски алюминия площадью 100см 2 . В роли сетевого трансформатора можно использовать любой, обеспечивающий на выходе вторички напряжение 6В при токе нагрузки — от 100 мА. Прошивку к МК и чертеж печатной платы забираем по ссылке выше

Основой схемы является, уже знакомый нам микроконтроллер PIC16F628A. Применение ЖК дисплея позволило освободить несколько выводов МК, что существенно упростило согласование по времени считывания данных с датчика температуры и влажности и вывода результирующей информации на экран. В этой схеме используется универсальный датчик температуры и влажности DHT22.

Кроме того, конструкция состоит из девяти резисторов, оного конденсатора и пяти управляющих кнопок.

Максимальная температура, которую можно задать в термостате, 42 градуса. Минимальная — 25,7. Интервал изменения петли гистерезиса составляет от 0,1 до 0,9 градуса Цельсия. Влажность можно регулировать в диапазоне от 0,1% до 99,9%. При первом включении МК, в его энергонезависимую память будут сохранены следующие величины: температура — 37,5°C, гистерезис — 0,5°С, влажность — 50%. Далее, в память, будут внесены уже необходимые вам параметры. Скачать прошивку и более качественный вариант схемы можно по ссылке выше.

СХЕМА ТЕРМОРЕГУЛЯТОРА

Поводом для сборки этой схемы послужила поломка терморегулятора в электрическом духовом шкафу на кухне. Поискав в интернете, особого изобилия вариантов на микроконтроллерах не нашел, конечно есть кое-что, но все в основном рассчитаны на работу с термодатчиком типа DS18B20, а он очень ограничен в температурном диапазоне верхних значений и для духовки не подходит. Задача ставилась измерять температуры до 300°C, поэтому выбор пал на термопары К-типа. Анализ схемных решений привел к паре вариантов.

Схема терморегулятора — первый вариант

Термостат собраный по этой схеме имеет заявленный предел верхней границы 999°C. Вот что получилось после его сборки:

Испытания показали, что сам по себе термостат работает достаточно надежно, но не понравилось в данном варианте отсутствие гибкой памяти. Пошивка микроконтроллера для обеих вариантов — в архиве.

Схема терморегулятора — второй вариант

Немного поразмыслив пришел к выводу, что возможно сюда присоединить тот же контроллер, что и на паяльной станции, но с небольшой доработкой. В процессе эксплуатации паяльной станции были выявлены незначительные неудобства: необходимость перевода таймеров в 0, и иногда проскакивает помеха которая переводит станцию в режим SLEEP. Учитывая то, что женщинам ни к чему запоминать алгоритм перевода таймера в режим 0 или 1 была повторена схема той же станции, но только канал фен. А небольшие доработки привели к устойчивой и «помехонекапризной» работе терморегулятора в части управления. При прошивке AtMega8 следует обратить внимание на новые фьюзы. На следующем фото показана термопара К-типа, которую удобно монтировать в духовке.

Работа регулятора температуры на макетной плате понравилась — приступил к окончательной сборке на печатной плате.

Закончил сборку, работа тоже стабильная, показания в сравнении с лабораторным градусником отличаются порядка на 1,5°C, что в принципе отлично. На печатной плате при настройке стоит выводной резистор, пока что не нашел в наличии SMD такого номинала.

Светодиод моделирует ТЭНы духовки. Единственное замечание: необходимость создания надежной общей земли, что в свою очередь сказывается на конечный результат измерений. В схеме необходим именно многооборотный подстроечный резистор, а во-вторых обратите внимание на R16, его возможно тоже необходимо будет подобрать, в моём случае стоит номинал 18 кОм. Итак, вот что имеем:

В процессе экспериментов с последним терморегулятором появились ещё незначительные доработки, качественно влияющие на конечный результат, смотрим на фото с надписью 543 — это означает датчик отключен или обрыв.

И наконец переходим от экспериментов до готовой конструкции терморегулятора. Внедрил схему в электроплиту и пригласил авторитетную комиссию принимать работу 🙂 Единственное что жена забраковала — маленькие кнопки на управлении конвекцией, общее питание и обдув, но это решаемо со временем, а пока выглядит вот так.

Регулятор заданную температуру держит с точностью до 2-х градусов. Происходит это в момент нагрева, из-за инертности всей конструкции (ТЭНы остывают, внутренний каркас выравнивается температурно), в общем в работе схема мне очень понравилась, а потому рекомендуется для самостоятельного повторения. Автор — ГУБЕРНАТОР.

Обсудить статью СХЕМА ТЕРМОРЕГУЛЯТОРА

Переделка стандартных автомобильных фар Yamaha R6 *06 под светодиодные.

VIP СИГНАЛ

Самодельный автомобильный VIP — сигнал крякалка.

Терморегулятор на микроконтроллере своими руками

Терморегулятор на термопаре К-типа

Автор: DrCaH4ec, drcah4ec@meta.ua
Опубликовано 20.07.2017
Создано при помощи КотоРед.

Всем доброго времени суток!

Представляю вашему вниманию разработанную мной схему терморегулятора на термопаре К-типа.

«Мозгом» данного устройства является микроконтроллер Atmega8 (я использовал корпус TQFP32). Данные выводятся на семисегментный трехразрядный индикатор с общим катодом(цвет свечения на ваш вкус). Ток на катоды индикатора идет через транзисторы(я использовал MMBT3904, но так же подойдут КТ315 или любые другие маломощные биполярные транзисторы обратной проводимости).

Прибор питается от напряжения 5В которое обеспечивает стабилизатор напряжения 7805, нужно взять в корпусе ТО220 и рекомендуется установить на радиатор.

Диоды для диодного моста я взял 1N4007, но также можно использовать любые другие выпрямительные диоды или же готовый диодный мост. Управление осуществляется кнопками S1(Т-), S2(Т+). Сигнал с термопары усиляется операционным усилителем LM358. В устройстве реализована компенсация холодного спая термопары и калибровка 0 операционного усилителя. Термопару можно использовать от мультиметра, но лучше взять ее в защитном кожухе так как ее спокойно можно будет погружать в те вещества, которые вы будете плавить.

Резисторы любой мощности.

«Экзотические» номиналы резисторов в блоке усиления можно получить следующим образом:

Диод D5 обязательно должен быть прикреплен как можно ближе к месту крепления контактов термопары к плате и он должен быть 1N4148 или отечественный аналог КД522.

Управление нагрузкой осуществляется симистором. Гальваническая развязка обеспечена за счет использования оптопары. Симистор обязательно нужно установить на радиатор. Если у вас отсутствует воздушное охлаждение, он должен быть достаточно большим, при наличии принудительного охлаждения хватит даже радиатора из компьютерного блока питания.

Максимальная нагрузка которую можно подключать к устройству ограничивается только симистором, который вы поставите. Силовые провода желательно использовать потолще ввиду того, что по ним будет идти большой ток.

Светодиод LED1 индицирует идет ли нагрев.

Минимальная температура которую можно установить – 50 о С; максимальная – 800 о С.

Принцип работы устройства очень простой. Если текущее значение температуры нагревателя измеренное прибором меньше установленного, то на порте B2 микроконтроллера появляется логическая единица, симистор открывается и ток на ТЭН проходит. Иначе, если текущее значение температуры нагревателя измеренное прибором больше или равно установленному, то на порте B2 микроконтроллера появляется логический ноль, симистор закрывается и ток на ТЭН не проходит.

Правильно собранное устройство нуждается только в калибровке.

Корпус было решено использовать от компьютерного блока питания.

Один из сетевых проводов и выход симистора выведены сзади корпуса наружу и через мощный клемник к ним подключается ТЭН. Также на задней части корпуса выходят провода термопары. Так как провода термопары в моем случае экранированные, на экране находится минус.

Спереди для улучшения внешнего вида изготовил фальш-панель из куска ПВХ и оракала. Также здесь размещены индикатор, кнопки управления, светодиод индицирующий нагрев и выключатель устройства, который отключает только питание от платы и к силовой части отношения не имеет.

Калибровка

Включите устройство. Опустите термопару в талую воду со льдом и вращая переменный резистор P1 установите на индикаторе 0 о С, или же если у вас есть градусник, можете измерить им комнатную температуру и вращая переменный резистор Р1 установите на индикаторе такую же температуру, какую показал «эталонный» градусник. Затем закипятите воду, опустите термопару туда и вращая переменный резистор Р2 установите на индикаторе 100 о С. Можете произвести такую операцию несколько раз, пока прибор не покажет нужную температуру без подстройки. Можете так же поверить как он покажет температуру тела.

Использование

Сразу после включения на индикаторе появится надпись приветствия НІ(с англ. – привет).

Затем устройство покажет установленную температуру (при первом включении там будет случайное число) и терморегулятор перейдет в рабочий режим. Где будет показывать текущую температуру, также светодиод будет индицировать идет ли нагрев (светодиод светит – идет, не светит – не идет).

Для установки заданной температуры нагрева нужно зажать обе кнопки и держать до появления надписи «INS» (instalation).

Затем на индикаторе ненадолго появится значение текущей установленной температуры и вы сможете кнопками установить нужную вам температуру. Когда вы это сделали, просто отпустите кнопки и ничего не делайте. Через некоторое время (примерно 5 сек.) на индикаторе появится надпись «SAV»(save). И устройство перейдет в рабочий режим.

Что ж надеюсь, все вышесказанное было для вас полезным и это устройство у вас заработает сразу. Всего вам хорошего и удачи в работе.

Терморегулятор для холодильника на микроконтроллере ATMEGA8 и термодатчике DS18B20. Схема, плата, прошивка

Содержание / Contents

↑ Немного истории

Моему холодильнику уже добрых 20 лет и за это время он успел сменить в себе два мотора и один термостат, побывал в двух мастерских и теперь это «чудовище Франкенштейна» совсем перестало выключаться.
По опыту скажу, что я очень не люблю такие термостаты, их механическая начинка довольно капризная. А ещё мастера мне попадались уникальные, они чинили одну часть холодильника, и ломали другую. Например, после ремонта у меня перестала включаться лампочка «в салоне» при открывании двери.
«Хочешь, чтобы было сделано хорошо? Сделай это сам!»

↑ Изучение холодильного вопроса и временное решение

Еда начинает портиться! Звать мастера, чтобы он провозился с холодильником пару недель (а у меня в городе такие мастера и есть) — не вариант, что делать? Надо периодически выдёргивать вилку из розетки, имитируя работу термостата! Меня хватило на один день этого мазохизма, поэтому мне нужно удобное решение и собрал я за вечер обычный микроконтроллерный таймер-реле включения/выключения буквально на подносе и это не шутка.

Работает! Его задача — тупо включать компрессор на 15 минут и выключать на 45. Питание взял от импульсника из сломанного DVD плеера, в нём удачно обнаружились два выхода 12 и 5 Вольт. Реле врезал в удлинитель и прижал всё колонками. Изящное временное решение вышло!

↑ Схема моего терморегулятора

Теперь есть «время на подумать» и поискать вдохновения в Интернете для разработки полноценного терморегулятора.
Что в итоге я выяснил:
• компрессор может работать часами, но не сутками, ему нужен отдых;
• после выключения компрессора, нужно минимум 5-10 минут перед повторным запуском.

В остальном, есть простор для творчества.

Тут всё просто. Есть реле RL1 на ток в 16А на каждую группу, управляющую компрессором. Ключ Q1 управляет этим реле, получая команды от микроконтроллера U1. МК тактируется от кварца в 4 МГц.

Кнопки управления всего две, это «PLUS» и «MINUS», подтянуты они к плюсу питания и зашунтированы ёмкостями С4 и С5, для избавления от дребезга контактов.

Используется цифровой термодатчик U1 ds18b20, работающий по однопроводному протоколу.

Вся индикация — на семисегментном LED индикаторе с общим анодом, работающим в динамическом режиме. Светодиод «WORK» это индикатор состояния компрессора, который показывает, включен он или нет.

Питание взял от готового импульсника, на выходе которого, снимается 12В на реле и 5В на всё остальное.

Осталось ознакомиться со схемой холодильника и приступить к разработке логики управления компрессором.

В итоге, клеммы с термостата SK будут отключены и перенаправлены на контакты моего реле.

↑ Пишем холодильную программу для МК

Тут не указана процедура опроса кнопки, т.к. она происходит постоянно на всех этапах работы программы. Во время периодического опроса датчика, а это каждые 3 секунды, происходит проверка исправности датчика температуры. В случае потери связи с датчиком, программа перейдёт в аварийный режим, когда вызывается подпрограмма таймера работы/отдыха компрессора. Для возврата в нормальный режим, необходимо будет исправить связь с датчиком температуры и выключить/включить устройство.

Данная подпрограмма является копией той, что работала на подносе в начале статьи, так что предыдущие труды прошли не зря.

Прошивка и исходники, как всегда, в подвале статьи! Что касается фьюзов, то они все сняты, кроме CKSEL1, т.е. микроконтроллер настроен на работу от внешнего кварца на 4 МГц.

↑ Индикация и настройки

Теперь поговорим об индикации. В устройстве заложены несколько параметров, которые можно настраивать:
1) температуру внутри — «t» (от 0 до 10 градусов, шаг 0,1 градус);
2) гистерезис заданной температуры — «G» (от 1,0 до 5,0 градусов, шаг 0,1 градус);
3) таймер отдыха компрессора — «h» (от 5 до 60 минут, шаг 1 минута);
4) таймер работы компрессора — «H» (от 10 до 600 минут, шаг 10 минут);
5) время работы компрессора в аварийном режиме — «on» (от 5 до 99 минут, шаг 1 минута);
6) время отдыха компрессора в аварийном режиме — «oF» (от 5 до 99 минут, шаг 1 минута).

Далее фотографии с реальными настройками.

Настройка температуры производится простым нажатием кнопок «PLUS» и «MINUS», при этом первоначальное нажатие покажет текущую заданную температуру, а повторное нажатие одной из двух кнопок, уже изменит её на 0,1 градус.

Если не трогать кнопки 2 секунды, настройки сохраняются и устройство покажет текущую температуру в камере холодильника.

Для проведения настроек других параметров, нужно нажать сразу две «PLUS» + «MINUS» кнопки и отпустить, а затем изменять значения необходимых параметров теми же кнопками «PLUS» и «MINUS».

Переход на следующий параметр в меню, происходит также нажатием сразу двух кнопок «PLUS» + «MINUS».

Если не трогать кнопки 2 секунды, все настройки сохраняются и индикация возвращается на показ температуры в камере холодильника.

Порядок переключаемых с помощью двух кнопок параметров соответствует порядку пунктов (2 → 3 → 4 → 5 → 6), перечисленному выше.
Применение параметров в программе в реальном времени происходит только в пунктах 1, 2, 5, 6. Параметры пунктов 3 и 4 применяются после событий старта/остановки компрессора.

При подаче питания на устройство на индикаторе высветится оставшиеся время отдыха компрессора. Это подстраховка. Мало ли, вдруг было отключение электричества, и компрессор до этого события работал, его же нельзя вот так сразу запускать. Нужна пауза минимум 5-10 минут, чтобы давление внутри стравилось, иначе пусковой ток будет слишком велик, и это может повредить мотор. В моём случае, он просто не запускался и гудел на пусковой обмотке, потребляя более 2 кВт!

По истечении таймера защиты индикация переключается на постоянное отображение температуры.

Гистерезис необходим для образования температурного «окна», т.е. если установлена температура +5°, а гистерезис равен 2°, то компрессор будет включаться при +7° и выключаться при +3°.

↑ Конструкция и детали цифрового термостата




В крышке холодильника была установлена новая заглушка, в месте, где должен быть световой индикатор в более дорогих моделях холодильников данной серии. Вот как раз и используем заготовленное заводом пространство.

Выпилил окошки и отверстия в заглушке. Хорошо, что у меня завалялся кусок лицевой затемняющей панели от спутникового тюнера!


Все эти кусочки пластика я посадил на термоклей. В итоге вышла довольно симпатичная лицевая панель.

Проводку от платы подключил к контактным клеммам возле компрессора, в соответствии со схемой холодильника. На фотографии видно, что моему холодильнику реально пора на пенсию, но речь не об этом.

Далее прикрутил платы на платформу от крышки.

Датчик DS18B20 протащил через отверстие на задней стенке холодильника, через которое входит фреонная трубка на испаритель внутри камеры. Провёл кабель вдоль короба от термостата и вывел наружу. Заодно и исправил косяк мастеров с лампочкой, которые как выяснилось, криво надели клеммы на патрон от лампы, эх. Но не будем о грустном.

Погонял систему в таком опасном открытом виде пару дней, дабы убедиться, что всё работает. После сделал гидроизоляцию платы управления, залив плату термоклеем в области микроконтроллера и надел крышку.


↑ Результаты проделанной работы

На мой взгляд, выглядит всё круто и аккуратно. Мама очень довольна изобретением и боится нажимать на кнопки, что бы без привычки ничего не сломать.

Выставил температуру в +4,5° и гистерезис в 1,5°. Итого вышло, что холодильник включается при +6° и выключается при +3°. По времени вышло, что компрессор работает 10 минут и отдыхает 55 минут, а это 0,15 рабочего времени. В Интернете сказано, что диапазон соотношение цикла работы/отдыха в 0,2-0,9 считается нормальным. Думаю, моя цифра показывает, что экономия электроэнергии находится на высоком уровне.

Это был интересный опыт в решении данной проблемы, которая возникает у многих владельцев старых холодильников.

↑ Файлы

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, учредитель журнала «Датагор»

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, учредитель журнала «Датагор»

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, учредитель журнала «Датагор»

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, учредитель журнала «Датагор»

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, учредитель журнала «Датагор»

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, учредитель журнала «Датагор»

На этом всё. Благодарю за внимание!
И да прибудут с вами интересные статьи на Датагоре!

Улучшенный термостат на ATtiny2313 и DS18B20 (ATtiny2313, С

По многочисленным просьбам дорабатываю конструкцию «Термостат на attiny2313 и ds18b20». Теперь умеет:

  • Измерение температуры от -55°С до +125°С (шаг 0,1°С)
  • Установка температуры от -55°С до +124°С (шаг 0,1°С . ).
  • Гистерезис от 0,1°С до 25°С

На схеме показан второй вариант включения термодатчика, если он не захотел работать по однопроводной шине (что встречается очень редко). Обратите внимание, что подтягивающий резистор на 11 выводе должен быть именно 4,7кОм. Уменьшение или увеличение может привести к нестабильной работе датчика в случае включения по однопроводной схеме.

Индикатор можно применять как с общим анодом, так и с общим катодом — просто разные прошивки.

» *» обозначены компоненты необходимые для защиты от статического электричества, но их можно не устанавливать.

Кнопками «+» и «-» устанавливают температуру включения нагрузки (на экране в первом сегменте отобразится символ подчёркивания «_»).
При одновременном нажатии обеих кнопок устройство переходит в режим изменения гистерезиса (на экране в первом сегменте отобразится символ » d«). Длительное удержание одной из кнопок приводит к ускоренному перебору значений. При отсутствии нажатий на кнопки в течении 5 секунд прибор переходит в режим отображения измеренной температуры, при этом происходит запоминание изменённых параметров в энергонезависимую память.

В первом сегменте отображается точка, если Т Т Логика изменения состояния управляющих выводов:

Довольно часто возникают вопросы насчёт этого, поэтому немного нарисую.

Пример 1 (нагрев):

  • Установим температуру = 25,5°С, гистерезис (dt) = 1,2°С.
  • Текущая температура 20 градусов. (pd2 = 1, pd3 = 0, горит » точка«).
  • Такое состояние будет сохранятся пока температура не достигнет Т уст. + dТ = 26,7°С.
  • Когда температура достигнет 26,7°С состояние выводов поменяется (pd2 = 0, pd3 = 1, не горит » точка«)
  • Такое состояние будет сохранятся пока температура не опустится до Т уст. = 25,5°С.
  • Когда температура опустится до 25,5°С состояние выводов поменяется (pd2 = 1, pd3 = 0, горит » точка«)
  • И так далее.

Пример 2 (охлаждение):

  • Установим температуру = -5,2°С, гистерезис (dt) = 1,5°С.
  • Текущая температура 20 градусов. (pd2 = 0, pd3 = 1, не горит » точка«).
  • Такое состояние будет сохранятся пока температура не упадёт до Т уст. = -5,2°С.
  • Когда температура упадёт до -5,2°С состояние выводов поменяется (pd2 = 1, pd3 = 0, горит » точка«)
  • Такое состояние будет сохранятся пока температура не поднимется до Т уст. + dТ = 6,7°С.
  • Когда температура поднимется до 6,7°С состояние выводов поменяется (pd2 = 0, pd3 = 1, не горит » точка«)
  • И так далее.

Таким образом термостат можно применять для использования как в нагревательных целях (тепловентилятор, обогревательный котёл, инкубатор и т.д.), так и для охлаждения (холодильник, морозильник, и т.д.).

Печатную плату я немного изменил, по сравнению с термометром и прошлой версией термостата, но она пригодна для использования и в них тоже. Тут убрал кварц и добавил контактные площадки для подключения кнопок и управления нагрузкой.

Обратите внимание на перемычки под резисторами в районе стабилитронов — они для того, чтобы можно было не устанавливать резисторы, которые отвечают за защиту от статического электричества (на схеме помечены звёздочкой).

Исходник один на все варианты — компилируется в нужную версию путём комментирования (раскомментирования) нужных дэфайнов:

#define cathode //для индикатора с ОК
//#define anode //для индикатора с ОА

#define heat //точка отображается если t tуст.

Биты конфигурации (fuses), для тех кто шьёт из ponyprog:

Обратите внимание. Раньше предлагалось выставить bodlevel0 и bodlevel1, что включало brown-out detection (bod) — контроль за напряжением питания. Это полезно при нестабильном питании и предохраняет содержимое энергонезависимой памяти (eeprom) от порчи во время падения напряжения питания. Но как оказалось есть некоторые подводные камни. При включенном bod и температуре кристала близкой к 0°С работа устройства оказывалась очень нестабильной — постоянно происходил сброс. Причём уровень bod не влиял на стабильность работы (пробовал 1.8В, 2.7В, 4.3В). Питание при этом оставалось стабильное (питание от батарейки) — проверялось осциллографом. Поэтому рекомендую убрать «галочки» в конфигурации с всех bodlevel.

Автор Юрий. Е-mail: hardlock (пёсик) bk Сайт автора.

Терморегулятор на микроконтроллере своими руками

продаётся раскрученный сайт недорого обращаться в личку

Для домашних нужд предлагается схема терморегулятора который измерял бы температуру и поддерживал температуру в погребе в помещении и тот, кто желает попробовать свои силы в изготовлении несложного терморегулятора своими руками на базе микроконтроллера предлагается несколько вариантов решений, в основе построения использованием распространенный цифровой датчик температуры DS18b20 Dallas Semiconductor микроконтроллер серии PIC от Microchip.
С помощью данного терморегулятора Вы сможете контролировать температуру и управлять подогревом в помещении в автоматическом режиме.

Возможности терморегулятора
— Показания температуры выводятся на индикатор LCD
— Возможность регулировки и поддержания температуры на установленное значение
— Контроллер PIC16F628
— DS18b20 — цифровой термодатчик
— Программа для прошивки микроконтроллера в файле thermostst.asm
— Печатная плата схема, плата

Терморегулятор CH-1000 предназначены для управления системами регулирования температуры в пределах от — 50°С до + 120 °С. Регулятор может использоваться как в системах отопления, так и в системах охлаждения с управлением компрессором.
Регулятор имеет систему сохранения данных.
В регуляторе встроена интеллектуальная система аварийного контроля данных в постоянной памяти, а также система контроля данных в оперативной памяти. В процессе работы регулятор проверяет данные на соответствие технических параметрам и при возникновении ситуации, при которой какой либо параметр попадает в недопустимую область, останавливает работу системы и производит перезагрузку данных.
Функция контроля среды позволяет контролировать исправность системы отопления или охлаждения по динамическим параметрам. Контроль по времени выхода оборудования на режим и отклонение параметра регулируемой среды выше допустимых пределов.
Контроль повреждения или обрыва линии от датчика.
Регистры индикации максимальной и минимальной температуры зафиксированной регулятором в течении работы.
В регуляторе применяется цифровой датчик температуры DS18B20 с возможностью подключения по кабелю на удалении до 300 м.

Возможности терморегулятора
— Показания температуры выводятся на индикатор
— Напряжение питания

9 — 12 вольт или

18 — 24 вольт (AC/DC)
— Возможность регулировки и поддержания температуры на установленное значение
— Диапазон задания °С гистерезиса регулирования(Тгис) от 0 до 10 °С
— Дискретность индикации — 0,1°С
— Контроллер PIC16F628
— DS18b20 — цифровой термодатчик
— 78L05-SO-8 — микросхема памяти
— Файл для прошивки микроконтроллера скачать
— Схема терморегулятора скачать, GIF
— Схема терморегулятора скачать, формат P-cad 2006
— Полное описание описание скачать, PDF

Термоконтроллер -55°C. 125°C±0,1°C с релейным управлением и мониторингом нижнего и верхнего значений
Измерение производится с дискретностью 0,1°С. Ввиду того, что производитель DS18B20 не гарантирует заявленную точность, особенно на краях диапазона, в конструкцию терморегулятора добавлено сервисное меню коррекции показаний, в сторону уменьшения или увеличения, с шагом 0,1°С. Данная поправка заносится в энергонезависимую память и становится независимой от включения/выключения питания.
Для просмотра нижнего или верхнего значений, достаточно кратковременно нажать кнопку «В» и на индикаторе последовательно высветятся обозначения режимов и их значения:
[H],XXX,[B],XXX и возврат в режим показа текущей температуры.

Возможности терморегулятора
— Показания температуры выводятся на трехзначный индикатор
— Возможность регулировки и поддержания температуры на установленном значении
— Контроллер PIC16F676
— DS18b20 — цифровой термодатчик
— 74HC595 — микросхема памяти
— Файл прошивки термометра для индикатора с ОА и контроллером PIC16F676
— Файл прошивки термометра для индикатора с ОK и контроллером PIC16F676
— Файл прошивки термометра для индикатора с ОА и контроллером PIC16F630
— Файл прошивки термометра для индикатора с ОK и контроллером PIC16F630

Читать еще:  Складная лопата своими руками
Ссылка на основную публикацию
Adblock
detector