529 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тороидальный трансформатор преимущества и недостатки

Тороидальные трансформаторы — устройство, применение, технические характеристики

По форме магнитопровода трансформаторы подразделяются на стержневые, броневые и тороидальные. Казалось бы, разницы нет, ведь главное — мощность, которую способен преобразовать трансформатор. Но если взять три трансформатора с магнитопроводами разной формы на одну и ту же габаритную мощность, то выяснится, что тороидальный трансформатор покажет лучшие рабочие характеристики из всех. Именно по этой причине чаще всего для питания различных устройств во многих промышленных сферах выбор останавливают, конечно, на тороидальных трансформаторах в силу их высокой эффективности.

Сегодня тороидальные трансформаторы применяют в различных сферах промышленности, и наиболее часто тороидальные трансформаторы устанавливают в источники бесперебойного питания, в стабилизаторы напряжения, применяют для питания осветительной техники и радиотехники, часто тороидальные трансформаторы можно увидеть в медицинском и диагностическом оборудовании, в сварочном оборудовании и т.д.

Как вы понимаете, говоря «тороидальный трансформатор», подразумевают обычно сетевой однофазный трансформатор, силовой или измерительный, повышающий или понижающий, у которого тороидальный сердечник оснащен двумя или несколькими обмотками.

Работает тороидальный трансформатор принципиально так же как и трансформаторы с другими формами сердечников: он понижает или повышает напряжение, повышает или понижает ток — преобразует электроэнергию. Но тороидальный трансформатор отличается при той же передаваемой мощности меньшими размерами и меньшим весом, то есть лучшими экономическими показателями.

Главная особенность тороидального трансформатора — небольшой общий объем устройства, доходящий до половины в сравнении с другими типами магнитопроводов. Шихтованный сердечник вдвое больше по объему чем тороидальный ленточный сердечник при той же габаритной мощности. Поэтому тороидальные трансформаторы удобнее устанавливать и подключать, и уже не так важно, идет ли речь о внутреннем или о наружном монтаже.

Любой специалист скажет, что тороидальная форма сердечника является идеальной для трансформатора по нескольким причинам: во-первых, экономия материалов на производстве, во-вторых, обмотки равномерно заполняют весь сердечник, распределяясь по всей его поверхности, не оставляя неиспользованных мест, в-третьих, поскольку обмотки имеют меньшую длину, КПД тороидальных трансформаторов получается выше в силу меньшего сопротивления провода обмоток.

Охлаждение обмоток — еще один важный фактор. Обмотки эффективно охлаждаются будучи расположены в форме тороида, следовательно плотность тока может быть более высокой. Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.

Экономия электроэнергии — еще один плюс в пользу тороидального трансформатора. Примерно на 30% больше энергии сохраняется при полной нагрузке, и примерно 80% на холостом ходу, в сравнении с шихтованными магнитопроводами иных форм. Показатель рассеяния у тороидальных трансформаторов в 5 раз меньше чем у броневых и стержневых трансформаторов, поэтому их можно безопасно использовать с чувствительным электронным оборудованием.

При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, — и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.

Тороидальный трансформатор преимущества и недостатки

ООО «Опытные приборы» принимает заказы на изготовление индивидуальных и поставку типовых силовых тороидальных трансформаторов для сети 220/380 В частотой 50 Гц.

Трансформатор обычного исполнения (т.е. минимальной стоимости) намотан на сердечнике типа ОЛ, изготовленном из стальной ленты марки 3406. 3408 толщиной 0,3 мм. Обмотки выполнены медным термостойким проводом марки ПЭТВ-2 (двойная эмалевая изоляция, рабочая t° до 135°С). Выводы обмоток изготовлены из гибкого монтажного провода (НВ или аналогичного) разных цветов (выводы сетевой обмотки — коричневый и синий соотв. начало и конец, выводы вторичных обмоток — других цветов). Наружная изоляция трансформатора, изоляция обмоток и сердечника выполнены пленкой ПЭТ-Э (материал — полиэтилентерефталат, или лавсан). Трансформатор может иметь любое количество обмоток (включая экранные) и отводов. Изоляция, отделяющая сетевую обмотку от вторичных, выдерживает испытательное напряжение

2000 В 50 Гц в течение 1 минуты. На трансформатор наклеена этикетка.

Плюсы и минусы тороидальной конструкции трансформаторов

У тороидальных трансформаторов есть ряд существенных преимуществ перед обычными (т.е. на П- и Ш-образных стальных сердечниках, катушка которых выполнена открытой, или рядовой намоткой) трансформаторами. Вот наиболее важные из них :

  • меньший вес и габариты;
  • малые потери (за счет отсутствия воздушных зазоров в сердечнике и лучших свойств материала сердечника);
  • наибольший среди сетевых трансформаторов КПД, что обуславливает малый перегрев трансформаторов при длительной работе (обычно не более 20. 30° С, редко 40° С),
  • минимальная индуктивность рассеяния;
  • невосприимчивость к внешним магнитным полям (и, следовательно, помехоустойчивость) и отсутствие собственного электромагнитного излучения;
  • бесшумность работы (нет характерного гудения частотой 50 Гц);
  • низкий ток холостого хода (в 3. 5 раз ниже, чем у трансформаторов на разрезном ленточном сердечнике типа ШЛ, и в 10. 15 раз ниже, чем у трансформаторов на шихтованых Ш-образных сердечниках!). Это существенно экономит электроэнергию там, где источник питания работает сутками, и при этом редко выдает максимальную мощность, например, в мини-АТС, в источниках бесперебойного питания).

И при таких достоинствах силовые торы имеют вполне конкурентную цену! При мощности около 20 Вт их цены сопоставимы с ценами трансформаторов на Ш-образных сердечниках, а при мощности выше 40 Вт – ощутимо ниже. В то же время для применения сетевых торов мощностью менее 15 Вт должны быть веские причины неценового характера, т.к. снижении мощности ведет не к снижению его цены, а к увеличению (из-за быстрого роста трудоемкости изделия), и может иногда в 2. 3 раза превышать стоимость его Ш-образного аналога.

Справедливости ради надо отметить и ряд недостатков тороидальных трансформаторов: это неудобство крепления торов (нужен комплект крепежных изделий) и низкая стойкость к механическим воздействиям (поскольку по всей поверхности тороида под слоем наружной изоляции располагается эмальпровод обмоток, чувствительный к ударам и повышенному давлению).

Типовые тороидальные трансформаторы

На складе имеется постоянный запас следующих типовых тороидальных трансформаторов:

Приветствую постоянных и новых читателей, сайта по электроники energytik.net . Сегодня речь пойдёт о тороидальном трансформаторе, который является лидером среди своих собратьев, те что, имеют стержневой и броневой магнитопровод.

Устройство тороидального трансформатора.

Начнём с главного, самым центром сего изделия, является тороидальное ядро, на которое и наматывается первичная и вторичная обмотка. Его магнитопроводом является сердечник, намотанный из рулонной стали, сталь специальная магнитная трансформаторная.

Сердечник покрывают слоем изоляции, для предотвращения коротких замыкание во время работы трансформатора, нахождение его обмоток под напряжением. Диэлектриком выступают различные вещества, бумага, силикон, пластмасса, водоотталкивающая ткань.

Следующим действием является намотка первичной обмотки, и оставление необходимых выводов.

Между обмотками, очень желательно нахождение экранирующей обмотки. Она находится не на всех трансформаторах. Её назначение очень важно в целях безопасности и отлично уменьшает наводку от напряжения в сети.

Между экранирующей обмоткой и обмотками трансформатора, содержится слой изолирующего диэлектрика.

Поверх всего этого, наносится вторичная обмотка.

Пожалуй, об устройстве хватит для начального уровня и представления его устройства. Сюда отнесём, крепёжные элементы для его монтажа. Обязательное покрытие изоляцией всего изделия.

Принцип работы и преимущества тороидального трансформатора.

Ни чем, не отличается от обычного трансформатора. Важно знать, что является однофазным, а количество вторичных обмоток, может быть нескольким, чаще всего их две.

Он может повышать поданное на него напряжение, и с не меньшим успехом понижать его. Более просто сказать, преобразовывает одну величину напряжения в другую.

Тороидальный сердечник, занимает значительно меньше места, при установке его в электронное оборудование и аппаратуру. Это напрямую снижает его общий вес.

Несколько слов о круглой форме тороидального трансформатора. Для его изготовления, затрачивается меньшие количество стали, более пятидесяти процентов.

Огромная экономия и дорогой медной проволоки. Благодаря правильному и равномерному наматыванию обмотки, по всему тороидальному сердечнику, медный провод имеет меньшую длину. Соответственно, провод имеет меньшое значение сопротивления, что является плюсом в кпд.

У тороидальных трансформаторов есть и ещё пара очевидных и неоспоримых плюсов. Благодаря его форме, охлаждение происходит более эффективно, вследствие чего, уменьшаются потери в железе и меди.

Короче говоря, преимуществом тороидальных трансформаторов, является более высокий коэффициент полезного действии и ощутимая экономия материалы при производстве. Меньший ток намагничивания, это тоже положительный фактор.

Сфера применения тороидальных трансформаторов.

В основном применение тороидальных трансформаторов, ограничивается питанием радиоаппаратуры. Он устанавливается в схемах блоков питания, с приличными требованиями по питанию.

Часто их устанавливают в музыкальных центрах и усилителях, компьютерной и офисной технике. В системах освещения и сигнализации, применяют их и промышленной аппаратуре.

Будем благодарны, если Вы поделитесь этой статьей:

Здесь вы можете написать отзыв к записи «Тороидальный трансформатор – устройство и преимущества для электроники»

По форме магнитопровода трансформаторы подразделяются на стержневые, броневые и тороидальные. Казалось бы, разницы нет, ведь главное — мощность, которую способен преобразовать трансформатор. Но если взять три трансформатора с магнитопроводами разной формы на одну и ту же габаритную мощность, то выяснится, что тороидальный трансформатор покажет лучшие рабочие характеристики из всех. Именно по этой причине чаще всего для питания различных устройств во многих промышленных сферах выбор останавливают, конечно, на тороидальных трансформаторах в силу их высокой эффективности.

Сегодня тороидальные трансформаторы применяют в различных сферах промышленности, и наиболее часто тороидальные трансформаторы устанавливают в источники бесперебойного питания, в стабилизаторы напряжения, применяют для питания осветительной техники и радиотехники, часто тороидальные трансформаторы можно увидеть в медицинском и диагностическом оборудовании, в сварочном оборудовании и т.д.

Как вы понимаете, говоря «тороидальный трансформатор», подразумевают обычно сетевой однофазный трансформатор, силовой или измерительный, повышающий или понижающий, у которого тороидальный сердечник оснащен двумя или несколькими обмотками.

Работает тороидальный трансформатор принципиально так же как и трансформаторы с другими формами сердечников: он понижает или повышает напряжение, повышает или понижает ток — преобразует электроэнергию. Но тороидальный трансформатор отличается при той же передаваемой мощности меньшими размерами и меньшим весом, то есть лучшими экономическими показателями.

Главная особенность тороидального трансформатора — небольшой общий объем устройства, доходящий до половины в сравнении с другими типами магнитопроводов. Шихтованный сердечник вдвое больше по объему чем тороидальный ленточный сердечник при той же габаритной мощности. Поэтому тороидальные трансформаторы удобнее устанавливать и подключать, и уже не так важно, идет ли речь о внутреннем или о наружном монтаже.

Любой специалист скажет, что тороидальная форма сердечника является идеальной для трансформатора по нескольким причинам: во-первых, экономия материалов на производстве, во-вторых, обмотки равномерно заполняют весь сердечник, распределяясь по всей его поверхности, не оставляя неиспользованных мест, в-третьих, поскольку обмотки имеют меньшую длину, КПД тороидальных трансформаторов получается выше в силу меньшего сопротивления провода обмоток.

Охлаждение обмоток — еще один важный фактор. Обмотки эффективно охлаждаются будучи расположены в форме тороида, следовательно плотность тока может быть более высокой. Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.

Читать еще:  Формулы расчетов режимов резания

Экономия электроэнергии — еще один плюс в пользу тороидального трансформатора. Примерно на 30% больше энергии сохраняется при полной нагрузке, и примерно 80% на холостом ходу, в сравнении с шихтованными магнитопроводами иных форм. Показатель рассеяния у тороидальных трансформаторов в 5 раз меньше чем у броневых и стержневых трансформаторов, поэтому их можно безопасно использовать с чувствительным электронным оборудованием.

При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, — и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.

Преимущества тороидального трансформатора

Магнитопроводы трансформаторов подразделяются на броневые, стержневые и тороидальные. Магнитопровод броневого трансформатора имеет Ш-образную форму, все обмотки располагаются на среднем стержне, то есть частично охватываются магнитопроводом (бронируются). Магнитопровод стержневого трансформатора выполняется П-образным и имеет два стержня с обмотками. Магнитопровод тороидального трансформатора имеет форму тороида, то есть кольца с прямоугольным сечением.

Тороидальные трансформаторы имеют ряд преимуществ по сравнению с обычными броневыми или стержневыми:

  1. отсутствие стыков и зазоров в сердечнике;
  2. лучшее использование структурных свойств стали сердечника, так как в этом случае направление магнитного поля совпадает с направлением проката ленты;
  3. возможность использования для сердечника сталей с повышенной магнитной проницаемостью марок Э-340, Э-370 и т.п. Применение таких сталей для штампованных пластин броневых трансформаторов связано с значительными производственными трудностями;
  4. поток рассеяния идеальной тороидальной катушки, как известно, теоретически должен быть равен нулю. Практически в тороидальных трансформаторах потоки рассеяния имеют некоторую конечную величину. Однако они меньше, чем в трансформаторах обычного типа. Внешние магнитные поля теоретически не должны влиять на работу трансформатора.
Основные магнитные свойства анизотропных трансформаторных сталей, используемых также при изготовлении тороидального трансформатора.
Толщина, ммМарка сталиУдельные магнитные потери, Вт/кг, не болееМагнитная индукция, Тл, не менее, при наря- женности постоянного магнитого поля, А/м
Р1,0/50Р1,5/50Р1,7/501002500
0,8033114,01,75
0,7033113,81,75
0,5034112,451,75
34122,001,80
34131,751,85
34141,51,88
0,3534111,751,75
34121,51,80
34131,301,85
34041,601,60
34051,501,61
34061,431,62
34071,361,68 1,72
34081,301,71 1,74
34091,241,72 1,74
0,3034121,31,80
34131,191,85
34041,501,60
34051,401,61
34061,331,62
34071,261,68 1,72
34081,201,71 1,74
34091,141,72 1,74
0,2734131,151,85
34051,381,61
34061,271,62
34071,201,68 1,72
34081,141,71 1,74
34091,081,72 1,74
*Оранжевым цветом отмечена электротехническая сталь которую мы используем для производства тороидального трансформатора

Перечисленные особенности тороидальных сердечников позволяют получить при их использовании трансформаторы со значительно более высокими электрическими и экономическими показателями:

  1. Благодаря применению высоколегированных сталей и отсутствию зазоров можно допустить в сердечнике трансформатора значительно большую индукцию без заметного увеличения коэффициента нелинейных искажений. Практически удается повысить допустимое Вmax примерно в два раза по сравнению с допустимой величиной индукции в броневых трансформаторах. Это дает возможность уменьшить объем и вес сердечника.
  2. Применение сталей, обладающих высокой магнитной проницаемостью, позволяет уменьшить число витков, необходимое для получения заданной величины индуктивности первичной обмотки. В практически осуществленных конструкциях удалось снизить расход меди примерно на 20%.
  3. Малая величина индуктивности рассеяния обеспечивает равномерную частотную характеристику каскад, малые искажения из-за переходных процессов и позволяет применить в выходном каскаде весьма глубокую обратную отрицательную связь.

Так как такой трансформатор имеет весьма малое внешнее магнитное поле, то даже при тесном монтаже связи между ним и другими деталями относительно невелики.

К достоинствам таких трансформаторов следует отнести также удобство и простоту их крепления, отсутствие экранов, меньшая масса и габаритные размеры, снижение температуры нагрева из-за большой поверхности охлаждения обмоток (благодаря чему можно допускать в проводах обмоток относительно высокую плотность тока от 3 до 5 а/мм2), значительно меньший уровень шума, более высокий КПД.

Тороидальный трансформатор преимущества и недостатки

  • Главная
  • Статьи
  • Преимущества тороидальных трансформаторов перед обычными трансформаторами с шихтованными сердечниками

Преимущества тороидальных трансформаторов перед обычными трансформаторами с шихтованными сердечниками

Компания TALEMA была основана в 1975г. в городе Мюнхен (Германия), имеет производство в Индии, офисы продаж в Ирландии и США.

В начале 1992 года TALEMA Group основала производство в Чешской республике, что привело к созданию в 2002 году компании NT Magnetics, которая стала основным заводом-изготовителем компонентов торговой марки TALEMA для всей Европы.

В настоящее время в NT Magnetics работает 140 человек (всего в Talema Group занято более 1000 работников). Компания специализируется на изготовлении тороидальных трансформаторов и компонентов на тороидальном сердечнике торговой марки TALEMA.

Преимущества тороидальных трансформаторов перед обычными трансформаторами с шихтованными сердечниками:

1. Качество

Продукция соответствует самым высоким стандартам и имеет много международных сертификатов и свидетельств, включая UL, EN, VDE , IEC, в том числе и ГОСТ-Р.

Контроль качества производится на протяжении всего процесса производства трансформаторов «Talema».

2. Меньший объём
Использование тороидальных трансформаторов с монтажными креплениями и клеммниками экономит до 50 % объёма, а применение тороидальных трансформаторов с простыми проволочными выводами экономит до 64 % занимаемого объёма по сравнению с традиционными трансформаторами.
При мощности до 1000 ВА можно использовать для крепления центральный клеммник или болт с гайкой, что обычно бывает достаточным и не требует применения дополнительного крепежа.

3. Меньший вес
Экономия до 50 % и более.

Таблица 1. Типовые весовые параметры

Весовые параметры
Размер, ВАВес (кг)
ШихтованныеТороидальныеЭкономия%ШихтованныеТороидальныеЭкономия%
Горизонтальный монтажВертикальный монтаж
2003,52.01,543.73,51,91,642.5
2504,12,61,536.64,12,51,637.9
3205,33,12,240.75,33,02,342.5
4006,73,82,943.86,73,73,045.2
5008,64,44,248.98,64,34,350.2
63010,15,44,747.010,15,24,948.1
80013,16,46,751.013,16,36,851.9
100014,77,67,148.314,77,47,349.7
150018.010,87,240.018.010,77,340.6
200024.014,59,539.624.014,39,740.4
250027.017,19,937.727.016,910,137.3
300031.020,310,734.631.020,110,935.0
400040.026.014.035.040.025,914,135.3

Тороидальный (кольцевой) сердечник имеет идеальную форму, позволяющую изготовить трансформатор с использованием минимального количества материалов. Все обмотки равномерно распределены по всей окружности сердечника, благодаря чему значительно уменьшается длина обмотки. Это ведёт к уменьшению сопротивления обмотки и повышению КПД.
В тороидальных трансформаторах возможно использование более высокой магнитной индукции, так как магнитный поток проходит в том же направлении, в каком ориентированы домены стали сердечника. Можно использовать более высокую плотность тока в проводах, так как вся поверхность сердечника позволяет эффективно охлаждать обмотки тороидального трансформатора. Потери в сердечнике весьма низки — типовое значение составляет 1,1 Вт при индукции 1,7 Тл и частоте 50/60 Гц. Низкий ток намагничивания обеспечивает отличные температурные характеристики тороидального трансформатора.

4. Более высокий коэффициент полезного действия
Тороидальные трансформаторы «Talema» изготавливаются из высококачественных материалов, что позволяет достичь более высокой магнитной индукции при низких потерях в сердечнике.

5. Экономия энергии
Достигает 86 % на холостом ходу и 36 % при работе под нагрузкой. Применение тороидальных трансформаторов «Talema» вместо обычных броневых трансформаторов обеспечивает существенную экономию энергии, как показано в таблице 2.

Таблица 2. Типовые потери в тороидальных трансформаторах

Размер, ВАЭкономия энергии , Вт
ШихтованныеТороидальныеЭкономия%ШихтованныеТороидальныеЭкономия%
Потери без нагрузкиПотери при нагрузке (Uвх=230 В)
63
100
4.8
6.0
0.8
1.0
4.0
5.0
86.3
83.3
9,5
13.0
6.4
10.7
3.1
2.3
32.6
17.7
160
250
7.5
11.0
1,6
2.6
5.9
6.5
78.7
80.0
17.6
25.0
14.1
19.3
3.5
5.7
19.7
22.8
400
630
18.0
24.0
5,1
6.9
12.9
17.1
71.7
71.3
32.0
37.8
25.7
34.0
6.3
3.8
19.7
10.1
1000
1600
27.0
38.0
10.6
16.3
16.4
21.7
60.7
57.1
53.0
76.8
39.1
55.1
13.9
21.7
26.2
28.3
2500
4000
49.0
70.0
26.0
39.5
23.0
30,5
46.9
43.6
100.0
140.0
70.7
90.0
29,3
50,0
29.3
35.7

Окупаемость применения тороидальных трансформаторов в составе различных приборов за счёт высокого КПД составляет 2-3 года. В современном мире, где учитывается каждый потребляемый Ватт мощности, применение тороидальных трансформаторов может быть преимуществом перед конкурентами.

6. Гибкость размеров
Тороидальные трансформаторы «Talema» предлагают высокую степень гибкости размеров в сравнении с обычными броневыми трансформаторами. Поскольку сердечники тороидальных трансформаторов изготавливаются на собственных заводах «Talema», это позволяет изготовить сердечник практически любого диаметра и высоты. Конструкторы «Talema» тесно сотрудничают с группой клиентских проектов и могут «на заказ» спроектировать тороидальный трансформатор так, чтобы он точно входил в ограниченное пространство, что, как правило, невозможно при использовании обычных трансформаторов.

7. Простой монтаж
Стандартный монтаж трансформаторов мощностью до 1 кВА осуществляется посредством одной центрирующей металлической шайбы и монтажного болта или клеммника, проходящего сквозь центральное отверстие тороидального трансформатора, что обеспечивает быстрый и простой монтаж. Другие способы монтажа:
— заливка компаундом центрального отверстия с латунными втулками
— помещение в пластмассовый или металлический корпус с последующей заливкой компаундом
— монтажные рейки (мощность от 200 ВА до 7,5 кВА)
— исполнение для монтажа на печатные платы
Для облегчения замены обычных трансформаторов тороидальными, группа «Talema» разработала серию монтажных креплений, позволяющих устанавливать тороидальный трансформатор на место, которое ранее занимал обычный трансформатор. Возможно изготовление специальных креплений трансформатора, либо смещение отверстий в стандартных креплениях.

8. Более низкий уровень шума
Cердечники «Talema» изготавливаются из сплошной стальной ленты, концы которой приварены с обеих сторон, что исключает саму возможность вибрации. Медная обмотка, плотно облегающая всю окружность сердечника, обеспечивает дополнительную прочность. Качество стали обеспечивает низкую магнитострикцию и низкие потери на рассеяние. Эта комбинация качеств почти полностью устраняет шум, наблюдаемый при эксплуатации обычных трансформаторов.

Читать еще:  Блендер характеристики как выбрать

9. Небольшое рассеяние
Приблизительно на 85 — 95 % меньшее рассеяние по сравнению с обычными трансформаторами. Низкое значение рассеяния является важным аспектом для разработчиков оборудования, так как это явление может создавать нежелательные влияния на чувствительные электронные цепи. Тороидальный трансформатор обеспечивает общее снижение уровня магнитных помех в соотношении 8:1 по сравнению с традиционными трансформаторами рамочной формы.

10. Цена и ценность
Передовые производственные технологии и экономия материалов делают современные тороидальные трансформаторы выгодными в ценовом отношении по сравнению с обычными трансформаторами аналогичной мощности. Если учесть прочие скрытые преимущества, такие как низкое рассеяние, экономия энергии во время эксплуатации, меньшие габариты и вес, выгода от применения тороидальных трансформаторов существенно возрастает. В общем и целом, чем больше мощность тороидальных трансформаторов, тем ниже их цена по сравнению с традиционными трансформаторами.

11. Группа «Talema»
Специалисты «Talema» по проектированию тороидальных трансформаторов помогут найти решение, удовлетворяющее всем требованиям наших клиентов: от проекта до выпуска готовой продукции. Собственный опыт позволяет компании добиваться максимальной мощности трансформатора при минимальных размерах. Благодаря наличию заводов в разных странах, группа «Talema» широко развивает международную деятельность по производству тороидальных трансформаторов.

Дополнительную информацию о материалах статьи можно получить, обратившись по электронной почте Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. .

TALEMA — мировой лидер в производстве тороидальных трансформаторов и индуктивных компонентов на тороидальном сердечнике.

Тороидальный трансформатор

Тороидальный трансформатор – электротехнический преобразователь напряжения или тока, сердечник которого изогнут кольцом и замкнут. Профиль сечения отличается от круглого, название все равно применяют за неимением лучшего.

Отличия тороидальных трансформаторов

Автором тороидальных трансформаторов признан Майкл Фарадей. Возможно встретить в отечественной литературе (особенно, коммунистических времен) утопичную идею: первым собрал подобное Яблочков, сравнив указываемую дату – обычно, 1876 год – с ранними опытами по электромагнитной индукции (1830). Просится вывод: Англия опередила Россию на полвека. Интересующихся подробностями отошлем к обзору Закон электромагнитной индукции. Приводятся детальные сведения о конструкции первого в мире тороидального трансформатора. Изделие отличает форма сердечника. Помимо тороидальных принято по форме различать:

  1. Броневые. Отличаются избыточностью ферромагнитного сплава. Для замыкания линий поля (чтобы проходили внутри материала) ярма охватывают обмотки с внешней стороны. В результате входная и выходная наматываются вокруг общей оси. Одна поверх другой или рядом.
  2. Стержневые. Сердечник трансформатора проходит внутри витков обмотки. Пространственно входная и выходная разнесены. Ярма вбирают малую часть линий напряженности магнитного поля, проходящих за пределами витков. Фактически нужны, чтобы соединить стержни.

Новичку приходится туго, нелишне пояснить подробнее. Стержнем называется часть сердечника, проходящая внутри витков. На остов наматывается проволока. Ярмом называется часть сердечника, соединяющая стержни. Нужны передавать линии магнитного поля. Ярма замыкают сердечник, формируя цельную конструкцию. Замкнутость требуется для свободного распространения внутри материала магнитного поля.

Тема Магнитная индукция показывает – внутри ферромагнетика поле значительно усиливается. Эффект образует базис функционирования трансформаторов.

В состав стержневого сердечника ярмо входит минимальным составом. В броневом охватывает дополнительно обмотки снаружи вдоль длины, как бы защищая. От аналогии произошло название. Майкла Фарадея выбрал тор скорее интуитивно. Формально можно назвать стержневым сердечником, хотя направляющая оси симметрии обмоток идет дугой.

Опорой первому магниту (1824 год) стала лошадиная подкова. Возможно, факт придал направлению полета творческой мысли ученого верный азимут. Используй Фарадей иной материал, опыт окончится неудачей.

Тор навивают единой лентой. Подобные сердечники называют спиральными в отличие от броневых и стержневых, которые фигурируют в литературе за термином пластинчатые. Это введет в заблуждение. Лишний раз следует сказать: тороидальный сердечник, будучи намотанным отдельными пластинами, называется спиральным. Разбивать частями приходится, когда отсутствует лента. Это вызвано чисто экономическими причинами.

Подытожим: в исходном виде тороидальный трансформатор Фарадея имел сердечник круглого сечения. Сегодня форма невыгодна, невозможно обеспечить массовое производство соответствующей технологией. Хотя деформация проволоки по углам сгиба приводит однозначно к ухудшению характеристик изделия. Механические напряжения повышают омическое сопротивление обмотки.

Сердечники тороидальных трансформаторов

Тороидальный трансформатор назван за форму сердечника. Майкл Фарадей изготовил бублик, использовав цельный кусок мягкой стали круглого сечения. Конструкция нецелесообразна на современном этапе по нескольким причинам. Главное внимание уделяется минимизации потерь. Сплошной сердечник невыгоден, наводятся вихревые токи, сильно разогревающие материал. Получается плавильная индукционная печь, легко превращающая в жидкость сталь.

Чтобы избежать ненужных трат энергии и нагревания трансформатора, сердечник нарезают полосами. Каждая изолируется от соседней, например, лаком. В случае тороидальных сердечников наматывают единой спиралью, либо полосами. Сталь обычно на одной стороне имеет изолирующее покрытие толщиной единицы микрометра.

Упомянутые стали используются для конструирования трансформаторов тока, довольно часто по исполнению являющихся тороидальными. Интересующимся можно ознакомиться с ГОСТ 21427.2 и 21427.1. Для сердечников (как следует из названия документов) сегодня чаще используется анизотропная холоднокатаная листовая сталь. В название заложено: магнитные свойства материала неодинаковы по разным осям координат. Вектор потока поля должен совпадать с направлением проката (в нашем случае движется по кругу). Ранее применялся другой металл. Сердечники высокочастотных трансформаторов могут изготавливаться из стали 1521. В рамках сайта особенности применяемых материалов обсуждались (см. коэффициент трансформации). Сталь маркируется по-разному, в состав обозначения включаются сведения:

  • Первое место отводится цифре, характеризующей структуру. Для анизотропных сталей применяется 3.
  • Вторая цифра указывает процентное содержание кремния:
  1. менее 0,8%.
  2. 0,8 – 1,8%.
  3. 1,8 – 2,8%.
  4. 2,8 – 3,8%.
  5. 3,8 – 4,8%.
  • Третья цифра указывает основную характеристику. Могут быть удельные потери, величина магнитной индукции при фиксированной напряженности поля.
  • Тип стали. С ростом числа удельные потери ниже. Зависит от технологии производства металла.

При транспортировке структура стали неизбежно повреждается. Дефекты устраним специальным отжигом на месте сборки. Делается в обязательном порядке для измерительных трансформаторов тока, где важна точность показаний. Сердечник наматывается цельным куском или отрезными полосами на оправку цилиндрической или овальной формы. При необходимости ленты можно нарезать из цельного листа (экономически чаще нецелесообразно). Длина каждой должна составлять не менее шести с половиной радиусов намотки. Для достижения нужной длины допускается соединять отдельные полосы точечной сваркой. Шихтование (разбивка тонкими слоями) устраняет явление вихревых токов. Потери перемагничивания мало меняются, составляя малую долю упомянутого ранее паразитного эффекта.

Теряет значение взаимное расположение конца и начала ленты. Чтобы спираль не размоталась, последний виток приваривают к предыдущему точечной сваркой. Намотка ведется с натяжением, собранные из нескольких полос ленты обычно не удаётся подогнать плотно, сварной шов выполняется внахлест. Иногда тор режется на две части (разрезной сердечник), на практике требуется сравнительно редко. Половинки при сборке стягиваются бандажом. В процессе изготовления готовый тороидальный сердечник режется инструментом, торцы шлифуются. Витки спирали скрепляются связующим веществом, чтобы не размоталась.

Трансформатор с замкнутым сердечником

Намотка тороидальных трансформаторов

Стандартно производится дополнительная изоляция тороидального сердечника от обмоток, даже если используется лакированная проволока. Широко применяется электротехнический картон (ГОСТ 2824) толщиной до 0,8 мм (возможным другие варианты). Распространенные случаи:

  1. Картон наматывается с захватом предыдущего витка на тороидальный сердечник. Способ характеризуется, как вполнахлеста (половина ширины). Конец приклеивается или закрепляется киперной лентой.
  2. По торцам сердечник защищают картонные шайбы с надрезами глубиной 10 – 20 мм, шагом 20-35 мм, перекрывающие толщину тора. Наружная, внутренняя грань закрываются полосами. Технологически шайбы идут в сбор последними, прорезанные зубцы загибаются. Поверх спирально наматывается киперная лента.
  3. Надрезы могут производиться на полосах, тогда берутся с запасом, чтобы больше высоты тора, кольца – строго по ширине, накладываются поверх загибов.
  4. Тонкие полосы, кольца текстолита закрепляются на тороидальном сердечнике лентами стеклоткани вполнахлеста.
  5. Иногда кольца выполняются из электротехнической фанеры, гетинакса, толстого (до 8 мм) текстолита с запасом наружного диаметра 1-2 мм. Внешнюю и внутреннюю грань защищают картонными полосами с загибом по краям. Меж первыми витками обмотки, сердечником остается воздушный зазор. Промежуток под картоном нужен на случай, если края под проволокой протрутся. Тогда токонесущая часть никогда не коснется тороидального сердечника. Поверх наматывается киперная лента. Иногда внешнее ребро колец сглаживается, чтобы намотка углами шла плавно.
  6. Имеется разновидность изоляции, сходная с предыдущей, с внутренней стороны по кольцам на внешних ребрах имеются проточки до сердечника, куда ложатся полосы. Элементы выполняются из текстолита. Поверх наматывается киперная лента.

Обмотки обычно выполняются концентрическими (одна над другой), либо чередующимися (как в первом опыте Майкла Фарадея 1831 года), называют иногда дисковыми. В последнем случае через одну может наматываться достаточно большое их число, попеременно: то высокое напряжение, то низкое. Применяется чистая электротехническая медь (99,95%) удельным сопротивлением 17,24 – 17,54 нОм м. Ввиду дороговизны металла для изготовления тороидальных трансформаторов малой и средней мощности берется рафинированный алюминий. Для прочих случаев сказываются ограничения по проводимости и пластичности.

В мощных трансформаторах медный провод бывает прямоугольного сечения. Делается для экономии места. Жила должна быть толстой, пропуская значительный ток, дабы не расплавиться, круглое сечение приведет к излишнему росту габаритов. Выигрыш равномерности распределения поля по материалу свелся бы к нулю. Толстый прямоугольный провод достаточно удобно укладывать, чего нельзя сказать касательно тонкого. В остальном (по конструктивным признакам) намотка производится в точности теми же путями, как в случае обычного трансформатора. Катушки делаются цилиндрическими, винтовыми, однослойными, многослойными.

Определение конструкции тороидального трансформатора

Интересующимся вопросом рекомендуем изучить книгу С. В. Котенева, А. Н. Евсеева по расчету оптимизации тороидальных трансформаторов (издание Горячая линия – Телеком, 2011 год). Напоминаем: издание защищено законом об авторских правах. Профессионалы найдут силы (средства) приобрести при необходимости книгу. Согласно главам, расчет начинается определением параметров режима холостого хода. Подробно описывается, как найти активный и реактивный токи, высчитать ключевые параметры.

Печатное издание, несмотря на некоторую спорность изложения, попутно дает понять, почему включенный в цепь трансформатор, лишенный нагрузки, не сгорает (энергия тока расходуется намагничиванием). Хотя, казалось бы, предсказан очевидный исход мероприятия.

Число витков первичной обмотки выбирается из условия не превышения магнитной индукцией максимального значения (до входа в режим насыщения, где значение не меняется ростом напряженности поля). Если конструирование ведется для бытовой сети 230 вольт, берется допуск согласно ГОСТ 13109. В нашем случае, имеется в виду отклонение амплитуды в пределах 10%. Помним: вся промышленность перешла в XXI веке на 230 вольт (220 не используется, приводится в литературе, «наследием тяжелого прошлого»).

Устройство тороидального трансформатора и его преимущества

Трансформаторы применяются для изменения выходного напряжения в большую или меньшую сторону. Без них невозможно представить себе современную электротехнику. Одним из самых высокоэффективных является тороидальный трансформатор. Он представляет собою изогнутый кольцом сердечник, обвитый проволокой, а внутри него находятся свернутые стальные полоски.

Электричество проходит сквозь обмотку сердечника, создавая магнитные поля. Для получения выходного напряжения магнитное поле проходит через первую обмотку в катушке. В статье читатель найдет видео c наглядным разбором устройства и книгу Котенева Е.С., Евсеева А.Н. «Расчет и оптимизация тороидальных трансформаторов».

Читать еще:  Как правильно собрать электрощит в квартире

Основные преимущества и недостатки

При использовании тороидальных трансформаторов, поставляемых со свободными витыми выводами, можно добиться экономии до 64 % занимаемого объёма по сравнению с обычными трансформаторами с шихтованными сердечниками (очень часто легче подключить оборудование именно с помощью выводов из трансформатора, а не клеммников).

Тороидальный (кольцевой) сердечник имеет идеальную форму, позволяющую изготовить трансформатор, используя минимальное количество материала. Все обмотки симметрично распределены по всей окружности сердечника, благодаря чему значительно уменьшается длина обмотки.

Это ведёт к уменьшению сопротивления обмотки и повышению коэффициента полезного действия. Возможна более высокая магнитная индукция, так как магнитный ток проходит в том же направлении, в каком ориентирована кремнистая сталь ядра во время прокатки. Также можно отметить плюсы:

  • низкие показатели рассеивания;
  • меньший нагрев;
  • низкий вес и размер;
  • компактен, удобен в установке в электроаппаратуре.

Можно использовать более высокую плотность тока в проводах, так как вся поверхность тороидального сердечника позволяет эффективно охлаждать медные провода. Потери в железе очень низки – типическое значение составляет 1,1 Вт при индукции 1,7 Тл и частоте 50/60 Гц. Это обеспечивает очень низкий ток намагничивания, способствующий изумительной тепловой нагрузочной способности тороидального трансформатора.

Охлаждение обмоток — еще один важный фактор. Обмотки эффективно охлаждаются, будучи расположены в форме тороида, следовательно плотность тока может быть более высокой. Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.

При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, – и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.

Область применения

У тороидальных трансформаторов есть многочисленные области применения, и среди них мы можем подчеркнуть, как наиболее распространенные следующие:

  1. Бытовая электроника.
  2. Медицинская электроника.
  3. Конвертеры.
  4. Системы электропитания.
  5. Аудиосистемы.
  6. Системы безопасности.
  7. Телекоммуникации.
  8. Низковольтное освещение.

Сегодня тороидальные трансформаторы применяют в различных сферах промышленности, и наиболее часто тороидальные трансформаторы устанавливают в источники бесперебойного питания, в стабилизаторы напряжения, применяют для питания осветительной техники и радиотехники, часто тороидальные трансформаторы можно увидеть в медицинском и диагностическом оборудовании, в сварочном оборудовании.

Что нужно для намотки устройства

Работает тороидальный трансформатор принципиально так же, как и трансформаторы с другими формами сердечников: он понижает или повышает напряжение, повышает или понижает ток — преобразует электроэнергию.

Но тороидальный трансформатор отличается при той же передаваемой мощности меньшими размерами и меньшим весом, то есть лучшими экономическими показателями. Основное, что должен знать и главное понимать человек, который мотает трансформатор:

  • длина провода (количество витков) это напряжение;
  • сечение проводника – это ток, которым можно нагружать его;
  • если число витков в первичной цепи малое, то это лишний нагрев провода;
  • если габаритная мощность недостаточная (потребляется больше возможного), это опять-таки тепло;
  • перегрев трансформатора приводит к снижению надёжности.

Перед намоткой необходимо подготовить железо к намотке. Если посмотрите на углы трансформатора, то уведите что они под углом 90 градусов, в этих точках будет изгибаться провод и будет облущиваться лак, что б этого не было необходимо обработать углы напильником скруглив их максимально. Минимальный радиус окружности 3мм.

Небольшая хитрость, при обработке углов напильником необходимо избегать зализывания стали, дабы слои между собой оставались не замкнутыми! Для этого следует производить движения напильником вдоль направления трансформаторной ленты. После обработки рекомендую просмотреть углы на замыкание слоев и доработать их мелким напильником.

Чтобы изолировать сердечник от обмотки необходимо его изолировать ТКАНЕВОЙ изолентой (или киперкой пропитанной парафином-воском). Лучше использовать изоленту шириной около 25мм, тогда будет максимальное покрытие металла в один слой, что позволяет экономить место в окне. Конец намотки не заклеиваем.

Лакопровод

Лакопроводом называют электрический проводник изоляция которого сделана из лака (намоточный или обмоточный провод). Бывает разных марок ПЭВ, ПЭВ-2, ПЭТ-155 и другие. Рекомендую использовать ПЭВ-2, насыщенный оранжевый цвет. Также очень хорошо себя показал провод очень тёмный с виду (ПЭЛ), цвета гнилой вишни, такой имеет толстый слой изоляции, что позволяет его использовать для трансформаторов высоковольтников (более 500В).

Выводы обмоток необходимо «усилить» при помощи дополнительной изоляции. Для этих вещей очень хорошо подходит ПВХ-изоляция (советская белая), но ещё лучше подходит изоляция из провода необходимого сечения.

Применять термоусадку можно, но лучше использовать ПВХ или изоляцию потому как первая имеет свойство изгибаться в одном месте что нам очень ненужно мы от этого пытаемся защитится дабы провод не отломался.

Для того, чтобы стянуть изоляцию рекомендую взять провод, который имеет дополнительную изоляцию в виде нитки, обмотанную вокруг проводника. В этом случае нить не дает сильной связи между ПВХ и медью и позволяет стянуть изоляцию. Чтоб было проще стягивать провод нужно немного перегибать (под 45 градусов).

Для того чтоб легче было считать витки их лучше группировать по 5 или 10 витков. Натягивать провод необходимо не чётко перпендикулярно к касательной, а слегка наклонено в сторону намотки, как будто внутренняя часть намотки идёт впереди наружной. Таким образом намотки провод при натяжке будет сам прижимается к другим уже уложенным виткам.

Главная особенность тороидального трансформатора — небольшой общий объем устройства, доходящий до половины в сравнении с другими типами магнитопроводов. Шихтованный сердечник вдвое больше по объему чем тороидальный ленточный сердечник при той же габаритной мощности. Поэтому тороидальные трансформаторы удобнее устанавливать и подключать, и уже не так важно, идет ли речь о внутреннем или о наружном монтаже.

Как проверить устройство

Необходимые материалы для тестирования тороидального трансформатора: схема цепи с указанием того, как подсоединен трансформатор и (цифровой электронный мультиметр тестер или аналоговый мультиметр тестер).

Первый шаг заключается в том, что трансформатор необходимо визуально осмотреть и проверить, нет ли от него запаха. Перегрев может привести к неисправности трансформатора, если есть следы ожогов или внешняя часть обмотки видна снаружи, трансформатор должен быть заменен и нет никакой необходимости для дальнейших испытаний, которые будут проводиться.

Точно так же, запах гари является свидетельством того, что трансформатор перегревается. Если никаких дополнительных повреждений не видно за исключением запаха, дальнейшие испытания могут быть проведены, чтобы определить, является ли трансформатор в рабочем состоянии или нет.

Информация о входном и выходном напряжении, как правило, четко обозначена на трансформаторе, но самым безопасным вариантом является получение схемы цепи от производителя продукта.

Инструкция пошаговой проверки

Напряжение, которое подается на первичную обмотку, должно быть четко указано на схеме цепи и корпуса трансформатора. Аналогичным образом, выходное напряжение, подаваемое на вторичной обмотке должно быть четко указано на схеме цепи и корпуса трансформатора. Вы должны знать входное и выходное напряжения для того, чтобы проверить, правильно ли работает трансформатор.

Трансформатор не способен преобразовывать переменное напряжение, в напряжение постоянного тока. Для преобразования напряжения переменного тока используются диоды и конденсаторы.

Схема цепи покажет, как выходное напряжение трансформатора преобразуется из переменного тока, в напряжение постоянного тока. Вам потребуется эта информация, чтобы определить, следует ли завершить измерения, проводимые с помощью мультиметра тестера в режиме переменного тока или в режиме постоянного тока. Начните проведение теста путем подключения питания и коммутации к изделию. Далее следуйте инструкции:

  1. Переключите цифровой мультиметр тестер (с экраном) или аналоговый мультиметр тестер в режиме напряжения переменного тока.
  2. Для того, чтобы подтвердить правильность входного напряжения для трансформатора, проверьте напряжение, прикоснувшись красный щуп к положительному полюсу, а черный зонда к отрицательной клемме трансформатора основного входа.
  3. Если значения напряжений слишком низкие, значит это может быть из-за проблем с трансформатором или схемами.
  4. Необходимо удалить трансформатор от входной цепи и проверить входную мощность, представленную схемой. Если показания находятся в линии, то трансформатор неисправен и если показания остаются неизменными, то схема неисправна.
  5. Чтобы проверить выходное напряжение сначала нужно определить, является ли выходное напряжение в сети переменного или постоянного тока.
  6. Установите цифровой или аналоговый мультиметр тестер в нужный режим для проверки.

Если конденсаторы и диоды используются для преобразования выходного напряжения от сети переменного тока в напряжении постоянного тока, то слишком низкое чтение может быть вызвано неисправным трансформатором или неисправными конденсаторами и диодами. В видеоролике об устройстве будет рассказано подробнее.

Извлеките тороидальный трансформатор с выходной схемой и проверьте выходное напряжение трансформатора. Не забудьте изменить режим мультиметра тестера к напряжению сети переменного тока. Если выходное напряжение в линии, трансформатор работает правильно, то проблема будет тогда с конденсаторами и диодами.

Тороидальные трансформаторы, которые излучают постоянный жужжащий звук скоро выйдут из строя и должны быть заменены. Всегда помните об осторожности, не касайтесь схемы при выполнении тестов. Случайный контакт со схемой, которая находится под напряжением может привести к травмам.

Заключение

В данной статье были рассмотрены основные преимущества и недостатки тороидальных трансформаторов, которые нужно принять во внимание. Больше информации о современных тороидальных трансформаторах, их основных разновидностях, типах конструкции и новейших разработках в этой сфере можно узнать в книге Котенева Е.С., Евсеева А.Н. «Расчет и оптимизация тороидальных трансформаторов».

Ссылка на основную публикацию
Adblock
detector