В чем измеряется температура плавления
Определение температуры плавления
Температурой плавления вещества называют температуру равновесия фаз твердое вещество — жидкость во время процесса плавления. Определить эту температуру можно в процессе плавления или в процессе застывания расплава, так как, если исключено переохлаждение, то температура застывания совпадает с температурой плавления. Различные наименования применяют для того, чтобы показать, каким методом было проведено определение температуры равновесия фаз твердое тело — жидкость: при нагревании наблюдают температуру плавления, при охлаждении — температуру затвердевания.
Точное определение фазового равновесия может быть успешным лишь тогда, когда нагревание или охлаждение идет настолько медленно, что действительно устанавливается необходимое равновесие. Определение точки плавления имеет особо важное значение при работе с органическими веществами, однако им пользуются также и при работе с неорганическими препаратами.
В связи с высокими температурами плавления неорганических веществ, определение обычными методами с капиллярами, погружаемыми в нагретые до определенной температуры бани, в большинстве случаев не удается. Определение температуры плавления неорганических веществ выполняют большей частью так называемым тигельным методом, наблюдая скорость охлаждения расплава при помощи погруженной в него термопары.
Одни исследователи считают, что температуре плавления отвечает момент появления жидкой фазы. По мнению других, точкой плавления следует считать момент полного исчезновения твердой фазы, то есть наступление полной прозрачности расплава при условии медленного нагревания.
Часто под температурой плавления подразумевают интервал температур между появлением первых капель жидкости и полным переходом твердого вещества в жидкое состояние. Для чистых индивидуальных веществ этот интервал измеряется долями градуса. Точнее определить температурный интервал плавления можно путем повторного расплавления образца после его застывания. О приближении расплавления узнают по стеканию расплавившихся частиц, которые обыкновенно при застывании высоко поднимаются по стенкам капилляра под действием капиллярных сил.
При наличии примеси точка плавления вещества понижается. Это дало повод предположить, что смеси веществ должны плавиться при более низкой температуре, чем составляющие их индивидуальные вещества. Отсутствие депрессии температуры плавления смеси исследуемого вещества со стандартными рассматривается как доказательство их идентичности (или их полной взаимной нерастворимости). Этим пользуются для идентификации химических соединений. Для этого смешивают в равных количествах (по 0,05 или 0,1 г) исследуемое вещество и химически чистое стандартное вещество (вещество сравнения) и определяют температуру плавления смеси. Если проба смешения плавится при той же температуре, что и каждый компонент в отдельности, то идентичность исследуемого вещества со стандартными считается доказанной. Если же проба смешения плавится при более низкой температуре, чем каждый компонент в отдельности, то это значит, что исследуемое вещество не идентично стандартному.
Определение температуры плавления пробы смешения — наиболее широко используемый и легко применимый критерий идентичности, которым, однако, следует пользоваться с осторожностью. Наличие депрессии указывает на различие веществ, но отсутствие депрессии не всегда является свидетельством их идентичности. Отсутствие депрессии наблюдается иногда в случае двух сравнительно сложных соединений, имеющих незначительные структурные различия. Полезные сведения по определению температуры плавления можно найти в литературе.
Определение температуры плавления в капилляре
Из всех методов определения температуры плавления органических соединений этот — наиболее распространенный. Техника его исполнения несложна. Небольшое количество тонко растертого и хорошо высушенного препарата помещают в запаянный с одного конца тонкостенный стеклянный капилляр длиной 45-50 мм и диаметром 1,0-1,2 мм для бесцветных и 0,8-1,0 мм для окрашенных веществ. (Для воскообразных и волокнистых веществ можно брать капиллярные трубки несколько большего размера.) Наполненный капилляр осторожно бросают 10-15 раз в стеклянную трубку высотой 800 мм и диаметром 15-20 мм, поставленную вертикально на часовое стекло, до уплотнения вещества в слой высотой около 2 мм. В случае определения трудно уплотняемого вещества капилляр набивают при помощи другого капилляра, меньшего диаметра. Оплавлять открытый конец капилляра недопустимо, так как при этом попадает внутрь конденсационная вода.
Температуру плавления гигроскопических и возгоняющихся веществ определяют в капиллярах, запаянных с обоих концов; при этом капиллярная часть должна быть целиком погружена в нагревательную баню (нагревательный блок).
Капилляр закрепляют на термометре резиновым колечком (кольцо отрезают от подходящего по размерам резинового шланга), медной проволокой или приклеивают верхний конец каплей серной кислоты. Проба вещества должна находиться на уровне шарика термометра.
При переходе из твердого состояния в жидкое в обычных условиях нагревания в капилляре можно наблюдать следующие явления: усадка вещества — столбик вещества меняет свою форму, сжимаясь и отставая от стенок капилляра, без видимого перехода в жидкое состояние; отпотевание — на внутренней поверхности капиллярной трубочки появляются капельки жидкости, вещество спекается, не теряя своей связности; частичное плавление — в капилляре наряду с твердыми частицами образуется мениск жидкости по всему сечению капилляра. После этого при несколько более высокой температуре наступает состояние полного расплавления.
Температуру плавления большей частью считывают с термометра, когда вещество полностью расплавилось, образовав прозрачный расплав.
Чтобы избежать довольно больших и порой недостаточно надежных поправок на выступающий столбик ртути, рекомендуется применять укороченные термометры из набора ТЛ-6 (по Аншютцу).
Многие органические вещества плавятся с разложением (появление окраски, выделение газа). Температура разложения обычно не резко выражена и часто не может быть точно воспроизведена.
Определение температуры плавления в капиллярах может быть выполнено очень точно, если в предварительном опыте определить приблизительно температуру плавления вещества и затем капилляр с веществом поместить в прибор, нагретый до температуры на несколько градусов ниже этого приблизительного значения.
В качестве обогревательной жидкости (теплоносителя) используют концентрированную серную кислоту, парафиновое масло, силиконовое масло. Серную кислоту, применение которой требует большой осторожности, можно использовать при определении температуры плавления вплоть до 250 °С. Смесь конц. H2SO4 (7 масс, ч) и K2SO4 (3 ч.) после 5-минутного кипячения при энергичном перемешивании образуют прозрачную жидкость, которую можно использовать в качестве теплоносителя до 320°С (смесь гигроскопична, и ее следует предохранять от увлажнения).
Предложено много конструкций приборов для определения температуры плавления капиллярным методом. Отечественная промышленность выпускает два типа таких приборов.
Прибор ПТОП. Этот прибор (рис. 206) состоит из круглодонной колбы 1 вместимостью 100-150 мл с горлом длиной 90 мм и диаметром 30 мм. В колбу наливают на 2/3 ее объема бесцветной конц. H2SO4 или бесцветного силиконового масла. В горло колбы вставляют специальную пробирку 3 длиной 150 мм и диаметром около 15 мм с приплавленными к ней четырьмя отростками 4 на расстоянии 30 мм от ее верхнего края. Над одним из отростков в пробирке имеется отверстие 5 диаметром 2-3 мм.
Пробирку вставляют в колбу так, чтобы между дном пробирки и колбы оставалось 10-15 мм. Пробирку закрывают корковой пробкой 6 со вставленным в нее укороченным термометром, из набора ТЛ-6 (по Аншютцу), нижний конец которого должен находиться на несколько миллиметров выше дна пробирки. При определении температуры плавления веществ, плавящихся ниже 170 °С, применяют порожнюю пробирку; для веществ с температурой плавления выше 170 °С в пробирку наливают конц. H2SO4 или силиконовое масло так, чтобы ртутный резервуар термометра был погружен в нее. Для веществ с температурой плавления 250-320 °С пробирку и колбу наполняют упомянутой выше смесью H2SO4 и K2SO4.
Содержимое колбы нагревают до температуры на 10-15 °С ниже предполагаемой температуры плавления препарата, измеряя температуру в колбе термометром, после чего в пробирку помещают укороченный термометр с капилляром так, чтобы ни термометр, ни капилляр не касались дна и стенок пробирки. Затем продолжают нагревать прибор, повышая температуру со скоростью 0,5 °С в минуту. Если вещество в процессе определения температуры плавления разлагается, то скорость нагрева увеличивают до 2-3°С в минуту или капилляр с препаратом перемещают в прибор, предварительно нагретый до температуры приблизительно на 5°С ниже предполагаемой температуры плавления.
Началом плавления считают появление первой капли расплавленного препарата или появление мениска в капилляре, а концом — момент полного расплавления препарата. Обе температуры отмечают и считают интервалом температуры плавления препарата.
Прибор ПТП. В отличие от описанного выше, в приборе ПТП (рис. 207) предусмотрен электронагрев капилляра с пробой. Прибор предназначен для определения температуры плавления веществ в диапазоне 20-360 °С при регулируемых скоростях нагрева 1, 2, 4, 6, 8 и 10 °С в минуту.
Основной частью прибора является блок-нагреватель 6; он состоит из двух сосудов из термостойкого стекла, вставленных один в другой. На внутренний сосуд навита бифилярно константановая спираль 5.
В блок-нагреватель устанавливают термометр 8, к которому крепят капилляры 8.
Прибор снабжен номограммой 1, позволяющей при определенной фиксированной глубине погружения термометров установить напряжение, необходимое для заданной скорости нагревания.
Для удобства наблюдения за плавлением вещества и шкалой термометра на приборе установлены оптическое приспособление 9 с фокусировкой н два осветителя 4 с рефлекторами.
Исследуемый образец тонкоизмельченного сухого вещества помещают в капиллярную трубку 8, запаянную с одного конца, которая устанавливается так, чтобы столбик вещества находился на уровне середины ртутного резервуара термометра. Затем включают прибор в сеть.
По номограмме 1 определяют напряжение, соответствующее необходимой скорости нагрева; включают нагреватель 6 и осветители. При помощи ручки регулятора 10, следя за показанием вольтметра 3, устанавливают необходимое напряжение. За процессом плавления наблюдают при помощи оптического приспособления 9, а за показаниями термометра — с помощью дополнительной лупы.
В виду некоторого влияния температуры окружающей среды и движения воздуха вокруг блока-нагревателя 6, необходима дополнительная коррекция скорости нагрева, которая осуществляется вручную регулятором напряжения 10.
Медные блоки. Температуру плавления высокоплавких веществ (>300 °С) лучше всего определять нагреванием капилляров в медных блоках. Термометр помещают в горизонтальный канал блока, на поверхности которого находится ряд углублений, расположенных на равных расстояниях. Система каналов под острым углом друг к другу позволяет рассматривать капилляр как в проходящем, так и в отраженном свете от источника, установленного за отверстием канала. Выходные отверстия каналов во избежание движения воздуха закрыты стеклом. После предварительного грубого определения температуры плавления образца термометр выдвигают из блока настолько, чтобы можно было только отсчитать ожидаемую температуру. Проба вещества устанавливается в углублении, ближайшем к шарику термометра.
Определение температуры плавления на нагреваемой поверхности
При определении температуры плавления легко разлагающихся при нагревании веществ наиболее точные результаты могут быть получены при максимальном сокращении времени от момента начала нагревания вещества до его плавления. Это достигается применением различного типа блоков для плавления на открытой поверхности. Одним из таких блоков является нагреватель Кофлера.
Нагреватель представляет собой металлический брусок длиной около 370 мм и шириной около 40 мм, в котором посредством одностороннего электрического обогрева создан перепад температур. Благодаря форме бруска и использованию двух металлов с различной теплопроводностью его температурный градиент приближается к линейному. При помощи этого нагревателя можно определять температуру плавления веществ в интервале 50-250 °С. Для отсчета температур служит металлическая шкала с ценой деления 2 °С. Вмонтированный в прибор стабилизатор исключает влияние колебаний напряжения в сети и обеспечивает всегда одинаковое нагревание.
Исследуемое вещество насыпают непосредственно на хромированную поверхность нагревателя. Вскоре можно увидеть более или менее четкую границу жидкой и твердой фазами. Пределы точности определения 1-2°С.
Криоскопический метод
Очень точно определить температуру плавления можно криоскопическим методом — по кривым охлаждения. Этот метод позволяет установить не только температуру плавления, но и процентное содержание примеси. При кристаллизации расплавленного вещества в отсутствие переохлаждения температура остается почти постоянной, что связано с выделением скрытой теплоты кристаллизации.
Недостатком этого метода является то, что для этого требуется значительно больше испытуемого вещества, чем при определении в капиллярах.
Определение температуры кристаллизации органических реактивов и препаратов в пределах 20-100 °С по кривой охлаждения проводят в приборе Баумана-Фрома (рис. 208).
Прибор Баумана-Фрома состоит из стеклянного толстостенного сосуда 3, нижняя часть которого имеет диаметр 20 мм, а верхняя — 50 мм. В верхнюю часть помещают насадку 1 в виде стаканчика. В дне насадки имеются два отверстия для термометра 4 и мешалки 5. Последние свободно подвешены в отверстиях на пробковых пластинках 2. Цилиндрический сосуд с насадкой помещают в широкую пробирку 6 диаметром 40-45 мм. Весь прибор помещают в стакан вместимостью 500 мл.
Испытуемый препарат помещают в сосуд 3 и расплавляют, погружая в стакан с водой, нагретой до температуры на 15-20 °С выше предполагаемой температуры кристаллизации. Слой расплавленного препарата должен быть высотой 25-30 мм.
Сосуд с расплавленным препаратом вынимают из воды, насухо вытирают, вставляют в пробирку 6 и закрепляют на штативе. В расплавленный препарат погружают термометр 4 и мешалку 5 так, чтобы они не касались ни дна, ни стенок сосуда 3 и чтобы ртутный резервуар термометра был полностью погружен в испытуемое вещество.
Испытуемое вещество в приборе охлаждают на 2-3°С ниже предполагаемой температуры кристаллизации и осторожно помешивают, не касаясь дна и стенок прибора.
В момент кристаллизации вещества температура самопроизвольно повышается (в этот момент прекращают перемешивание) и, достигнув определенного максимума, остается на этом уровне в течение некоторого времени, а затем вновь начинает понижаться. Высшую точку подъема температуры принимают за температуру кристаллизации.
Определение температуры плавления вещества
Температурой плавления (Тпл) твердого кристаллического вещества называется температура, при которой оно начинает переходить в жидкое состояние при атмосферном давлении. Абсолютно чистое индивидуальное вещество имеет строго определенную Тпл. Однако в обычной практике вещество редко удается довести до чистоты, близкой к 100 %, поэтому полное превращение твердого образца в жидкость происходит в некотором температурном интервале DТпл = Тк — Тн, где Тк и Тн — соответственно температуры начала и конца плавления. Эти температуры обычно и указывают при характеристике чистоты полученного вещества (в том числе довольно часто в справочниках; например, в “Справочнике химика”, т. II, для п-аминоацетанилида Тпл 161 — 162° С, для ванилина 81 — 83° С и т. п.). Чем чище вещество, тем меньше DТпл. Практически чистое вещество имеет DТпл не более 0,5° С. Разность между началом и концом плавления в 1° С свидетельствует о хорошем качестве полученного продукта. Неправильно принимать за температуру плавления среднюю величину (Тн + Тк )/2.
Примесь любого другого вещества, способного полностью или частично смешиваться с исследуемым соединением, понижает его температуру плавления и, как правило, расширяет температурный интервал DТпл. Величина DТпл получается завышенной также из-за неправильного, слишком быстрого, нагревания образца.
Температура плавления – физическая константа химического соединения. Совпадение найденной и табличной величин Тпл служит одним из доказательств природы неизвестного вещества при его идентификации (распознавании). Прибор для определения температуры плавления изображен на рис. 3. Вещество помещают в стеклянный капилляр (7), который с помощью резинового колечка (6) прикрепляется к термометру (3) так, чтобы столбик вещества в капилляре был прижат к шарику термометра и за его состоянием можно было наблюдать через прозрачные стенки сосудов (1 и 2) и слой концентрированной серной кислоты, находящейся в сосуде (1). Капилляр представляет собой тонкостенную трубочку длиной 40 – 50 мм и диаметром 0,8 – 1 мм. С одного конца (более узкого) капилляр запаивают, для чего достаточно поднести кончик капилляра к краю нижней части пламени горелки. Около 0,1 г исследуемого вещества помещают на часовое стекло или на вогнутую поверхность донышка перевернутого стеклянного стакана и как можно тоньше измельчают кристаллы с помощью стеклянной палочки. Если нет уверенности в | ![]() |
том, что вещество совершенно сухое, стаканчик перед помещением на него образца можно слабо нагреть и подержать измельченное вещество на теплой поверхности в течение некоторого времени (
10 минут). Прикасаются открытым концом капилляра к “горке” измельченного вещества и попавшие внутрь кристаллы проталкивают вниз капилляра, бросая его несколько раз запаянным концом вниз в трубку длиной 60 – 70 см и диаметром около 1 см, поставленную вертикально на металлическую, стеклянную или керамическую поверхность. Уплотнение образца в капилляре происходит при ударе о твердую поверхность. При этом из-за упругой деформации стекла капилляр несколько раз подскакивает внутри трубки. Высота столбика вещества в капилляре должна быть 4 – 5 мм (не больше). Чем лучше уплотнено вещество в капилляре, тем точнее может быть определена температура плавления.
Капилляр прикрепляют к термометру, как об этом было сказано выше, и начинают нагрев прибора.
Если температуру плавления измеряют с целью определения степени чистоты известного продукта, прибор нагревают сначала быстро до температуры приблизительно на 10° С ниже известной из справочника Тпл чистого вещества. После этого горелку на короткое время отставляют, однако столбик термометра еще продолжает подниматься из-за тепловой инерции. Затем, тщательно дозируя подвод тепла расположением пламени горелки под сеткой, очень медленно поднимают температуру (1 – 2° С за 1 минуту). Чем медленнее поднимается столбик ртути в термометре, тем точнее может быть измерена температура плавления.
В процессе нагревания наблюдают за состоянием вещества в капилляре. Температуру, при которой столбик вещества в результате появления жидкой фазы начинает разрушаться, уменьшаясь в объеме (“съеживается”), принимают за начало плавления. В этот момент отмечают показание термометра (Tн). Еще более замедляют темп нагревания и дожидаются момента, когда вещество в капилляре полностью превратиться в жидкость. Это – конец плавления. Ему соответствует показание термометра Tк.
Если необходимо определить температуру плавления неизвестного вещества, то, прежде всего, следует убедиться, что оно вообще способно расплавляться при такой температуре, которая лежит в обычных пределах величин Тпл органических соединений (
Молекулярная физика. Плавление и кристаллизация.
Переход вещества из твердого кристаллического состояния в жидкое называется плавлением. Чтобы расплавить твердое кристаллическое тело, его нужно нагреть до определенной температуры, т. е. подвести тепло. Температура, при которой вещество плавится, называется температурой плавления вещества.
Обратный процесс — переход из жидкого состояния в твердое — происходит при понижении температуры, т. е. тепло отводится. Переход вещества из жидкого состояния в твердое называется отвердеванием, или кристал лизацией. Температура, при которой вещество кристаллизуется, называется температурой кристалли зации.
Опыт показывает, что любое вещество кристаллизуется и плавится при одной и той же температуре.
На рисунке представлен график зависимости температуры кристаллического тела (льда) от времени нагревания (от точки А до точки D) и времени охлаждения (от точки D до точки K). На нем по горизонтальной оси отложено время, а по вертикальной — температура.
Из графика видно, что наблюдение за процессом началось с момента, когда температура льда была -40 °С, или, как принято говорить, температура в начальный момент времени tнач = -40 °С (точка А на графике). При дальнейшем нагревании температура льда растет (на графике это участок АВ). Увеличение температуры происходит до 0 °С — температуры плавления льда. При 0°С лед начинает плавиться, а его температура перестает расти. В течение всего времени плавления (т.е. пока весь лед не расплавится) температура льда не меняется, хотя горелка продолжает гореть и тепло, следовательно, подводится. Процессу плавления соответствует горизонтальный участок графика ВС. Только после того как весь лед расплавится и превратится в воду, температура снова начинает подниматься (участок CD). После того, как температура воды достигнет +40 °С, горелку гасят и воду начинают охлаждать, т. е. тепло отводят (для этого можно сосуд с водой поместить в другой, больший сосуд со льдом). Температура воды начинает снижаться (участок DE). При достижении температуры 0 °С температура воды перестает снижаться, несмотря на то, что тепло по-прежнему отводится. Это идет процесс кристаллизации воды — образования льда (горизонтальный участок EF). Пока вся вода не превратится в лед, температура не изменится. Лишь после этого начинает уменьшаться температура льда (участок FK).
Вид рассмотренного графика объясняется следующим образом. На участке АВ благодаря подводимому теплу средняя кинетическая энергия молекул льда увеличивается, и температура его повышается. На участке ВС вся энергия, получаемая содержимым колбы, тратится на разрушение кристаллической решетки льда: упорядоченное пространственное расположение его молекул сменяется неупорядоченным, меняется расстояние между молекулами, т.е. происходит перестройка молекул таким образом, что вещество становится жидким. Средняя кинетическая энергия молекул при этом не меняется, поэтому неизменной остается и температура. Дальнейшее увеличение температуры расплавленного льда-воды (на участке CD) означает увеличение кинетической энергии молекул воды вследствие подводимого горелкой тепла.
При охлаждении воды (участок DE) часть энергии у нее отбирается, молекулы воды движутся с меньшими скоростями, их средняя кинетическая энергия падает — температура уменьшается, вода охлаждается. При 0°С (горизонтальный участок EF) молекулы начинают выстраиваться в определенном порядке, образуя кристаллическую решетку. Пока этот процесс не завершится, температура вещества не изменится, несмотря на отводимое тепло, а это означает, что при отвердевании жидкость (вода) выделяет энергию. Это как раз та энергия, которую поглотил лед, превращаясь в жидкость (участок ВС). Внутренняя энергия у жидкости больше, чем у твердого тела. При плавлении (и кристаллизации) внутренняя энергия тела меняется скачком.
Металлы, плавящиеся при температуре выше 1650 ºС, называют тугоплавкими (титан, хром, молибден и др.). Самая высокая температура плавления среди них у вольфрама — около 3400 °С. Тугоплавкие металлы и их соединения используют в качестве жаропрочных материалов в самолетостроении, ракетостроении и космической технике, атомной энергетике.
Подчеркнем еще раз, что при плавлении вещество поглощает энергию. При кристаллизации оно, наоборот, отдает ее в окружающую среду. Получая определенное количество теплоты, выделяющееся при кристаллизации, среда нагревается. Это хорошо известно многим птицам. Недаром их можно заметить зимой в морозную погоду сидящими на льду, который покрывает реки и озера. Из-за выделения энергии при образовании льда воздух над ним оказывается на несколько градусов теплее, чем в лесу на деревьях, и птицы этим пользуются.
Плавление аморфных веществ .
Наличие определенной точки плавления — это важный признак кристаллических веществ. Именно по этому признаку их можно легко отличить от аморфных тел, которые также относят к твердым телам. К ним, в частности, относятся стекла, очень вязкие смолы, пластмассы.
Аморфные вещества (в отличие от кристаллических) не имеют определенной температуры плавления — они не плавятся, а размягчаются. При нагревании кусок стекла, например, сначала становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает менять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса принимает форму того сосуда, в котором лежит. Эта масса сначала густая, как мед, затем — как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. Однако указать определенную температуру перехода твердого тела в жидкое здесь невозможно, поскольку ее нет.
Причины этого лежат в коренном отличии строения аморфных тел от строения кристаллических. Атомы в аморфных телах расположены беспорядочно. Аморфные тела по своему строению напоминают жидкости. Уже в твердом стекле атомы расположены беспорядочно. Значит, повышение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода «твердое—жидкое», характерного для перехода от расположения молекул в строгом порядке к беспорядочному.
Теплота плавления .
Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое. Теплота плавления равна тому количеству теплоты, которое выделяется при кристаллизации вещества из жидкого состояния. При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энергии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.
Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить 332 Дж энергии, а для того чтобы расплавить 1 кг свинца — 25 кДж.
Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой 1 кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.
Удельную теплоту плавления измеряют в джоулях на килограмм (Дж/кг) и обозначают греческой буквой λ (лямбда).
Удельная теплота кристаллизации равна удельной теплоте плавления, поскольку при кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении. Так, например, при замерзании воды массой 1 кг выделяются те же 332 Дж энергии, которые нужны для превращения такой же массы льда в воду.
Чтобы найти количество теплоты, необходимое для плавления кристаллического тела произвольной массы, или теплоту плавления, надо удельную теплоту плавления этого тела умножить на его массу:
Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой m, следует пользоваться той же формулой, но со знаком «минус»:
Теплота сгорания .
Теплота сгорания (или теплотворная способность, калорийность) — это количество теплоты, выделяющейся при полном сгорании топлива.
Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обычное топливо (уголь, нефть, бензин) содержит углерод. При горении атомы углерода соединяются с атомами кислорода, содержащегося в воздухе, в результате чего образуются молекулы углекислого газа. Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.
Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.
Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива. Удельную теплоту сгорания обозначают буквой q и измеряют в джоулях на килограмм (Дж/кг).
Количество теплоты Q, выделяющееся при сгорании m кг топлива, определяют по формуле:
Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.
Плотность, температура плавления и кипения простых веществ
В таблице приводятся основные физические свойства простых веществ: плотность при температуре 20°С (в случае, если плотность измерена при другой температуре, последняя указана в скобках), температура плавления и температура кипения веществ в градусах Цельсия.
Указаны плотность и температуры плавления и кипения следующих простых веществ: азот N2, актиний Ac, алюминий Al, америций Am, аргон Ar, астат At, барий Ba, бериллий Be, бор B, бром Br, ванадий V, висмут Bi, водород H2, вольфрам W, гадолиний Gd, галлий Ga, гафний Hf, гелий He, германий Ge, гольмий Ho, диспрозий Dy, европий Eu, железо Fe, золото Au, индий In, йод (иод) J, иридий Ir, иттербий Yb, иттрий Y, кадмий Cd, калий K, кальций Ca, кислород O2, озон O3, кобальт Co, кремний Si, криптон Kr, ксенон Xe, кюрий Cm, лантан La, литий Li, лютеций Lu, магний Mg, марганец Mn, медь Cu, молибден Mo, мышьяк As, натрий Na, неодим Nd, неон Ne, нептуний Np, никель Ni, ниобий Nb, олово Sn, осмий Os, палладий Pd, платина Pt, плутоний Pu, полоний Po, празеодим Pr, прометий Pm, протактиний Pa, радий Ra, радон Rn, рений Re, родий Rh, ртуть Hg, рубидий Rb, рутений Ru, самарий Sm, свинец Pb, селен Se, сера S, серебро Ag, скандий Sc, стронций Sr, сурьма Sb, таллий Tl, тантал Ta, теллур Te, тербий Tb, технеций Tc, титан Ti, торий Th, тулий Tu, углерод C (алмаз, графит), уран U, фосфор P (белый, красный), франций Fr, фтор F, хлор Cl, хром Cr, цезий Cs, церий Ce, цинк Zn, цирконий Zr, эрбий Er.
Следует отметить, что плотность веществ в таблице выражена в размерности кг/м 3 . В таблице можно выделить вещества (химические элементы) с минимальной и максимальной плотностью. Наименьшей плотностью из химических элементов обладают газы — например, плотность водорода равна всего 0,08987 кг/м 3 — это самый легкий газ на планете. Из тяжелых элементов высокой плотностью отличаются вольфрам, уран, нептуний, осмий и другие металлы.
Цифры в скобках означают, что вещество при данной температуре разлагается. Сокращения: г. — газ, ж. — жидкость, тв. — твердое вещество, возг. — возгоняется, ромб. — ромбическая структура.
По данным таблицы можно выделить вещества, обладающие минимальной и максимальной температурой плавления и кипения. Самую низкую температуру плавления имеет химический элемент гелий — его температура плавления равна минус 272,2 °С. Гелий также обладает и самой низкой температурой кипения.
Самую высокую температуру плавления среди простых веществ имеет такой химический элемент, как углерод в виде графита. Он начинает плавиться при температуре 3600°С. Другая модификация углерода — алмаз также относится к тугоплавким веществам с температурой плавления 3500°С.
Самую высокую температуру кипения имеет элемент кадмий, он кипит при температуре не ниже 7670°С, хотя начинает плавиться всего лишь при 321°С.
Атомная масса и плотность простых веществ
В таблице приведена атомная масса и плотность следующих химических элементов: азот ,актиний, алюминий, америций, аргон, астат, барий, бериллий, берклий, бор, бром, ванадий, висмут, водород, вольфрам, гадолиний, галлий, гафний, гелий, германий, гольмий, диспрозий, европий, железо, золото, индий, йод, иридий, иттербий, иттрий, кадмий, калий, калифорний, кальций, кислород, кобальт, кремний, криптон, ксенон, кюрий, лантан, литий, лютеций, магний, марганец, медь, менделевий, молибден, мышьяк, натрий, неодим, неон, нептуний, никель, ниобий, олово, осмий, палладий, платина, плутоний, полоний, празеодим, прометий, протактиний, радий, радон, рений, родий, ртуть, рубидий, рутений, самарий, свинец, селен, сера, серебро, скандий, стронций, сурьма, таллий, тантал, теллур, тербий, технеций, титан, торий, тулий, углерод (графит, алмаз), уран, фермий, фосфор, франций, фтор, хлор, хром, цезий, церий, цинк, цирконий, эйнштейний, эрбий.
Указанные значения плотности соответствуют плотности веществ при температуре 20°С и атмосферном давлении, за исключением тех случаев, когда в скобках указана другая температура.
Плотность элементов дана в размерности тонна на кубометр. Например, плотность жидкого азота при температуре -195,8°С равна 0,808 т/м 3 или 808 кг/м 3 ; плотность хлора в газообразном состоянии равна 3,214 кг/м 3 , жидкого — 1557 кг/м 3 . Значения плотности веществ приведены для их естественного молекулярного и агрегатного состояний при указанной температуре.
Источники:
1. Писаренко В.В. Справочник лаборанта-химика. Справ. пособие для проф.-техн. учебн. заведений. М., «Высшая школа», 1970. — 192 стр. с илл.
2. Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
Молекулярная физика. Плавление и кристаллизация.
Переход вещества из твердого кристаллического состояния в жидкое называется плавлением. Чтобы расплавить твердое кристаллическое тело, его нужно нагреть до определенной температуры, т. е. подвести тепло. Температура, при которой вещество плавится, называется температурой плавления вещества.
Обратный процесс — переход из жидкого состояния в твердое — происходит при понижении температуры, т. е. тепло отводится. Переход вещества из жидкого состояния в твердое называется отвердеванием, или кристал лизацией. Температура, при которой вещество кристаллизуется, называется температурой кристалли зации.
Опыт показывает, что любое вещество кристаллизуется и плавится при одной и той же температуре.
На рисунке представлен график зависимости температуры кристаллического тела (льда) от времени нагревания (от точки А до точки D) и времени охлаждения (от точки D до точки K). На нем по горизонтальной оси отложено время, а по вертикальной — температура.
Из графика видно, что наблюдение за процессом началось с момента, когда температура льда была -40 °С, или, как принято говорить, температура в начальный момент времени tнач = -40 °С (точка А на графике). При дальнейшем нагревании температура льда растет (на графике это участок АВ). Увеличение температуры происходит до 0 °С — температуры плавления льда. При 0°С лед начинает плавиться, а его температура перестает расти. В течение всего времени плавления (т.е. пока весь лед не расплавится) температура льда не меняется, хотя горелка продолжает гореть и тепло, следовательно, подводится. Процессу плавления соответствует горизонтальный участок графика ВС. Только после того как весь лед расплавится и превратится в воду, температура снова начинает подниматься (участок CD). После того, как температура воды достигнет +40 °С, горелку гасят и воду начинают охлаждать, т. е. тепло отводят (для этого можно сосуд с водой поместить в другой, больший сосуд со льдом). Температура воды начинает снижаться (участок DE). При достижении температуры 0 °С температура воды перестает снижаться, несмотря на то, что тепло по-прежнему отводится. Это идет процесс кристаллизации воды — образования льда (горизонтальный участок EF). Пока вся вода не превратится в лед, температура не изменится. Лишь после этого начинает уменьшаться температура льда (участок FK).
Вид рассмотренного графика объясняется следующим образом. На участке АВ благодаря подводимому теплу средняя кинетическая энергия молекул льда увеличивается, и температура его повышается. На участке ВС вся энергия, получаемая содержимым колбы, тратится на разрушение кристаллической решетки льда: упорядоченное пространственное расположение его молекул сменяется неупорядоченным, меняется расстояние между молекулами, т.е. происходит перестройка молекул таким образом, что вещество становится жидким. Средняя кинетическая энергия молекул при этом не меняется, поэтому неизменной остается и температура. Дальнейшее увеличение температуры расплавленного льда-воды (на участке CD) означает увеличение кинетической энергии молекул воды вследствие подводимого горелкой тепла.
При охлаждении воды (участок DE) часть энергии у нее отбирается, молекулы воды движутся с меньшими скоростями, их средняя кинетическая энергия падает — температура уменьшается, вода охлаждается. При 0°С (горизонтальный участок EF) молекулы начинают выстраиваться в определенном порядке, образуя кристаллическую решетку. Пока этот процесс не завершится, температура вещества не изменится, несмотря на отводимое тепло, а это означает, что при отвердевании жидкость (вода) выделяет энергию. Это как раз та энергия, которую поглотил лед, превращаясь в жидкость (участок ВС). Внутренняя энергия у жидкости больше, чем у твердого тела. При плавлении (и кристаллизации) внутренняя энергия тела меняется скачком.
Металлы, плавящиеся при температуре выше 1650 ºС, называют тугоплавкими (титан, хром, молибден и др.). Самая высокая температура плавления среди них у вольфрама — около 3400 °С. Тугоплавкие металлы и их соединения используют в качестве жаропрочных материалов в самолетостроении, ракетостроении и космической технике, атомной энергетике.
Подчеркнем еще раз, что при плавлении вещество поглощает энергию. При кристаллизации оно, наоборот, отдает ее в окружающую среду. Получая определенное количество теплоты, выделяющееся при кристаллизации, среда нагревается. Это хорошо известно многим птицам. Недаром их можно заметить зимой в морозную погоду сидящими на льду, который покрывает реки и озера. Из-за выделения энергии при образовании льда воздух над ним оказывается на несколько градусов теплее, чем в лесу на деревьях, и птицы этим пользуются.
Плавление аморфных веществ .
Наличие определенной точки плавления — это важный признак кристаллических веществ. Именно по этому признаку их можно легко отличить от аморфных тел, которые также относят к твердым телам. К ним, в частности, относятся стекла, очень вязкие смолы, пластмассы.
Аморфные вещества (в отличие от кристаллических) не имеют определенной температуры плавления — они не плавятся, а размягчаются. При нагревании кусок стекла, например, сначала становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает менять свою форму под действием собственной тяжести. По мере нагревания густая вязкая масса принимает форму того сосуда, в котором лежит. Эта масса сначала густая, как мед, затем — как сметана и, наконец, становится почти такой же маловязкой жидкостью, как вода. Однако указать определенную температуру перехода твердого тела в жидкое здесь невозможно, поскольку ее нет.
Причины этого лежат в коренном отличии строения аморфных тел от строения кристаллических. Атомы в аморфных телах расположены беспорядочно. Аморфные тела по своему строению напоминают жидкости. Уже в твердом стекле атомы расположены беспорядочно. Значит, повышение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода «твердое—жидкое», характерного для перехода от расположения молекул в строгом порядке к беспорядочному.
Теплота плавления .
Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое. Теплота плавления равна тому количеству теплоты, которое выделяется при кристаллизации вещества из жидкого состояния. При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энергии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.
Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить 332 Дж энергии, а для того чтобы расплавить 1 кг свинца — 25 кДж.
Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой 1 кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.
Удельную теплоту плавления измеряют в джоулях на килограмм (Дж/кг) и обозначают греческой буквой λ (лямбда).
Удельная теплота кристаллизации равна удельной теплоте плавления, поскольку при кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении. Так, например, при замерзании воды массой 1 кг выделяются те же 332 Дж энергии, которые нужны для превращения такой же массы льда в воду.
Чтобы найти количество теплоты, необходимое для плавления кристаллического тела произвольной массы, или теплоту плавления, надо удельную теплоту плавления этого тела умножить на его массу:
Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой m, следует пользоваться той же формулой, но со знаком «минус»:
Теплота сгорания .
Теплота сгорания (или теплотворная способность, калорийность) — это количество теплоты, выделяющейся при полном сгорании топлива.
Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обычное топливо (уголь, нефть, бензин) содержит углерод. При горении атомы углерода соединяются с атомами кислорода, содержащегося в воздухе, в результате чего образуются молекулы углекислого газа. Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.
Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.
Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива. Удельную теплоту сгорания обозначают буквой q и измеряют в джоулях на килограмм (Дж/кг).
Количество теплоты Q, выделяющееся при сгорании m кг топлива, определяют по формуле:
Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.
При каких температурах плавятся различные металлы и неметаллы?
Металлы обладают рядом оригинальных свойств, которые присущи только этим материалам. Существует температура плавления металлов, при которой кристаллическая решетка разрушается. Вещество сохраняет объем, но уже нельзя говорить о постоянстве формы.
В чистом виде отдельные металлы встречают крайне редко. На практике применяют сплавы. У них есть определенные отличия от чистых веществ. При образовании сложных соединений происходит объединение кристаллических решеток между собой. Поэтому у сплавов свойства могут заметно отличаться от составляющих элементов. Температура плавления уже не остается постоянной величиной, она зависит от концентрации входящих в сплав ингредиентов.
Понятие о шкале температур
Некоторые неметаллические предметы тоже обладают похожими свойствами. Самым распространённым является вода. Относительно свойств жидкости, занимающей господствующее положение на Земле, была разработана шкала температур. Реперными точками признаны температура изменения агрегатных состояний воды:
- Превращения из жидкости в твердое вещество и наоборот приняты за ноль градусов.
- Кипения (парообразования внутри жидкости) при нормальном атмосферном давлении (760 мм рт. ст.) принята за 100 ⁰С.
Кристаллические решетки металла
В идеальном виде принято считать, что металлам свойственна кубическая решетка (в реальном веществе могут быть изъяны). Между молекулами имеются равные расстояния по горизонтали и вертикали.
Твердое вещество характеризуется постоянством:
- формы, предмет сохраняет линейные размеры в разных условиях;
- объема, предмет не изменяет занимаемое количество вещества;
- массы, количество вещества, выраженное в граммах (килограммах, тоннах);
- плотности, в единице объема содержится постоянная масса.
При переходе в жидкое состояние, достигнув определенной температуры, кристаллические решетки разрушаются. Теперь нельзя говорить о постоянстве формы. Жидкость будет принимать ту форму, в какую ее зальют.
Когда происходит испарение, то постоянным остается только масса вещества. Газ займет весь объем, который будет ему предоставлен. Здесь нельзя утверждать, что плотность постоянная величина.
Когда соединяются жидкости, то возможны варианты:
- Жидкости полностью растворяются одна в другой, так себя ведут вода и спирт. Во всем объеме концентрация веществ будет одинаковой.
- Жидкости расслаиваются по плотности, соединение происходит только на границе раздела. Только временно можно получать механическую смесь. Перемешав разные по свойствам жидкости. Примером является масло и вода.
Образующиеся растворимые друг в друге вещества при застывании образуют кристаллические решетки нового типа. Определяют:
- Гелиоцентрированные кристаллические решетки, их еще называют объёмно-центрированными. В середине находится молекула одного вещества, а вокруг располагаются еще четыре молекулы другого. Принято называть подобные решетки рыхлыми, так как в них связь между молекулами металлов слабее.
- Гранецентрированные кристаллические решетки образуют соединения, в которых молекулы компонента располагаются на гранях. Металловеды называют подобные кристаллические сплавы плотными. В реальности плотность сплава может быть выше, чем у каждого из входящих в состав компонентов (алхимики средних веков искали варианты сплавов, при которых плотность будет соответствовать плотности золота).
Температура плавления металлов
Разные вещества имеют различную температуру плавления. Принято делить металлы на:
- Легкоплавкие – их достаточно нагревать до 600 ⁰С, чтобы получать вещество в жидком виде.
- Среднеплавкие металлы расплавляются в диапазоне температур 600…1600 ⁰С.
- Тугоплавкими называют металлы, которые могут расплавляться при температуре более 1600 ⁰С.
В таблице по возрастанию показаны легкоплавкие металлы. Здесь видно, что самым необычным металлом является ртуть (Hg). В обычных условиях она находится в жидком состоянии. Этот металл имеет самую низкую температуру плавления.
Таблица 1, температуры плавления и кипения легкоплавких металлов:
Таблица 2, температуры плавления и кипения среднеплавких металлов:
Таблица 3, температуры плавления и кипения тугоплавких металлов:
Чтобы вести процесс плавки используют разные устройства. Например, для выплавки чугуна применяют доменные печи. Для плавки цветных металлов производят внутренний нагрев с помощью токов высокой частоты.
В изложницах, изготовленных из неметаллических материалов, находятся цветные металлы в твердом состоянии. Вокруг них создают переменное магнитное поле СВЧ. В результате кристаллические решетки начинают расшатываться. Молекулы вещества приходят в движение, что вызывает разогрев внутри всей массы.
При необходимости плавки небольшого количества легкоплавких металлов используют муфельные печи. В них температура поднимается до 1000…1200 ⁰С, что достаточно для плавки цветных металлов.
Черные металлы расплавляют в конвекторах, мартенах и индукционных печах. Процесс идет с добавлением легирующих компонентов, улучшающих качество металла.
Сложнее всего проводить работу с тугоплавкими металлами. Проблема в том, что нужно использовать материалы, имеющие температуру более высокую, чем температура плавления самого металла. В настоящее время авиационная промышленность рассматривает использование в качестве конструкционного материала Титан (Ti). При высокой скорости полета в атмосфере происходит разогрев обшивки. Поэтому нужна замена алюминию и его сплавам (AL).
Сплавы металлов
Чтобы проектировать изделия из сплавов, сначала изучают их свойства. Для изучения в небольших емкостях расплавляют изучаемые металлы в разном соотношении между собой. По итогам строят графики.
Нижняя ось представляет концентрацию компонента А с компонентом В. По вертикали рассматривают температуру. Здесь отмечают значения максимальной температуры, когда весь металл находится в расплавленном состоянии.
При охлаждении один из компонентов начинает образовывать кристаллы. В жидком состоянии находится эвтектика – идеальное соединение металлов в сплаве.
Металловеды выделяют особое соотношение компонентов, при котором температура плавления минимальная. Когда составляют сплавы, то стараются подбирать количество используемых веществ, чтобы получать именно эвтектоидный сплав. Его механические свойства наилучшие из возможных. Кристаллические решетки образуют идеальные гранецентрированные положения атомов.
Изучают процесс кристаллизации путем исследования твердения образцов при охлаждении. Строят специальные графики, где наблюдают, как изменяется скорость охлаждения. Для разных сплавов имеются готовые диаграммы. Отмечая точки начала и конца кристаллизации, определяют состав сплава.
Сплав Вуда
В 1860 г. американский зубной техник Барнабас Вуд искал оптимальные соотношения компонентов, чтобы изготавливать зубы для клиентов при минимальных температурах плавления. Им был найден сплав, который имеет температуру плавления всего 60,2…68,5 ⁰С. Даже в горячей воде металл легко расплавляется. В него входят:
- олово — 12,5…12,7 %;
- свинец — 24,5…25,0 %;
- висмут — 49,5…50,3 %;
- кадмий — 12,5…12,7 %.
Сплавы для пайки
На практике многие сталкиваются с плавлением при пайке деталей. Если поверхности соединяемых материалов очищены от загрязнений и окислов, то их нетрудно спаять припоями. Принято делить припои на твердые и мягкие. Мягкие получили наибольшее распространение:
- ПОС-15 — 278…282 °C;
- ПОС-25 — 258…262 °C;
- ПОС-33 — 245…249 °C;
- ПОС-40 — 236…241 °C;
- ПОС-61 — 181…185 °C;
- ПОС-90 — 217…222 °C.
Их выпускают для предприятий, изготавливающих разные радиотехнические приборы.
Твердые припои на основе цинка, меди, серебра и висмута имеют более высокую температуру плавления:
- ПСр-10 — 825…835 °С;
- ПСр-12 — 780…790 °С;
- ПСр-25 — 760…770 °С;
- ПСр-45 — 715…721 °С;
- ПСр-65 — 738…743 °С;
- ПСр-70 — 778…783 °С;
- ПМЦ-36 — 823…828 °С;
- ПМЦ-42 — 830…837 °С;
- ПМЦ-51 — 867…884 °С.
Использование твердых припоев позволяет получать прочные соединения.
Внимание! Ср означает, что в составе припоя использовано серебро. Такие сплавы обладают минимальным электрическим сопротивлением.
Температура плавления неметаллов
Неметаллические материалы могут быть представлены в твердом и жидком виде. Неорганические вещества представлены в табл. 4.
Таблица 4, температура плавления неорганических неметаллов:
На практике для пользователей наибольший интерес представляют органические материалы: полиэтилен, полипропилен, воск, парафин и другие. Температура плавления некоторых веществ показана в табл. 5.
Таблица 5, температура плавления полимерных материалов:
Внимание! Под температурой стеклования понимают состояние, когда материал становится хрупким.
Видео: температура плавления известных металлов.