Влияние химического состава чугуна на его свойства - Строительство домов и бань
22 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Влияние химического состава чугуна на его свойства

Статьи

Микроструктура чугунов (табл. 1) зависит от скорости охлаждения металла: при быстром охлаждении будет белый чугун (углерод находится в химически связанном состоянии в виде цементита и ледебурита), а при медленном охлаждении будет серый чугун (углерод находится в виде графита).

Табл. 1. Марки и механические свойства чугуна разлиных типов.

ГруппаМарка чугунаσВ, МПаНВδ
серыеСЧ10100120. 150
СЧ15150130. 241
...
СЧ35350179. 290
ВысокопрочныеВЧ35350140. 17022
ВЧ40400140. 20215
....
ВЧ1001000270. 3602
КовкиеКЧ30-63001636
КЧ33-83301638
КЧ37-1237016312
....
КЧ63-26302692

Кремний Si способствует графитизации чугуна, и улучшает его литейные свойства. В серых чугунах содержится 0,8 …4,5 % Si.

Марганец Mn способствует отбеливанию чугуна, но содержание Mn до 1,2% полезно, т.к. увеличиваются твердость и прочность чугуна.

Фосфор Р повышает жидкотекучесть чугуна, поэтому допустимо его содержание до 0,4%, но в ответственных чугунных отливках содержится фосфора менее 0,15%, т.к. с ростом содержания его увеличивается хрупкость чугуна.

Сера S затрудняет графитизацию, увеличивает хрупкость и ухудшает жидкотекучесть чугуна, поэтому серы в чугунах должно быть не более 0,1%.

Серые чугуны делятся на модифицированные, высокопрочные и ковкие (табл. 2).

В серых чугунах графит имеет пластинчатую форму, в высокопрочных — шаровидную, а в ковких — хлопьевидную.П римеры обозначения чугунов:

Табл. 2 — Влияние химических элементов на свойства чугуна

Серый чугунВысокопрочный чугунКовкий чугун
Углерод
Повышенное содержание углерода приводит к уменьшению прочности, твердости и увеличению пластичности; углерод улучшает литейные свойства чугунаУвеличенное содержание углерода улучшает литейные свойства чугунаУглерод — основной регулятор механических свойств ковкого чугуна; чугун обладает низкой жидкотекучестью и требует высокого перегрева
Кремний
Кремний (с учетом содержания углерода) способствует выделению графита и снижает твердость, а также уменьшает усадку; повышенное содержание кремния снижает пластичность и несколько увеличивает твердостьС повышением содержания кремния возрастает предел прочности при растяжении, при дальнейшем увеличении содержания — уменьшаются предел прочности при растяжении и относительное удлинениеДля ферритного ковкового чугуна суммарное содержание кремния и углерода должно быть 3,7-4,1%. Содержание кремния зависит от количества углерода и толщины стенки. При содержании кремния до 1,5% механические свойства сплава повышаются
Марганец
Марганец тормозит выделение графита, способствует размельчению перлита и отбеливанию чугуна; взаимодействуя с серой, нейтрализует ее вредное действие. Механические свойства чугуна повышаются при содержании марганца до 0,7-1,3 %, а при дальнейшем увеличении — снижаются. Марганец увеличивает усадку сплаваС повышением содержания марганца уменьшается доля феррита и увеличивается количество перлита; при этом повышается предел прочности при растяжении и уменьшается относительное удлинение. Для повышения износостойкости содержание марганца увеличивают до 1,0- 1,3%Марганец увеличивает количество связанного углерода, повышает прочность феррита. При повышении содержания марганца до 0,8-1,4% увеличивается количество перлита, прочность сплава повышается, но резко падает пластичность и ударная вязкость. В ферритном чугуне содержание марганца не должно превышать 0,6%, в перлитном — 1,0%
Магний
Для образования графита шаровидной формы содержание магния должно быть не ниже 0,03%, а церия не ниже 0,02% (остаточное содержание). При более низком содержании не весь графит получает шаровидную форму; часть его содержится в виде пластинок, что снижает механические свойства сплава. При повышенном содержании магния (и церия) в структуре сплава образуется цементит и, следовательно, снижаются механические свойства. Оптимальное содержание остаточного магния — 0,04-0,08%
Сера
Сера снижает прочность и пластичность, но несколько повышает износостойкость сплава, считается вредной примесью, придает чугуну красноломкость (образование трещин при высоких температурах), препятствует выделению графитаЧем выше содержание серы в исходном чугуне, тем труднее получить полностью шаровидную форму графита и, следовательно, высокие механические свойстваСодержание серы в ферритном ковком чугуне, модифицированном алюминием, может быть повышено до 0,2 %; при этом механические свойства возрастают за счет улучшения формы графита. Определяющее влияние на механические свойства чугуна оказывает отношение содержания марганца и серы, которое должно быть в пределах 0,8-3,0
Фосфор
Фосфор на процесс графитизации углерода влияет слабо, но повышает жидкотекучесть сплава, придает чугуну хладноломкость, т. е. хрупкостьФосфор оказывает существенное влияние на структуру и механические свойства. Чтобы получить чугун с высокой пластичностью, содержание фосфора не должно превышать 0,08%. Для получения чугуна с невысокой пластичностью содержание фосфора увеличивают до 0,12-0,15%Фосфор оказывает такое же, как для серого чугуна влияние на структуру и механические свойства сплава
Никель
Никель — легирующий элемент, благоприятно влияет на выравнивание механических свойств в отливках с различной толщиной стенок, повышает твердость на 10 НВ. С увеличением содержания никеля возрастает коррозионная стойкость и улучшается обрабатываемость сплаваНикель влияет на тепло- и электропроводность, а также на коррозионную стойкость и жаростойкость сплава. С увеличением содержания никеля эти свойства повышаютсяНикель способствует графитизации углерода и увеличивает количество перлита в металлической основе сплава
Хром
Хром — карбидообразующий элемент. С увеличением хрома растет прочность и твердость отливок, замедляется процесс графитизации углеродаС увеличением содержания хрома в определенных пределах повышается жаростойкость, коррозионная стойкость и износостойкость сплаваХром замедляет процесс графитизации углерода. Содержание хрома в сплаве не превышает 0,06-0,08%; повышение содержания до 0,1 -0,12% приводит к образованию в структуре сплава стойких карбидов
Молибден
Молибден — легирующий элемент; замедляет процесс графитизации углерода и способствует карбидообразованию. С увеличением содержания молибдена повышается твердость без ухудшения обрабатываемости и возрастает сопротивление износуМолибден способствует измельчению перлита и графитовых включений, увеличивает предел прочности на 3-7 кгс/мм 2 при содержании молибдена 0,5%; замедляет процесс графитизации углерода
Медь
Медь способствует графитизации углерода, увеличивает жидкотекучесть, повышает прочность и твердость сплаваПри содержании в сплаве 1 % меди прочность при растяжении повышается до 40%, а текучесть — до 50 % и соответственно при 2% меди — до 65% и до 70%. Содержание меди более 2% препятствует образованию в структуре сплава шаровидного графитаМедь способствует графитизации углерода и увеличивает содержание в сплаве перлита

Небольшие количества множества элементов могут попасть в состав литейного чугуна и оказывать заметное воздействие на структуру и свойства отливок. Добавки некоторых из этих элементов производят специально, в то время как другие представляют собой примеси, привнесенные в металл из шихты. Некоторые из этих элементов оказывают положительное воздействие, особенно в сером чугуне, в то время как другие оказывают отрицательное воздействие и попадания их с расплав следует избегать. В таблице перечислены обычные источники этих элементов, часто встречающиеся уровни их содержания и основное воздействие на чугун. Результаты применения некоторых элементов в качестве основных легирующих (например, хром), в таблице не указаны.

Влияние химического состава на структуру и механические свойства чугуна

Si – увеличение концентрации в чугуне Si снижает растворимость С в Fe. Это приводит к тому, что эвтектика в чугуне образуется не при концентрации C 4,3%, а при более низкой. В промышленных чугунах Si содержится 1,3 -2,8%. При наличии такой концентрации его состав оценивается по углеродному эквиваленту.

CЭ= %С + 1/3 Si + 1/5 P

Si повышает жидкотекучесть чугуна потому что он приближает концентрацию состава сплава по С к эквивалентному. Если концентрация Si приводит к увеличению СЭ выше эвтектического состава, то жидкость падает.

S, Mn – являются карбидообразующими элементами. Вместе с Fe и С он образует сложные карбиды. В промышленных чугунах Mn до 1%. При такой концентрации Mn не влияет на жидкотекучесть, а при взаимодействии с S образует тугоплавкие сульфиды (MnS), которые замутняют чугун, снижая жидкотекучесть. Любые тугоплавкие химические соединения в чугуне снижают жидкотекучесть ибо они увеличивают вязкость расплава. В промышленных чугунах концентрация S не более 0,2%.

P – увеличивает жидкотекучесть промышленных чугунов. В обычных чугунах концентрация до 0,2%, а в спец. чугунах до 0,5%. При содержании в чугуне 0,3 – 0,4 %P его жидкотекучесть повышается в 2-3 раза. Это связано с образованием легкоплавкой (950 градусов Цельсия) фосфидной эвтектикой. Наличие такой эвтектики в головной части потока создает объемы с низкой температурой плавления, что и способствует хорошей заполняемости литниковой формы.

Читать еще:  Резцы для чистовой обработки металла

№ 22.Ваграночный процесс получения чугуна

Вагранки (печи шахтного типа) Открытые,Закрытые,Без водяного охлаждения,С водяным охлаждением,С кислой футеровкой,С основной футеровкой,Без подогрева дутья,С подогревом дутья — воздухом до 400°С(с применением рекуператора); — воздухом до 700 °С (с применением электронагревателей; — воздухом обогащенным кислородом (3-5% О2 ) Без копильника,Скопильником. Коксовая вагранка: Она имеет шахту , в нижней части которой расположены фурмы для подачи воздуха, шлако-отделительное устройство и копильник , устройство для дожигания продуктов сгорания кокса, в основном СО , устройство для очистки охлажденных отходящих газов от пыли, устройство для подогрева воздушного дутья. В шахту загружается холостая колоша кокса на высоту от уровня фурм, равную, а также рабочие калоши металлошихты, кокса и флюса. Чугун плавится за счет тепла, выделяющегося от сгорания кокса, стекает в нижнюю часть шахты, называемую горном, и либо накапливается там, либо непрерывно уходит в копильник, где собирается определенная порция для выпуска чугуна на заливку. Для повышения температуры чугуна в плавильной зоне, а значит и выдаваемого в копильник, подогревают воздух поступающий в фурмы при помощи рекуператоров (за счет тепла отходящих газов) – это 400°С , специальными электрокалориферами (до 700°С) и добавлением в горячее дутье 3-5% кислорода. Вагранка – плавильная печь шахтного типа непрерывного действия, работающая по принципу противотока. Снизу вверх поднимается поток горячих газов, образующихся в результате горения кокса, навстречу ему опускается поток шихты. В результате теплообмена между этими потоками металлическая шихта прогревается, плавится, а получившийся жидкий металл перегревается выше температуры ликвидуса. В зависимости от размеров и конструкции производительность вагранок составляет от 3 до 100 тонн в час жидкого чугуна.

№ 23. Особенности выплавки чугуна в дуговых и индукционных печах.

Основная причина использования дуговых печей – это обеспечение значительного перегрева расплава и наводки «горячего» активного шлака. Это позволяет проводить такие операции как десульфурация, легирование, науглераживание чугуна карбюризатором.

· надежность в эксплуатации

· быстрота выполнения ремонтных работ

· гибкость в изменении технологии

· возможность использования негабаритного лома

· высокий уровень шума

· повышенный угар C, Si, Mn и л.э.

· нет перемешивания жидкого металла

· значительные пылегазовые выбросы

При получении ВЧ используют осн футеровку. Чугун такой плавки имеет повышенное содержание азота. Обязательной операцией из-за повышенного угара С явл науглераживание добавкой карбюризатора в тв завалку.

Индукционные печи. Нагрев шихты и плавление идет за счет токов «Фуко». Бывают тигельные и канальные. По частоте: пром-ой (50 Гц), средней ( до 10000 Гц), высокой (свыше 10000 Гц).

При плавке в печах пром частоты требуется стартовый остаток чугуна («болото»).

· нет контакта сплава с топливом и газами

· интенсивное перемешивание сплава

· небольшие пылегазовые выбросы

· легко проводить корректировку хим состава

Особое значение имеет реакция SiО2+2C=Si+2CO. при превышении температуры равновесия реакции, активизируется процесс восстановления Si из футеровки печи.

№ 24. Способы получения, структура и свойства чугуна с шаровидным графитом

Чшг является одним из самых перспективных конструкционных материалов на основе железа. По своим механическим свойствам он превосходит СЧ, КЧ и по ряду свойств сталь. Характерные типы микроструктуры чшг: феритная, перлито-феритная, мартенситная, ферито-бейнитная. Перлитный чшг – имеют высокую сопротивляемость к статическим и циклическим нагрузкам и износостойкостью. Бейнитные чшг — сочетают максимальную прочность и высокую пластичностью. Все марки чшг имеют высокий модуль упругости. У ВЧ более низкая температура плавления, чем у стали, что позволяет экономить не только энергоресурсы но и повысить качества отливки за счет пригара,лучшей жидкотекучести,снижением усадки. Также этот чугун имеет большую на 15-25% обрабатываемость.В настоящее время чшг в основном используется для изготовления труб и изложниц,в автотракторостроении.

Используют модификаторы: магний, церий, иттрий, лантан, кальций, натрий, калий и цирконий.

№ 25.Способы десульфурации и сфероидизирующей обработки при получении высокопрочного чугуна

Десульфурация. Основная цель – снизить концентрацию серы в исходном чугуне, перед сфероидизирующей обработкой. При использовании традиционных шихтовых материалов в жидкий чугун вносится не более 0,04 % S, а остальная часть – шихтовые материалы, из кокса при ваграночнй плавке.

В практике литейного производства десульфурация производиться как в плавильных агрегатах (за счёт наведения основных шлаков), так и при внепечной обработке. Обязательное условие десульфурации – снижение концентрации серы до 0,01-0,02, а так же перегрев чугуна до 1480-1520 *С. В противном случае резко снижается степень удаления серы, коэф. использования реагентов и условия удаления продуктов реакции. Основные десульфураторы – это карбид кальция СаС2 и известь СаО.

в)вращение специальной мешалкой

В мировой практике наиболее широко используют десульфурацию чугуна продувкой инертным газом. Этот метод позволяет в течении 1,5-2 минут снизить исходное содержание серы на 90%, при расходе реагента СаС2 равному десятикратному исходному содержанию серы. Для десульфурации больших масс чугуна (более 3 т) эффективная обработка во встряхивающих ковшах. Десульфурация сопровождается большими потерями температуры, что требует дополнительного перегрева чугуна перед сфероидизирующей обработкой. Кроме того требуется время для удаления отработанных реагентов и образовавшегося шлака.

Дата добавления: 2015-05-06 ; Просмотров: 548 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Влияние химических элементов на свойства чугуна.

Свойства чугунов зависят от химического состава, т. е. от содержания в них углерода, кремния, марганца, фосфора, серы.

Углерод, химически связанный с железом, образует цементит. Цементит придает чугуну хрупкость, но значительно повышает твердость. Такой чугун, имеющий в изломе блестящий металлический оттенок, называют белым. Белые чугуны не обрабатываются режущим инструментом.

Углерод в чугуне может находиться в свободном состоянии в виде графита. Цементит в таких чугунах не образуется, поэтому их твердость значительно ниже твердости белых чугунов; такие чугуны хорошо обрабатываются резанием. Присутствие графита придает чугуну в изломе серый, матовый оттенок; чугун в данном случае называют серым.

Кремний способствует выделению углерода в чугуне в виде графита, улучшает литейные свойства чугуна, понижает его твердость.

Марганец препятствует выделению углерода в чугуне в виде графита и способствует образованию цементита, поэтому повышает твердость чугуна и при определенном содержании его увеличивает прочность.

Фосфор, соединяясь с железом, образует легкоплавкую хрупкую и твердую составляющую, которая располагается по границам зерен чугуна, вследствие чего у чугуна значительно повышаются хрупкость и твердость, увеличивается износостойкость. Образующаяся легкоплавкая составляющая улучшает наполняемость литейных форм жидким чугуном. Фосфор — вредная примесь.

Сера тормозит выделение углерода в чугуне в виде графита. Образуя по границам зерен чугуна хрупкую составляющую, сера снижает механические свойства, способствует образованию трещин в отливках. Вредное влияние серы может быть нейтрализовано повышенным содержанием марганца, с которым сера легко образует тугоплавкое соединение.

Стали с особыми физическими и механическими свойствами: классификация, маркировка, свойства и область применения.

Нержавеющая сталь — сложнолегированная сталь, устойчивая к коррозии в атмосфере и агрессивных средах.

Сопротивление нержавеющей стали к коррозии напрямую зависит от содержания хрома: при его содержании 13 % и выше сплавы являются нержавеющими в обычных условиях и в слабоагрессивных средах, более 17 % — коррозионностойкими и в более агрессивных окислительных и других средах, в частности, в азотной кислоте крепостью до 50 %.

Причина коррозионной стойкости нержавеющей стали объясняется, главным образом, тем, что на поверхности хромсодержащей детали, контактирующей с агрессивной средой, образуется тонкая плёнка нерастворимых окислов, при этом большое значение имеет состояние поверхности материала, отсутствие внутренних напряжений и кристаллических дефектов.

Классификация

По химическому составу нержавеющие стали делятся на:

· Хромистые, которые, в свою очередь, по структуре делятся на;

o Полуферритные (мартенисто-ферритные);

· Хромомарганцевоникелевые (классификация совпадает с хромоникелевыми нержавеющими сталями).

Мартенситные и мартенсито-ферритные стали

Мартенситные и мартенситно-ферритные стали обладают хорошей коррозионной стойкостью в атмосферных условиях, в слабоагрессивных средах (в слабых растворах солей, кислот) и имеют высокие механические свойства. В основном их используют для изделий, работающих на износ, в качестве режущего инструмента, в частности, ножей, для упругих элементов и конструкций в пищевой и химической промышленности, находящихся в контакте со слабоагрессивными средами. К этому виду относятся, стали типа 30Х13, 40Х13 и т. д.

Читать еще:  Какой клей проводит ток

Ферритные стали

Эти стали применяют для изготовления изделий, работающих в окислительных средах (например, в растворах азотной кислоты), для бытовых приборов, в пищевой, легкой промышленности и для теплообменного оборудования в энергомашиностроениии. Ферритные хромистые стали имеют высокую коррозионную стойкость в азотной кислоте, водных растворах аммиака, в аммиачной селитре, смеси азотной, фосфорной и фтористоводородной кислот, а также в других агрессивных средах. К этому виду относятся, стали 400 серии.

Аустенитные стали

Основным преимуществом сталей аустенитного класса являются их высокие служебные характеристики (прочность, пластичность, коррозионная стойкость в большинстве рабочих сред) и хорошая технологичность. Поэтому аустенитные коррозионностойкие стали нашли широкое применение в качестве конструкционного материала в различных отраслях машиностроения. К данному классу относятся стали 300 серии.

Последнее изменение этой страницы: 2016-12-10; Нарушение авторского права страницы

Влияние химического состава на свойства чугунов.

Повышенное содержание углерода приводит к уменьшению прочности, твердости и увеличению пластичности; углерод улучшает литейные свойства чугуна

Увеличенное содержание углерода улучшает литейные свойства чугуна

Углерод — основной регулятор механических свойств ковкого чугуна; чугун обладает низкой жидкотекучестью и требует высокого перегреваКремний (с учетом содержания углерода) способствует выделению графита и снижает твердость, а также уменьшает усадку; повышенное содержание кремния снижает пластичность и несколько увеличивает твердость. С повышением содержания кремния возрастает предел прочности при растяжении, при дальнейшем увеличении содержания — уменьшаются предел прочности при растяжении и относительное удлинение Для ферритного ковкового чугуна суммарное содержание кремния и углерода должно быть 3,7-4,1%. Содержание кремния зависит от количества углерода и толщины стенки. При содержании кремния до 1,5% механические свойства сплава повышаютсяМарганец тормозит выделение графита, способствует размельчению перлита и отбеливанию чугуна; взаимодействуя с серой, нейтрализует ее вредное действие. Механические свойства чугуна повышаются при содержании марганца до 0,7-1,3 %, а при дальнейшем увеличении — снижаются. Марганец увеличивает усадку сплава. С повышением содержания марганца уменьшается доля феррита и увеличивается количество перлита; при этом повышается предел прочности при растяжении и уменьшается относительное удлинение. Для повышения износостойкости содержание марганца увеличивают до 1,0- 1,3%

Марганец увеличивает количество связанного углерода, повышает прочность феррита. При повышении содержания марганца до 0,8-1,4% увеличивается количество перлита, прочность сплава повышается, но резко падает пластичность и ударная вязкость. В ферритном чугуне содержание марганца не должно превышать 0,6%, в перлитном — 1,0%

Магний

Для образования графита шаровидной формы содержание магния должно быть не ниже 0,03%, а церия не ниже 0,02% (остаточное содержание). При более низком содержании не весь графит получает шаровидную форму; часть его содержится в виде пластинок, что снижает механические свойства сплава. При повышенном содержании магния (и церия) в структуре сплава образуется цементит и, следовательно, снижаются механические свойства. Оптимальное содержание остаточного магния — 0,04-0,08%

Хром — карбидообразующий элемент. С увеличением хрома растет прочность и твердость отливок, замедляется процесс графитизации углерода

С увеличением содержания хрома в определенных пределах повышается жаростойкость, коррозионная стойкость и износостойкость сплава

Хром замедляет процесс графитизации углерода. Содержание хрома в сплаве не превышает 0,06-0,08%; повышение содержания до 0,1 -0,12% приводит к образованию в структуре сплава стойких карбидов.

Конвертерный способ производства стали.

Конвертерное производство — получение стали в сталеплавильных агрегатах-конвертерах путём продувки жидкого чугуна воздухом или кислородом. Превращение чугуна в сталь происходит благодаря окислению кислородом содержащихся в чугуне примесей (кремния, марганца, углерода и др.) и последующему удалению их из расплава.

Бессемеровский процесс

Устройство и работа бессемеровского конвертера

Первый массовый способ получения жидкой стали открыл английский изобретатель Генри Бессемер в 1856. Основной недостаток процесса — невысокое качество металла за счёт неудалённых при продувке вредных примесей (фосфора и серы). Для выплавки бессемеровских чугунов нужны очень чистые по содержанию серы и фосфора железные руды, природные запасы которых ограничены.

Томасовский процесс

Англичанин СидниДжилкрист Томас в 1878 вместо кислой динасовой футеровки бессемеровского конвертера применил основную футеровку, а для связывания фосфора предложил использовать известь. Томасовский процесс позволил перерабатывать высокофосфористые чугуны и получил распространение в странах, где железные руды большинства месторождений содержат много фосфора (Бельгия, Люксембург, др.). Однако и томасовская сталь была низкого качества.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Влияние химического состава чугуна на его механические свойства

Новости

С НОВЫМ ГОДОМ!

    30.12.2019

XII Литейный Консилиум® состоялся: Время подводить итоги

    16.12.2019

Ведущие специалисты литейной отрасли встретятся в Челябинске на XII Литейном Консилиуме®.

    28.11.2019

В.А. Изосимов, Р.Г. Усманов, М.Н. Канафин
(ООО «НПП «Технология», г. Челябинск)

Значительным достижением в развитии машиностроения является разработка способа получения высокопрочного чугуна с шаровидным графитом. В этом материале хорошо сочетаются высокие физико-механические и технологические свойства. В результате многочисленных исследований и большого производственного опыта установлено, что высокопрочный чугун (ВЧ) во многих случаях может успешно применяться взамен серого и ковкого чугуна, углеродистой и легированной стали.
Замена обычного серого чугуна высокопрочным позволяет значительно снизить вес отливок за счет уменьшения толщины их сечений, при сохранении и даже повышении эксплуатационной надежности.
Наиболее целесообразным в технико-экономическом соотношении является применение высокопрочного чугуна взамен стали для тонкостенных литых деталей сложной конфигурации. Этот чугун по сравнению со сталью обладает в 1,5-2,0 раза большей жидкотекучестью, не склонен к образованию горячих трещин и обеспечивает получение плотного металла в малых сечениях без применения «напусков». Вместе с тем стоимость литья из высокопрочного чугуна на 25-30% ниже стоимости стального литья.
Применение высокопрочного чугуна во многих случаях позволяет значительно снизить вес деталей и повысить коэффициент использования металла. Однако следует отметить что, несмотря на указанные преимущества высокопрочного чугуна по сравнению с другими литейными сплавами, область его применения и масштабы производства в России до последнего времени весьма ограничены. Это объясняется тем, что при организации массового производства отливок из этого чугуна встречаются значительные затруднения.
Наиболее трудной задачей является получение отливок из чугуна марок ВЧ40 и ВЧ60 по ГОСТ 7293-85. Вместе с тем применение чугуна этих марок позволяет в наибольшей степени использовать его высокие физико-механические свойства.
Основное затруднение заключается в том, что полученный металл не всегда соответствует требованию по механическим свойствам, особенно по характеристикам пластичности и вязкости.
В отливках часто образуются дефекты в виде «черных пятен», значительно снижающих прочность деталей. Характерными для отливок из ВЧ являются также усадочные дефекты и мелкие поверхностные газовые раковины.
Значительную трудность представляет получение перлитной структуры для марки ВЧ60, в которой феррита должно быть не более 20%.
В целях преодоления указанных затруднений авторами в сотрудничестве с работниками ряда заводов выполнялись работы, по результатам которых разработан и внедрен технологический процесс изготовления отливок из ВЧ, предусмотренных ГОСТ 7293-85. Активное участие в этих работах принимали специалисты кафедры «Литейное производство» ЮУрГУ.

Химический состав, выплавка и разливка чугуна.

Многочисленные наблюдения показали, что при производстве ВЧ встречается несколько характерных типов микроструктуры графита. Условно они названы: шаровидный, вермикулярный и смешанный.
В результате исследований установлено, что чугун со смешанной формой графита получается при содержании магния менее 0,035% и содержании углерода в жидком чугуне менее 3,0-3,2% перед вводом магния.
Для получения чугуна с полностью шаровидным графитом необходимо обеспечить содержание магния в пределах 0,04-0,1%, а также достаточное содержание углерода, причем шаровидный графит получается тем более устойчиво, чем выше содержание углерода в металле перед вводом магния.
Указанная закономерность не всегда согласуется с литературными данными /1,2/, в которых указывается, что для обеспечения получения шаровидного графита в чугуне с увеличением в нем содержания углерода, нужно увеличивать дозировку магния.
Для устойчивого получения шаровидного графита необходимо также, чтобы содержание серы в металле до ввода магния было не более 0,02%. /3, 4/
Форма графита в ВЧ оказывает решающее влияние на его пластичность и вязкость и мало сказывается на характеристиках прочности, что видно на рис. 1,2, где показаны результаты испытания механических свойств этого чугуна множеством плавок.

Рис. 1. Влияние формы графита на механические свойства высокопрочного чугуна
Рис. 2. Влияние формы графита на механические свойства высокопрочного чугуна

Читать еще:  Где делать заземление в частном доме

Влияние микроструктуры металлической основы на механические свойства ВЧ общеизвестно. Однако возникла необходимость в уточнении количества допустимого перлита в ферритном чугуне, учитывая, что в результате отжига некоторое его количество во многих случаях сохраняется. В связи с этим производилось изучение микроструктуры и механических свойств чугуна в лабораторных и производственных условиях. Форма графита в этих чугунах была полностью шаровидной. Химический состав колебался в сравнительно небольших пределах.
Полученные результаты (рис.3) показывают, что в ферритном чугуне марки ВЧ40 допустимо 10-15% перлита, а в марке ВЧ60 феррита может быть не более 10%.


Рис. 3. Влияние количества перлита в металлической основе на механические
свойства высокопрочного чугуна

В перлитном и ферритном ВЧ совершенно недопустим цементит, т.к. даже весьма незначительное его количество понижает ударную вязкость до значения менее 1кгм/см2.
Исследования влияния химического состава ВЧ на его механические свойства проводились на чугуне, выплавленном в лабораторных условиях в индукционной печи, а также в различных производственных агрегатах (вагранки, дуговые электропечи) на ряде заводов Урала. Во всех случаях использовали данные только тех плавок, чугун которых имел полностью шаровидный графит и ферритную металлическую основу в литом состоянии или после отжига (не более 10% перлита). Обобщенные результаты представлены на рис. 4,5,6,7.

Рис. 4. Влияние углерода на механические свойства высокопрочного чугуна.

Рис. 5. Влияние кремния на механические свойства высокопрочного чугуна.

Рис. 6. Влияние марганца на механические свойства высокопрочного чугуна.


Рис. 7. Влияние фосфора на механические свойства высокопрочного чугуна.

Как видно из данных рис.4 изменение содержания углерода от 2,4 до 3,9% не оказывает заметного влияния на все характеристики механических свойств ВЧ. Оно может выражаться лишь в том, что с понижением содержания углерода возрастает количество перлита, сохраняющегося после отжига. При этом вероятно также наличие структурного свободного цементита и графита нешаровидной формы.
С повышением содержания кремния от 2 до 3% механические свойства ВЧ также практически не изменяются (рис.5). Однако при дальнейшем повышении содержания кремния наступает заметное понижение относительного удлинения и повышение предела прочности при растяжении. Показатели ударной вязкости при этом резко падают в связи с наличием структурно свободных силицидов магния, происходит охрупчивание феррита, в особенности для чугуна ВЧ40.
Влияние марганца аналогично влиянию кремния. Резкое падение ударной вязкости и значительное снижение относительного удлинения наступает при содержании марганца более 0,6% (рис.6).
Влияние фосфора на понижение пластичности и вязкости ВЧ заметно проявляется при содержании его выше 0,08% (рис.7).
Получение чугунов марок ВЧ40, ВЧ45, ВЧ50, ВЧ60 вполне осуществимо в вагранках при правильном подборе модификаторов.
Многие сомневались в возможности получения ВЧ40 из вагранки на холодном дутье, обеспечивающей нагрев чугуна лишь до 1360-кС. Подтверждением стали сравнительные опыты получения ВЧ в индукционных и дуговых электропечах, а также в вагранке производительностью 3т/ч. Во всех плавках использовались одни и те же шихтовые материалы, поэтому полученный металл был практически одинакового химического состава. Отличие состояло лишь в том, что чугун в индукционной и дуговой электропечах нагревался до 1450-1500-кС, а в вагранке до 1360-кС. В связи с этим температура ваграночного чугуна при заливке в формы была 1280-1300-кС, а электропечного чугуна — 1340-1380-кС. Результаты механических испытаний полученного ВЧ (после отжига), приведенные в таблице 1, показывают, что чугун выплавленный в индукционной и дуговой электропечи имеет более высокие показатели относительного удлинения и ударной вязкости, что связано с повышенной температурой заливки и низким содержанием серы. Остальные характеристики механических свойств вполне удовлетворяют требованиям ГОСТа и для ваграночного чугуна.
При выплавке чугуна марок ВЧ40, ФЧ45, ВЧ50, ВЧ60 использовались обычные передельные чугуны ПЛ1 и ПЛ2, с пониженным содержанием фосфора и марганца.

Влияние химического состава на структуру и свойства чугунных отливок

Входящие в состав чугуна углерод, кремний, марганец, сера, фосфор и легирующие элементы (никель, хром, титан, медь, молибден и др.) оказывают влияние на его структуру и свойства отливок.

Углерод в чугунных отливках может находиться в виде свободного углерода графита и в виде химического соединения с железом Fe3C, называемого карбидом железа или цементитом. Чем больше углерода в чугуне, тем больше выделяется графита. Графит в сером чугуне располагается в форме пластинок, которые разъединяют основную металлическую массу и понижают прочность чугуна. Чем меньше углерода и более мелкие по величине пластинки его, тем выше механические свойства чугуна, но в то же время углерод улучшает его литейные свойства.

При изготовлении отливок содержание углерода колеблется в значительных пределах: в обычном сером чугуне — от 3,2 до 3,9%, в ковком — от 2,4 до 3%, в малоуглеродистом оно снижается до 2,7%.

Процесс выделения графита из цементита во время затвердевания и охлаждения отливки сопровождается увеличением объема, что понижает усадку чугуна.

Кремний в чугуне способствует распаду цементита и образованию графита, т. е. является графитизатором. С железом кремний образует устойчивое химическое соединение FeS. Изменяя содержание кремния в чугуне, можно регулировать соотношение между связанным углеродом и графитом. Кремний повышает жидкотекучесть чугуна и уменьшает его усадку. В обычном сером чугуне содержание кремния колеблется от 1,8 до 3%, в малоуглеродистом — от 1,6 до 2,2%, в ковком — от 0,8 до 1,3%, в кремнистом ковком чугуне — от 1,0 до 1,9%.

Марганец увеличивает устойчивость карбидов железа, сам образует карбид Mn3C и этим самым препятствует графитизации чугуна. Он нейтрализует сильное влияние серы на уменьшение жидкотекучести чугуна, образуя сульфид марганца MnS, который переходит в шлак. Содержание марганца в отливках из серого чугуна колеблется от 0,5 до 1,2%, в отливках из ковкого чугуна — от 0,5 до 0,6%.

Сера в чугуне образует сернистое железо FeS, которое растворяется в нем в неограниченном количестве. Сернистое железо образует с железом легкоплавкое соединение Fe*FeS с температурой плавления 985° С. Это соединение при затвердевании отливки кристаллизуется последним по границам кристаллов и снижает механические свойства чугуна, вызывая красноломкость. Сера препятствует графитизации, понижает жидкотекучесть чугуна, увеличивает усадку, повышает твердость и хрупкость чугуна в холодном состоянии. Предельно допустимое содержание серы в чугуне 0,12—0,15%.

Фосфор в чугуне при содержании до 0,3% находится в растворе. При избытке фосфора образуется двойная и тройная фосфидная эвтектика (Fe+Fe3P и Fe+FeP+Fe3C) с температурой плавления около 950° С. Фосфидная эвтектика обладает большой твердостью. При содержании фосфора до 0,7% она выделяется в виде отдельных включений, при большем содержании — в виде сплошной сетки по границам кристаллов и увеличивает хрупкость (хладноломкость) чугуна. Фосфор способствует графитизации и увеличивает жидкотекучесть чугуна. Содержание фосфора в чугуне допускают до 0,3% в ответственных отливках, до 0,8%) в отливках, работающих на истирание, и до 1,2% в тонкостенном и художественном литье.

Хром уменьшает графитизацию и жидкотекучесть и увеличивает твердость чугуна. В то же время он повышает его механические свойства, износостойкость, жаростойкость и коррозионную стойкость.

Никель и медь способствуют графитизации чугуна, улучшают его структуру в отливках. Их обычно применяют в качестве добавок в чугун с другими легирующими элементами (Cr, Ti и др.).

Титан является слабым графитизатором и сильным раскислителем. Связывает азот, образуя нитриды, и способствует получению плотного строения отливок.

Алюминий при содержании до 0,1 % действует как сильный графитизатор. При высоком содержании алюминия (7—9%) чугун приобретает жаростойкость.

Магний уменьшает графитизацию чугуна, является сильным раскислителем и обессеривателем (десульфуратором). Подобно церию, магний используют для получения высокопрочного чугуна со сфероидальной формой графита.

Кальций в виде сплава с кремнием (силикокальций) применяют как модификатор чугуна, способствующий графитизации, раскислению и образованию мелких структур в отливках.

Ссылка на основную публикацию
Adblock
detector