55 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В чем заключается явление гистерезиса

Свойства ферромагнитных материалов. Гистерезис

Если среда способна намагничиваться в магнитном поле, т.е. создавать собственное магнитное поле, то такая среда называется магнетиком. В самом деле, если ненамагниченный магнетик поместить в магнитное поле с индукцией , то он намагничивается и дает добавочную индукцию поля´, которая векторно складывается с первоначальной индукцией , т.е. ´.

Векторная сумма называется вектором магнитной индукции внутри магнетика.

Вещества, для которых ´ совпадает по направлению с , называются парамагнетиками. Внутри парамагнетиков магнитное поле усиливаются.

Вещества, для которых ´ и противоположны по направлению, называются диамагнетиками. Магнитное поле внутри диамагнетиков ослабляются. Для парамагнетиков (алюминий, платина и др.) магнитная проницаемость µ>1. Для диамагнетиков (медь, поваренная соль и др.) µ >1, т.е. они способны сильно намагничиваться.

Для пара- и диамагнетиков зависимость между и линейная, так как µ=const. Для ферромагнетиков эта зависимость носит нелинейный характер (рис.32), потому что µ≠const, а зависит от Н, т.е. µ=ƒ(Н) (рис.33).

Характерной особенностью ферромагнетиков является гистерезис. Явление гистерезиса заключается в том, что магнитная индукция В зависит не только от мгновенного значения Н, но и от того, какова была напряженность поля раньше. При этом происходит отставание изменения индукции В при изменении Н. Если ненамагниченный ферромагнетик поместить в магнитное поле, которое увеличивается от нуля, то зависимость В от Н (кривая намагничивания) выразится кривой Oa (рис.34). Точка «a» на рис. 34 соответствует магнитному насыщению.

Рис.34

Если же затем уменьшить Н до 0, то кривая намагничивания не совпадает с Oa, а пойдет по кривой ав. В результате, когда Н станет равной нулю, намагничивание не исчезнет, и будет характеризоваться величиной Ве, которая называется остаточной индукцией (отрезок «ов»). Намагничивание обращается в нуль (точка С) лишь под действием поля с напряженностью Нс (отрезок ос), имеющего направление, противоположное полю, вызывающему намагничивание. Напряженность магнитного поля Нс называется коэрцетивной силой.

При воздействии переменного магнитного поля напряженностью Н индукция В ферромагнетика меняется в соответствии с кривой авсаа′в′с′а (рис3.4), которая называется петлей гистерезиса. Петля гистерезиса может быть объяснена наличием в ферромагнетиках отдельных областей самопроизвольного намагничивания, называемых доменами.

Если максимальные значения напряженности поля Н таковы, что намагничивание достигает насыщения, получается так называемая максимальная петля гистерезиса (обозначена сплошной линией на рис.33). Если при максимальных значениях Н насыщение не достигается, получается петля, называемая частным циклом (обозначена пунктирной линией на рис. 33).

Ферромагнетики различают по величине коэрцетивной силы. Если она находится в пределах (0,02-0,05) А/м, то это магнитомягкий ферромагнетик. Такие материалы используются на переменном токе. Если же пределы коэрцетивной силы лежат в области (20-30) кА/м, то это магнитотвердые ферромагнетики и они применяются для производства постоянных магнитов

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 10007 — | 7789 — или читать все.

188.64.174.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Гистерезис

(от греч. hysteresis — отставание, запаздывание)

явление, которое состоит в том, что физическая величина, характеризующая состояние тела (например, намагниченность), неоднозначно зависит от физические величины, характеризующей внешние условия (например, магнитного поля). Г. наблюдается в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. Неоднозначная зависимость величин наблюдается в любых процессах, т.к. для изменения состояния тела всегда требуется определённое время (время релаксации (См. Релаксация)) и реакция тела отстаёт от вызывающих её причин. Такое отставание тем меньше, чем медленнее изменяются внешние условия Однако для некоторых процессов отставание при замедлении изменения внешних условий не уменьшается. В этих случаях неоднозначную зависимость величин называется гистерезисной, а само явление — Г.

Г. наблюдается в различных веществах и при разных физических процессах. Наибольший интерес представляют: магнитный Г., диэлектрический Г. и упругий Г.

Магнитный Г. наблюдается в магнитных материалах, например в ферромагнетиках (См. Ферромагнетики). Основной особенностью ферромагнетиков является наличие спонтанной (самопроизвольной) намагниченности. Обычно ферромагнетик намагничен не однородно, а разбит на доме́ны — области однородной спонтанной намагниченности, у которых величина намагниченности (магнитного момента единицы объема) одинакова, а направления различны. Под действием внешнего магнитного поля число и размеры доменов, намагниченных по полю, увеличиваются за счёт др. доменов. Кроме того, магнитные моменты отдельных доменов могут поворачиваться по полю. В результате магнитный момент образца увеличивается.

На рис. 1 изображена зависимость магнитного момента М ферромагнитного образца от напряжённости Н внешнего магнитного поля (кривая намагничивания). В достаточно сильном магнитном поле образец намагничивается до насыщения (при дальнейшем увеличении поля значение М практически не изменяется, точка А). При этом образец состоит из одного домена с магнитным моментом насыщения Ms, направленным по полю. При уменьшении напряжённости внешнего магнитного поля Н магнитный момент образца М будет уменьшаться по кривой I преимущественно за счёт возникновения и роста доменов с магнитным моментом, направленным против поля. Рост доменов обусловлен движением доменных стенок. Это движение затруднено из-за наличия в образце различных дефектов (примесей, неоднородностей и т.п.), которые закрепляют доменные стенки в некоторых положениях; требуются достаточно сильные магнитные поля для того, чтобы их сдвинуть. Поэтому при уменьшении поля Н до нуля у образца сохраняется т. н. остаточный магнитный момент Mr (точка В).

Образец полностью размагничивается лишь в достаточно сильном поле противоположного направления, называемом коэрцитивным полем (коэрцитивной силой (См. Коэрцитивная сила)) Нс (точка С). При дальнейшем увеличении магнитного поля обратного направления образец вновь намагничивается вдоль поля до насыщения (точка D). Перемагничивание образца (из точки D в точку А) происходит по кривой II. Т. о., при циклическом изменении поля кривая, характеризующая изменение магнитного момента образца, образует петлю магнитного Г. Если поле Н циклически изменять в таких пределах, что намагниченность насыщения не достигается, то получается непредельная петля магнитного Г. (кривая III). Уменьшая амплитуду изменения поля Н до нуля, можно образец полностью размагнитить (прийти в точку О). Намагничивание образца из точки О происходит по кривой IV.

При магнитном Г. одному и тому же значению напряжённости внешнего магнитного поля Н соответствуют разные значения магнитного момента М. Эта неоднозначность обусловлена влиянием состояний образца, предшествующих данному (т. е. магнитной предысторией образца).

Вид и размеры петли магнитного Г., величина Нс в различных ферромагнетиках могут меняться в широких пределах. Например, в чистом железе Нс= 1 э, в сплаве магнико Нс= 580 э. На петлю магнитного Г. сильно влияет обработка материала, при которой изменяется число дефектов (рис. 2).

Площадь петли магнитного Г. равна энергии, теряемой в образце за один цикл изменения поля. Эта энергия идёт, в конечном счёте, на нагревание образца. Такие потери энергии называются гистерезисными. В тех случаях, когда потери на Г. нежелательны (например, в сердечниках трансформаторов, в статорах и роторах электрических машин), применяют магнитномягкие материалы, обладающие малым Нс и малой площадью петли Г. Для изготовления постоянных магнитов, напротив, требуются магнитножёсткие материалы с большим Нс.

С ростом частоты переменного магнитного поля (числа циклов перемагничивания в единицу времени) к гистерезисным потерям добавляются др. потери, связанные с вихревыми токами (См. Вихревые токи) и магнитной вязкостью (См. Магнитная вязкость). Соответственно площадь петли Г. при высоких частотах увеличивается. Такую петлю иногда называют динамической петлей, в отличие от описанной выше статической петли.

От магнитного момента зависят многие др. свойства ферромагнетика, например электрическое сопротивление, механическая деформация. Изменение магнитного момента вызывает изменение и этих свойств. Соответственно наблюдается, например, гальваномагнитный Г., магнитострикционный Г.

Диэлектрический Г. наблюдается обычно в сегнетоэлектриках (См. Сегнетоэлектрики), например титанате бария. Зависимость поляризации Р от напряжённости электрического поля Е в сегнетоэлектриках (рис. 3) подобна зависимости М от Н в ферромагнетиках и объясняется наличием спонтанной электрической поляризации, электрических доменов (См. Домены) и трудностью перестройки доменной структуры. Гистерезисные потери составляют большую часть диэлектрических потерь (См. Диэлектрические потери) в сегнетоэлектриках.

Поскольку с поляризацией связаны др. характеристики сегнетоэлектриков, например деформация, то с диэлектрическим Г. связаны др. виды Г., например пьезоэлектрический Г. (рис. 4), Г. электрооптического эффекта (См. Электрооптический эффект). В некоторых случаях наблюдаются двойные петли диэлектрического Г. (рис. 5). Это объясняется тем, что под влиянием электрического поля в образце происходит фазовый переход с перестройкой кристаллической структуры. Такого рода диэлектрический Г. тесно связан с Г. при фазовых переходах.

Упругий Г., т. е. гистерезисная зависимость деформации и от механического напряжения σ, наблюдается в любых реальных материалах при достаточно больших напряжениях (рис. 6). Упругий Г. возникает всякий раз, когда имеет место пластическая (неупругая) деформация (см. Пластичность). Пластическая деформация обусловлена перемещением дефектов, например дислокаций (См. Дислокации), всегда присутствующих в реальных материалах. Примеси, включения и др. дефекты, а также сама кристаллическая решётка стремятся удержать дислокацию в определенных положениях в кристалле. Поэтому требуются напряжения достаточной величины, чтобы сдвинуть дислокацию. Механическая обработка и введение примесей приводят к закреплению дислокаций, в результате чего происходит упрочнение материала, пластическая деформация и упругий Г. наблюдаются при больших напряжениях. Энергия, теряемая в образце за один цикл, идёт в конечном счёте на нагревание образца. Потери на упругий Г. дают вклад во Внутреннее трение. В случае упругих деформаций, помимо гистерезисных, есть и др. потери, например обусловленные вязкостью (См. Вязкость магнитная). Величина этих потерь, в отличие от гистерезисных, зависит от частоты изменения σ (или и). Иногда понятие «упругий Г.» употребляется шире — говорят о динамической петле упругого Г., включающей все потери на данной частоте.

Читать еще:  Топ лучших генераторов для дома

Лит.: Киренский Л. В., Магнетизм, 2 изд., М., 1967; Вонсовский С. В., Современное учение о магнетизме, М. — Л., 1952; Бозорт Р., Ферромагнетизм, пер. с англ., М., 1956; Иона Ф., Ширане Д., Сегнетоэлектрические кристаллы, пер. с англ., М., 1965; Постников В. С., Внутреннее трение в металлах, М., 1969; Физический энциклопедический словарь, т. 1, М., 1960.

А. П. Леванюк, Д. Г. Санников.

Рис. 1. Петля магнитного гистерезиса для ферромагнетика: Н — напряжённость магнитного поля; М — магнитный момент образца; Нс — коэрцитивное поле; Mr — остаточный магнитный момент; Ms — магнитный момент насыщения. Пунктиром показана непредельная петля гистерезиса. Схематически приведена доме́нная структура образца для некоторых точек петли.

Рис. 2. Влияние механической и термической обработки на форму петли магнитного гистерезиса пермалоя: 1 — после наклёпа; 2 — после отжига; 3 — кривая мягкого железа (для сравнения).

Рис. 3. Петля диэлектрического гистерезиса в сегнетоэлектрике: Р — поляризация образца; Е — напряжённость электрического поля.

Рис. 4. Петля гистерезиса обратного пьезоэлектрического эффекта в титанате бария: U — деформация: Е — напряжённость электрического поля.

Рис. 5. Двойная петля диэлектрического гистерезиса.

Рис. 6. Петля упругого гистерезиса: σ — механическое напряжение; u — деформация.

Что такое магнитный гистерезис, кривые магнитного намагничивания

В данной статье мы рассмотрим явление под названием магнитный гистерезис, которое связано со свойствами намагничивания материала, благодаря которому он сначала намагничивается, а затем размагничивается. Рассмотрим кривые намагничивания, сохраняемость, а так же магнитную петлю гистерезиса.

Описание явления магнитного гистерезиса

Мы знаем, что магнитный поток, создаваемый электромагнитной катушкой, представляет собой величину магнитного поля или силовых линий, создаваемых в данной области, и что его чаще называют «плотностью потока», обозначенным символ B с единицей измерения Тесла, Т.

Мы также знаем из предыдущих уроков, что магнитная сила электромагнита зависит от числа витков катушки, тока, протекающего через катушку, или от типа используемого материала сердечника, и если мы увеличим либо ток, либо число оказывается, мы можем увеличить напряженность магнитного поля H.

Ранее относительная проницаемость, символ µ r, определялась как отношение абсолютной проницаемости µ и проницаемости свободного пространства µ o(вакуум), и это задавалось как постоянная величина. Однако взаимосвязь между плотностью потока B и напряженностью магнитного поля H может быть определена тем фактом, что относительная проницаемость µ r не является постоянной величиной, а функцией интенсивности магнитного поля, что дает плотность магнитного потока как: B = M H .

Тогда плотность магнитного потока в материале будет увеличена в большей степени в результате его относительной проницаемости для материала по сравнению с плотностью магнитного потока в вакууме, µ o H, а для катушки с воздушной сердцевиной это соотношение определяется как:

Таким образом, для ферромагнитных материалов отношение плотности потока к напряженности поля ( B / H ) не является постоянным, а изменяется в зависимости от плотности потока. Тем не менее, для катушек с воздушной сердцевиной или любой сердцевины с немагнитной средой, такой как дерево или пластмасса, это отношение можно считать постоянной величиной, и эта постоянная известна как μ o , проницаемость свободного пространства ( μ o = 4.π.10 -7 ч / м ).

Построив значения плотности потока ( B ) против напряженности поля, ( Н ) мы можем произвести набор кривых , называемых Кривые намагничивания, кривые магнитного гистерезиса или более обычно BH кривые для каждого типа основного используемого материала.

Намагниченность или кривая B-H

Набор кривых намагничивания выше, представляет пример взаимосвязи между B и H для сердечников из мягкого железа и стали, но каждый тип материала сердечника будет иметь свой собственный набор кривых магнитного гистерезиса. Вы можете заметить, что плотность потока увеличивается пропорционально напряженности поля до тех пор, пока она не достигнет определенного значения, если оно больше не может становиться почти равным и постоянным, поскольку напряженность поля продолжает увеличиваться.

Это связано с тем, что существует ограничение на количество плотности потока, которое может генерироваться ядром, поскольку все домены в железе идеально выровнены. Любое дальнейшее увеличение не будет влиять на значение M , и точка на графике, где плотность потока достигает своего предела, называется магнитным насыщением, также известным как насыщение сердечника, и в нашем простом примере выше точки насыщения стальной кривой начинается примерно с 3000 ампер-витков на метр.

Насыщение происходит потому, что, как мы помним из предыдущей статьи по магнетизму, который включал теорию Вебера, случайное расположение структуры молекулы в материале ядра изменяется, когда крошечные молекулярные магниты в материале становятся «выстроенными».

По мере увеличения напряженности магнитного поля ( H ) эти молекулярные магниты становятся все более и более выровненными, пока они не достигнут идеального выравнивания, создавая максимальную плотность потока, и любое увеличение напряженности магнитного поля из-за увеличения электрического тока, протекающего через катушку, будет иметь мало или вообще не будет иметь эффекта.

Сохраняемость (способность сохранять остаточный магнетизм)

Предположим, что у нас есть электромагнитная катушка с высокой напряженностью поля из-за тока, протекающего через нее, и что материал ферромагнитного сердечника достиг своей точки насыщения, максимальной плотности потока. Если мы теперь откроем переключатель и удалим ток намагничивания, протекающий через катушку, мы ожидаем, что магнитное поле вокруг катушки исчезнет, ​​когда магнитный поток уменьшится до нуля.

Однако магнитный поток не исчезает полностью, поскольку материал электромагнитного сердечника все еще сохраняет часть своего магнетизма, даже когда ток прекращает течь в катушке. Эта способность к катушке, чтобы сохранить часть своего магнетизма внутри сердечника после процесса намагничивания остановилось называются сохраняемость или остаточной намагниченности, в то время как величина плотности потока все еще остается в ядре, называется остаточным магнетизмом B R .

Причиной этого является то, что некоторые из крошечных молекулярных магнитов не возвращаются к совершенно случайному образцу и все же указывают в направлении исходного поля намагничивания, давая им своего рода «память». Некоторые ферромагнитные материалы обладают высокой удельной удерживаемостью (магнитной твердостью), что делает их превосходными для изготовления постоянных магнитов.

В то время как другие ферромагнитные материалы имеют низкую способность удерживать (магнитно-мягкие), что делает их идеальными для использования в электромагнитах, соленоидах или реле. Один из способов уменьшить эту остаточную плотность потока до нуля — изменить направление тока, протекающего через катушку, путем изменения значения H, напряженности магнитного поля, отрицательной. Этот эффект называется коэрцитивной силой H C .

Если этот обратный ток увеличивается еще больше, то плотность потока будет также увеличиваться в обратном направлении, пока ферромагнитный сердечник не достигнет насыщения снова, но в обратном направлении от предыдущего. Снижая ток намагничивания I снова до нуля создаст аналогичную величину остаточного магнетизма, но в обратном направлении.

Затем путем постоянного изменения направления тока намагничивания через катушку с положительного направления на отрицательное направление, как в случае с источником переменного тока, можно создать петлю магнитного гистерезиса ферромагнитного сердечника.

Магнитная петля гистерезиса

Магнитная петля гистерезиса выше, показывает поведение ферромагнитного сердечника графически в виде соотношения между B и H является нелинейным. Начиная с немагнитного сердечника, и B, и H будут в нуле, точка 0 на кривой намагничивания.

Если ток намагничивания I увеличивается в положительном направлении до некоторого значения, напряженность магнитного поля H линейно увеличивается с I,и плотность потока B также будет увеличиваться, как показано кривой из точки 0 в точку a, когда она движется к насыщению.

Теперь, если ток намагничивания в катушке уменьшается до нуля, магнитное поле, циркулирующее вокруг сердечника, также уменьшается до нуля. Однако магнитный поток катушек не достигнет нуля из-за остаточного магнетизма, присутствующего в сердечнике, и это показано на кривой от точки а к точке b .

Чтобы уменьшить плотность потока в точке b до нуля, необходимо обратить ток, протекающий через катушку. Сила намагничивания, которая должна применяться для обнуления остаточной плотности потока, называется «Коэрцитивной силой». Эта коэрцитивная сила меняет магнитное поле, перестраивая молекулярные магниты, пока ядро ​​не станет немагнитным в точке с .

Увеличение этого обратного тока вызывает намагничивание сердечника в противоположном направлении, и дальнейшее увеличение этого тока намагничивания приведет к тому, что сердечник достигнет своей точки насыщения, но в противоположном направлении, точки d на кривой.

Эта точка симметрична точке b . Если ток намагничивания снова уменьшится до нуля, остаточный намагниченность, присутствующая в сердечнике, будет равна предыдущему значению, но в точке е будет обратной .

Снова изменение направления тока намагничивания, протекающего через катушку на этот раз в положительном направлении, приведет к тому, что магнитный поток достигнет нуля, точка f на кривой, и, как и прежде, дальнейшее увеличение тока намагничивания в положительном направлении приведет к насыщению сердечника в точке а .

Затем кривая B-H следует по пути a-b-c-d-e-f-a, когда ток намагничивания, протекающий через катушку, чередуется между положительным и отрицательным значением, таким как цикл переменного напряжения. Этот путь называется магнитной петлей гистерезиса.

Эффект магнитного гистерезиса показывает, что процесс намагничивания ферромагнитного сердечника и, следовательно, плотность потока зависят от того, на какую часть кривой намагничивается ферромагнитный сердечник, поскольку это зависит от прошлых цепей, придающих сердечнику форму «памяти». Тогда ферромагнитные материалы имеют память, потому что они остаются намагниченными после того, как внешнее магнитное поле было удалено.

Однако мягкие ферромагнитные материалы, такие как железная или кремниевая сталь, имеют очень узкие петли магнитного гистерезиса, что приводит к очень небольшим количествам остаточного магнетизма, что делает их идеальными для использования в реле, соленоидах и трансформаторах, поскольку они могут легко намагничиваться и размагничиваться.

Читать еще:  Каким образом выбираются приборы для измерения давления

Поскольку для преодоления этого остаточного магнетизма необходимо применять коэрцитивную силу, необходимо выполнить работу по замыканию петли гистерезиса, чтобы используемая энергия рассеивалась в виде тепла в магнитном материале. Это тепло известно как потеря гистерезиса, величина потери зависит от значения материала коэрцитивной силы.

Добавляя добавки к металлическому железу, такие как кремний, можно получить материалы с очень малой коэрцитивной силой, которые имеют очень узкую петлю гистерезиса. Материалы с узкими петлями гистерезиса легко намагничиваются и размагничиваются и известны как магнитомягкие материалы.

Магнитные петли гистерезиса для мягких и твердых материалов

Магнитный гистерезис приводит к рассеиванию потраченной энергии в виде тепла, причем энергия теряется пропорционально площади петли магнитного гистерезиса. Потери гистерезиса всегда будут проблемой в трансформаторах переменного тока, где ток постоянно меняет направление, и, таким образом, магнитные полюсы в сердечнике будут вызывать потери, потому что они постоянно меняют направление.

Вращающиеся катушки в машинах постоянного тока также будут нести гистерезисные потери, поскольку они попеременно проходят севернее южных магнитных полюсов. Как указывалось ранее, форма петли гистерезиса зависит от природы используемого железа или стали, и в случае железа, которое подвергается массивным изменениям магнетизма, например, сердечники трансформатора, важно, чтобы петля гистерезиса B-H была как можно меньше.

В следующей статье об электромагнетизме мы рассмотрим закон электромагнитной индукции Фарадея и увидим, что, перемещая проводной проводник в стационарном магнитном поле, можно вызвать электрический ток в проводнике, образующий простой генератор.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

В чем заключается явление гистерезиса

Наибольший интерес представляют магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.

Магнитный гистерезис

Магнитный гистерезис — явление зависимости вектора намагничивания и вектора напряженности магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках — Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Явление магнитного гистерезиса наблюдается не только при изменении поля H по величине и знаку, но также и при его вращении (гистерезис магнитного вращения), что соответствует отставанию (задержке) в изменении направления M с изменением направления H. Гистерезис магнитного вращения возникает также при вращении образца относительно фиксированного направления H.

Теория явления гистерезиса учитывает конкретную магнитную доменную структуру образца и её изменения в ходе намагничивания и перемагничивания. Эти изменения обусловлены смещением доменных границ и ростом одних доменов за счёт других, а также вращением вектора намагниченности в доменах под действием внешнего магнитного поля. Всё, что задерживает эти процессы и способствует попаданию магнетиков в метастабильные состояния, может служить причиной магнитного гистерезиса.

В однодоменных ферромагнитных частицах (в частицах малых размеров, в которых образование доменов энергетически невыгодно) могут идти только процессы вращения M. Этим процессам препятствует магнитная анизотропия различного происхождения (анизотропия самого кристалла, анизотропия формы частиц и анизотропия упругих напряжений). Благодаря анизотропии, M как бы удерживается некоторым внутренним полем HA (эффективным полем магнитной анизотропии) вдоль одной из осей лёгкого намагничивания, соответствующей минимуму энергии. Магнитный гистерезис возникает из-за того, что два направления M (по и против) этой оси в магнитоодноосном образце или несколько эквивалентных (по энергии) направлений М в магнитомногоосном образце соответствуют состояниям, отделённым друг от друга потенциальным барьером (пропорциональным HA ). При перемагничивании однодоменных частиц вектор M рядом последовательных необратимых скачков поворачивается в направлении H, Такие повороты могут происходить как однородно, так и неоднородно по объёму. При однородном вращении M коэрцитивная сила . Более универсальным является механизм неоднородного вращения M. Однако наибольшее влияние на Hc он оказывает в случае, когда основную роль играет анизотропия формы частиц. При этом Hc может быть существенно меньше эффективного поля анизотропии формы.

В электронике и электротехнике используются устройства, обладающие магнитным — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.

Сегнетоэлектрический гистерезис

Сегнетоэлектрический гистерезис — неоднозначная петлеобразная зависимость поляризации P сегнетоэлектриков от внешнего электрического поля E при его циклическом изменении. Сегнетоэлектрические кристаллы обладают в определенном температурном интервале спонтанной (самопроизвольной, то есть возникающей в отсутствие внешнего электрического поля) электрической поляризацией Pc. Направление поляризации может быть изменено электрическим полем. При этом зависимость P(E) в полярной фазе неоднозначна, значение P при данном E зависит от предистории, то есть от того, каким было электрическое поле в предшествующие моменты времени. Основные параметры сегнетоэлектрического гистерезиса:

  • остаточная поляризация кристалла Pост, при E = 0
  • значение поля EKt(коэрцитивное поле) при котором происходит переполяризация

Упругий гистерезис

В теории упругости явление гистерезиса наблюдается в поведении упругих материалов, которые под воздействием больших давлений способны сохранять деформацию и утрачивать её при воздействии обратного давления (например, вытягивание сжатого стержня). Во многом именно это явление объясняет анизотропию механических характеристик кованых изделий, а также их высокие механические качества.

Различают два вида упругого гистерезиса — динамический и статический.

Динамический гистерезис наблюдают при циклически изменяющихся напряжениях, максимальная амплитуда которых существенно ниже предела упругости. Причиной этого вида гистерезиса является неупругость либо вязкоупругость. При неупругости, помимо чисто упругой деформации (отвечающей закону Гука), имеется составляющая, которая полностью исчезает при снятии напряжений, но с некоторым запаздыванием, а при вязкоупругости эта составляющая полностью со временем не исчезает. Как при неупругом, так и вязкоупругом поведении величина ΔU — энергия упругой деформации не зависит от амплитуды деформации и меняется с частотой изменения нагрузки. Также динамический гистерезис возникает в результате термоупругости, магнитоупругих явлений и изменения положения точечных дефектов и растворённых атомов в кристаллической решётке тела под влиянием приложенных напряжений.

В биологии

Гистерезисные свойства характерны для скелетных мышц млекопитающих.

В почвоведении

В гидрологии

Зависимость Q=f(H) — связь расходов и уровней воды в реках — имеет петлеобразную форму.

В экономике

Некоторые экономические системы проявляют признаки гистерезиса: например, могут потребоваться значительные усилия, чтобы начать экспорт в какой-либо отрасли, но для его поддержания на постоянном уровне — небольшие.

В теории игр эффект гистерезиса проявляется в том, что небольшие отличия по одному или нескольким параметрам приводят две системы в противоположные стабильные равновесия, например, «хорошее» — доверие, честность и высокое благосостояние; и «плохое» — воровство, недоверие, коррупция и бедность. Несмотря на небольшие первоначальные различия, системы требуют огромных усилий для перехода из одного равновесия в другое.

Эффект гистерезиса — состояние безработицы; достигнув достаточно высокого уровня, она может в определенной мере самовоспроизводиться и удерживаться на нем. Экономические причины гистерезиса (долгосрочной негибкости рынка труда) неоднозначны. Некоторые институциональные факторы ведут к гистерезису. Например, социальное страхование, особенно страхование по безработице, может через налоговую систему снижать спрос фирм на рабочую силу в официальной экономике. Безработица может вести к потере человеческого капитала и к «помечиванию» тех, кто долгое время остается безработным. Профсоюзы могут вести переговоры с целью поддерживать благосостояние их настоящих членов, игнорируя интересы аутсайдеров, оказавшихся безработными. Фиксированные издержки, связанные со сменой должности, места работы или отрасли, также могут приводит к гистерезису. Наконец, возможны трудности при различении реальных и кажущихся явлений гистерезиса, когда конечное состояние системы определяется, ее текущей динамикой или ее начальным состоянием. В первом случае гистерезис отражает наше незнание: добавив недостающие переменные и информацию, можно более полно описать эволюцию изучаемой системы. Др. интерпретация явления гистерезиса — простое существование нескольких состояний равновесия, когда невидимые воздействия перемещают экономику из одного состояния равновесия в др.

Математические модели гистерезиса

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. Создание математической теории гистерезиса относится к 60-м годам XX-го века, когда в Воронежском университете начал работать семинар под руководством М. А. Красносельского, «гистерезисной» тематики. Позднее, в 1983 году появилась монография [1] , в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определенные на достаточно богатом функциональном пространстве(напр. пространстве непрерывных функций), действующие в некоторое функциональное пространство.

Свойства

Простое параметрическое описание различных петель гистерезиса можно найти в работе [2] . Замена гармонических функций на прямоугольные, треугольные или трапецеидальные импульсы позволяет получить кусочно-линейные петли гистерезиса, часто встречающиеся в дискретной автоматике.

Литература

  1. М.А. Красносельский,А.В.Покровский. Системы с гистерезисом М., Наука, 1983. 271 стр.
  2. R. V. Lapshin, “Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope”, Review of Scientific Instruments, volume 66, number 9, pages 4718-4730, 1995. (англ.)

См. также

Обменное смещение — как особенность петель гистерезиса.

Что такое гистерезис в электротехнике и электронике?

Некоторые физические и другие системы с запаздыванием отвечают на различные воздействия, приложенные к ним. При этом отклик на воздействие во многом зависит от текущего состояния системы и определяется предысторией настоящего состояния. Для описания таких явлений применяется термин – гистерезис, что в переводе с греческого означает отставание.

Что такое гистерезис?

Говоря простым и понятным языком – гистерезис это ответная, запоздалая реакция некой системы на определённый раздражитель (воздействие). При устранении причины, вызвавшей ответную реакцию системы, либо в результате противоположного действия, она полностью или частично возвращается к первоначальному состоянию. Причём для такого явления характерно то, что поведение системы между крайними состояниями не одинаково. То есть: характеристики перехода от первоначального состояния и обратно – сильно отличаются.

Явление гистерезиса наблюдается:

  • в физике;
  • электротехнике и радиоэлектронике;
  • биологии;
  • геологии;
  • гидрологии;
  • экономике;
  • социологии.
Читать еще:  Как выглядит зубило фото

Гистерезис может иметь как полезное, так и пагубное влияние на происходящие процессы. Это отчётливо просматривается в электротехнике и электронике, о чём речь пойдёт ниже.

Динамический гистерезис

Рассмотрим явление запаздывания ответной реакции во времени на примере механической деформации. Предположим у нас есть металлический стержень, обладающий упругой деформацией. Приложим к одному концу стержня силу, направленную в сторону другого конца, который покоится на опоре. Например, поставим стержень под пресс.

По мере возрастания давления, тело будет сжиматься. В зависимости от механических характеристик металла, реакция стержня на приложенную силу (напряжение) будет проявляться по-разному: вначале сила упругости постепенно будет возрастать, потом она резко устремится к пороговому значению. Достигнув порогового значения, сила упругого напряжения уже не сможет противодействовать возрастающему нагружению.

Если увеличивать силу давления, то в стержне произойдут необратимые изменения – он, либо изменит свою форму, либо разрушится. Но мы не будем доводить наш эксперимент до такого состояния. Начнём уменьшать силу давления. Реакция напряжения при этом будет меняться зеркально: вначале резко понизится, потом постепенно будет стремиться к нулю, по мере разгрузки.

Отставание процесса развития деформации во времени, под действием приложенного механического напряжения вследствие упругого гистерезиса описывается динамической петлей (см. рис. 2). Явление обусловлено особенностями перемещений дислокаций микрочастиц вещества.

Различают упругий гистерезис двух видов:

  1. Динамический, при котором напряжения изменяются циклически, а максимальная амплитуда напряжений не достигает пределов упругости.
  2. Статический, характерный для вязкоупругих или неупругих деформаций. При таких деформациях полностью, либо частично исчезают напряжения при снятии нагрузки.

Причиной динамического гистерезиса являются также силы термоупругости и магнитоупругости.

Петля гистерезиса

Кривая, характеризующая ход зависимости ответной реакции системы от приложенного воздействия называется петлёй гистерезиса (показана на рис. 1).

Рис. 1. Петля гистерезиса

Все петли, характеризующие циклический гистерезис, состоят из одной или нескольких замкнутых линий различной формы. Если после завершения цикла система не возвращается в первоначальное состояние, (например, при вязкоупругой деформации), то динамическая петля имеет вид кривой, показанной на рисунке 2.

Рис. 2. Динамическая петля

Анализ гистерезисных петель позволяет очень точно определить поведение системы в результате внешнего воздействия на неё.

Гистерезис в электротехнике

Важными характеристиками сердечников электромагнитов и других электрических машин являются параметры намагничивания ферромагнитных материалов, из которых они изготавливаются. Исследовать эти материалы помогают петли ферромагнетиков. В данном случае прослеживается нелинейная зависимость внутренней магнитной индукции от величины внешних магнитных полей.

На процесс намагничивания (перемагничивания) влияет предыдущее состояние ферромагнетика. Кроме того, кривая намагничивания зависит от типа ферромагнитного образца, из которого состоит сердечник.

Если по катушке с сердечником циркулирует переменный ток, то намагничивания образца приводит к отставанию намагничивания. В результате намагничивания сердечника происходит сдвиг фаз в цепи с индуктивной нагрузкой. Ширина петли гистерезиса при этом зависит от гистерезисных свойств ферромагнетиков, применяемых в сердечнике.

Это объясняется тем, что при изменении полярности тока, ферромагнетик какое-то время сохраняет приобретённую ориентацию полюсов. Для переориентации этих полюсов требуется время и дополнительная энергия, которая израсходуется на нагревание вещества, что приводит к гистерезисным потерям. По величине потерь материалы подразделяются на магнитомягкие и магнитотвёрдые (см. рис. 3).

Рис. 3. Классификация магнитных материалов

Магнитный гистерезис в ферромагнетиках отображает зависимость вектора намагничивания от напряженности электрического поля (см. Рис. 3). Но не только изменение поля по знаку вызывает гистерезис. Вращение поля или (что, то же самое) магнитного образца, также сдвигает временные характеристики намагничивания.

Рис. 4. Петли гистерезиса под действием изменения напряжённости поля

Обратите внимание, что на рисунке изображены двойные петли. Такие петли характерны для магнитного гистерезиса.

В однодоменных ферромагнетиках, которые состоят из очень маленьких частиц, образование доменов не поддерживается (не выгодно с точки зрения энергетических затрат). В таких образцах могут происходить только процессы магнитного вращения.

Рис. 5. Механизм возникновения петли магнитного гистерезиса

В электротехнике гистерезисные свойства используются довольно часто:

  • в работе электромагнитных реле;
  • в конструкциях коммутационных приборов;
  • при создании электромоторов и других силовых механизмов.

Явления диэлектрического гистерезиса

У диэлектриков отсутствуют свободные заряды. Электроны тесно связаны со своими атомами и не могут перемещаться. Другими словами, у диэлектриков спонтанная поляризация. Такие вещества называются сегнетоэлектриками.

Однако под действием электрического поля заряды в диэлектриках поляризуются, то есть изменяют ориентацию в противоположные стороны. С увеличением напряжённости поля абсолютная величина вектора поляризации возрастает по нелинейному принципу. В определённый момент поляризация достигает насыщённости, что вызывает эффект диэлектрического гистерезиса.

На изменение поляризации уходит часть энергии, в виде диэлектрических потерь.

Гистерезис в электронике

При срабатывании различных пороговых элементов, часто применяемых в электронных устройствах, требуется задержка во времени. Например, гистерезис используется в компаратороах или триггерах Шмидта с целью стабилизации работы устройств, которые могут срабатывать в результате помех или случайных всплесков напряжения. Задержка по времени исключает случайные отключения электронных узлов.

На таком принципе работает электронный термостат. При достижении заданного уровня температуры устройство срабатывает. Если бы не было эффекта задерживания, частота срабатываний оказалась бы неоправданно высокой. Изменение температуры на доли градуса приводило бы к отключению термостата.

На практике часто разница в несколько градусов не имеет особого значения. Используя устройства, обладающего тепловым гистерезисом, позволяет оптимизировать процесс поддержания рабочей температуры.

Что такое гистерезис?

В сердечнике любого электромагнита после выключения тока всегда сохраняется часть магнитных свойств, называемая остаточным магнетизмом. Величина остаточного магнетизма зависит от свойств материала сердечника и достигает большего значения у закаленной стали и меньшего у мягкого железа.

Однако, как бы ни было мягко железо, остаточный магнетизм все же будет оказывать известное влияние в том случае, если по условиям работы прибора необходимо перемагничивание его сердечника, т. е. размагничивание до нуля и намагничивание в противоположном направлении.

Действительно, при всяком изменении направления тока в обмотке электромагнита необходимо (благодаря наличию в сердечнике остаточного магнетизма) сначала размагнитить сердечник, и только после этого он может быть намагничен в новом направлении. Для этого потребуется какой-то магнитный поток противоположного направления.

Иначе говоря, изменение намагничивания сердечника (магнитной индукции) всегда отстает от соответствующих изменений магнитного потока (напряженности магнитного поля), создаваемого обмоткой.

Это отставание магнитной индукции от напряженности магнитного поля носит название гистерезиса . При каждом новом намагничивании сердечника для уничтожения его остаточного магнетизма приходится действовать на сердечник магнитным потоком противоположного направления.

Практически это будет означать затрату какой-то части электрической энергии на преодоление коэрцитивной силы, затрудняющей поворот молекулярных магнитиков в новое положение. Затраченная на это энергия выделяется в железе в виде тепла и представляет потери на перемагничивание, или, как говорят, потери на гистерезис .

Исходя из сказанного, железо, подверженное в том или ином приборе непрерывному перемагничиванию (сердечники якорей генераторов и электродвигателей , сердечники трансформаторов), должно выбираться всегда мягкое, с очень небольшой коэрцитивной силой. Это дает возможность уменьшить потери на гистерезис и тем самым повысить коэффициент полезного действия электрической машины или прибора.

Петля гистерезиса — кривая, изображающая ход зависимости намагничивания от напряженности внешнего поля. Чем больше площадь петли, тем большую работу на перемагничивание надо затратить.

Представим себе простой электромагнит с железным сердечником. Проведем его через полный цикл намагничивания, для чего будем менять намагничивающий ток от нуля до величины ОМ в обоях направлениях.

Начальный момент: сила тока равна нулю, железо не намагничено, магнитная индукция В=0.

1-ая часть: намагничивание изменением тока от 0 до величины — + ОМ. Индукция в железе сердечника будет возрастать сначала быстро, затем медленнее. К концу операции, в точке А железо так насыщено магнитными силовыми линиями, что дальнейшее усиление тока (свыше + ОМ) может дать самые незначительные результаты, почему операцию намагничивания можно считать законченной.

Намагничивание до насыщения означает, что имеющиеся в сердечнике молекулярные магниты, находящиеся в начале процесса намагничивания в полном, а затем лишь в частичном беспорядке, почти все расположились теперь стройными рядами, северными полюсами в одну сторону, южными в другую, почему на одном конце сердечника мы имеем теперь северную полярность, на другом — южную.

2-я часть: ослабление магнетизма вследствие уменьшения тока от + ОМ до 0 и полное размагничивание при токе — OD. Магнитная индукция, изменяясь по кривой АС, дойдет до значения ОС, в то время как ток уже будет равен нулю. Эту магнитную индукцию называют остаточным магнетизмом, или остаточной магнитной индукцией. Для уничтожения ее, для полного, следовательно, размагничивания, необходимо дать в электромагнит ток обратного направления и довести его до значения, соответствующего на чертеже ординате OD.

3-я часть: намагничивание в обратную сторону путем изменения тока от — OD до — ОМ1. Магнитная индукция, возрастая по кривой DE, дойдет до точки Е, соответствующей моменту насыщении.

4-я часть: ослабление магнетизма постепенным уменьшением тока от — ОМ1, до нуля (остаточный магнетизм OF) и последующее размагничивание путем перемены направления тока и доведения его до величины + ОН.

5-я часть: намагничивание, соответствующее процессу 1-й части, доведение магнитной индукции от нуля до + МА путем изменении тока от + ОН до + ОМ.

П ри уменьшении размагничивающего тока до нуля не все элементарные или молекулярные магниты приходят в прежнее беспорядочное состояние, но часть их сохраняет свое положение, соответствующее последнему направлению намагничивания. Это явление запаздывания или задерживания магнетизма и носит название гистерезиса.

Ссылка на основную публикацию
Adblock
detector