446 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Типовые режимы термической обработки сталей таблица

Термическая обработка стали

Термическая обработка стали позволяет придать изделиям, деталям и заготовкам требуемые качества и характеристики. В зависимости от того, на каком этапе в технологическом процессе изготовления проводилась термическая обработка, у заготовок повышается обрабатываемость, с деталей снимаются остаточные напряжения, а у деталей повышаются эксплуатационные качества.

Технология термической обработки стали – это совокупность процессов: нагревания, выдерживания и охлаждения с целью изменения внутренней структуры металла или сплава. При этом химический состав не изменяется.

Так, молекулярная решетка углеродистой стали при температуре не более 910°С представляет из себя куб объемно-центрированный. При нагревании свыше 910°С до 1400°С решетка принимает форму гране-центрированного куба. Дальнейший нагрев превращает куб в объемно-центрированный.

Сущность термической обработки сталей – это изменение размера зерна внутренней структуры стали. Строгое соблюдение температурного режима, времени и скорости на всех этапах, которые напрямую зависят от количества углерода, легирующих элементов и примесей, снижающих качество материала. Во время нагрева происходят структурные изменения, которые при охлаждении протекают в обратной последовательности. На рисунке видно, какие превращения происходят во время термической обработки.

Изменение структуры металла при термообработке

Назначение термической обработки

Термическая обработка стали проводится при температурах, приближенных к критическим точкам . Здесь происходит:

  • вторичная кристаллизация сплава;
  • переход гамма железа в состояние альфа железа;
  • переход крупных частиц в пластинки.

Внутренняя структура двухфазной смеси напрямую влияет на эксплуатационные качества и легкость обработки.

Образование структур в зависимости от интенсивности охлаждения

Основное назначение термической обработки — это придание сталям:

  • В готовых изделиях:
    1. прочности;
    2. износостойкости;
    3. коррозионностойкость;
    4. термостойкости.
  • В заготовках:
    1. снятие внутренних напряжений после
      • литья;
      • штамповки (горячей, холодной);
      • глубокой вытяжки;
    2. увеличение пластичности;
    3. облегчение обработки резанием.

Термическая обработка применяется к следующим типам сталей:

  1. Углеродистым и легированным.
  2. С различным содержанием углерода, от низкоуглеродистых 0,25% до высокоуглеродистых 0,7%.
  3. Конструкционным, специальным, инструментальным.
  4. Любого качества.

Классификация и виды термообработки

Основополагающими параметрами, влияющими на качество термообработки являются:

  • время нагревания (скорость);
  • температура нагревания;
  • длительность выдерживания при заданной температуре;
  • время охлаждения (интенсивность).

Изменяя данные режимы можно получить несколько видов термообработки.

Виды термической обработки стали:

  • Отжиг
    1. I – рода:
      • гомогенизация;
      • рекристаллизация;
      • изотермический;
      • снятие внутренних и остаточных напряжений;
    2. II – рода:
      • полный;
      • неполный;
  • Закалка;
  • Отпуск:
    1. низкий;
    2. средний;
    3. высокий.
  • Нормализация.

Температура нагрева стали при термообработке

Отпуск

Отпуск в машиностроении используется для уменьшения силы внутренних напряжений, которые появляются во время закалки. Высокая твердость делает изделия хрупкими, поэтому отпуском добиваются увеличения ударной вязкости и снижения жесткости и хрупкости стали.

1. Отпуск низкий

Для низкого отпуска характерна внутренняя структура мартенсита, которая, не снижая твердости повышает вязкость. Данной термообработке подвергаются измерительный и режущий инструмент. Режимы обработки:

  • Нагревание до температуры – от 150°С, но не выше 250°С;
  • выдерживание — полтора часа;
  • остывание – воздух, масло.

2. Средний отпуск

Для среднего отпуска преобразование мартенсита в тростит. Твердость снижается до 400 НВ. Вязкость возрастает. Данному отпуску подвергаются детали, работающие со значительными упругими нагрузками. Режимы обработки:

  • нагревание до температуры – от 340°С, но не выше 500°С;
  • охлаждение – воздух.

3. Высокий отпуск

При высоком отпуске кристаллизуется сорбит, который ликвидирует напряжения в кристаллической решетке. Изготавливаются ответственные детали, обладающие прочностью, пластичностью, вязкостью.

Нагревание до температуры – от 450°С, но не выше 650°С.

Отжиг

Применение отжига позволяет получить однородную внутреннюю структуру без напряжений кристаллической решетки. Процесс проводят в следующей последовательности:

  • нагревание до температуры чуть выше критической точки в зависимости от марки стали;
  • выдержка с постоянным поддержанием температуры;
  • медленное охлаждение (обычно остывание происходит совместно с печью).

1. Гомогенизация

Гомогенизация, по-иному отжиг диффузионный, восстанавливает неоднородную ликвацию отливок. Режимы обработки:

  • нагревание до температуры – от 1000°С, но не выше 1150°С;
  • выдержка – 8-15 часов;
  • охлаждение:
    • печь – до 8 часов, снижение температуры до 800°С;
    • воздух.

2. Рекристаллизация

Рекристаллизация, по-иному низкий отжиг, используется после обработки пластическим деформированием, которое вызывает упрочнение за счет изменения формы зерна (наклеп). Режимы обработки:

  • нагревание до температуры – выше точки кристаллизации на 100°С-200°С;
  • выдерживание — ½ — 2 часа;
  • остывание – медленное.

3. Изотермический отжиг

Изотермическому отжигу подвергаются легированные стали, для того чтобы произошел распад аустенита. Режимы термообработки:

  • нагревание до температуры – на 20°С — 30°С выше точки ;
  • выдерживание;
  • остывание:
    • быстрое – не ниже 630°С;
    • медленное – при положительных температурах.

4. Отжиг для устранения напряжений

Снятие внутренних и остаточных напряжений отжигом используется после сварочных работ, литья, механической обработки. С наложением рабочих нагрузок детали подвергаются разрушению. Режимы обработки:

  • нагревание до температуры – 727°С;
  • выдерживание – до 20 часов при температуре 600°С — 700°С;
  • остывание — медленное.

5. Отжиг полный

Отжиг полный позволяет получить внутреннюю структуру с мелким зерном, в составе которой феррит с перлитом. Полный отжиг используют для литых, кованных и штампованных заготовок, которые будут в дальнейшем обрабатываться резанием и подвергаться закалке.

Полный отжиг стали

  • температура нагрева – на 30°С-50°С выше точки ;
  • выдержка;
  • охлаждение до 500°С:
    • сталь углеродистая – снижение температуры за час не более 150°С;
    • сталь легированная – снижение температуры за час не более 50°С.
Читать еще:  Виды оцинковки в рулонах

6. Неполный отжиг

При неполном отжиге пластинчатый или грубый перлит преобразуется в ферритно-цементитную зернистую структуру, что необходимо для швов, полученных электродуговой сваркой, а также инструментальные стали и стальные детали, подвергшиеся таким методам обработки, температура которых не провоцирует рост зерна внутренней структуры.

  • нагревание до температуры – выше точки или , выше 700°С на 40°С — 50°С;
  • выдерживание – порядка 20 часов;
  • охлаждение — медленное.

Закалка

Закалку сталей применяют для:

  • Повышения:
    1. твердости;
    2. прочности;
    3. износоустойчивости;
    4. предела упругости;
  • Снижения:
    1. пластичности;
    2. модуля сдвига;
    3. предела на сжатие.

Суть закалки – это максимально быстрое охлаждение прогретой насквозь детали в различных средах. Каление производится с полиморфными изменениями и без них. Полиморфные изменения возможны только в тех сталях, в которых присутствуют элементы способные к преобразованию.

Такой сплав подвергается нагреву до той температуры, при которой кристаллическая решетка полиморфного элемента терпит изменения, за счет чего увеличивается растворяемость легирующих материалов. При снижении температуры решетка изменяет структуру из-за избытка легирующего элемента и принимает игольчатую структуру.

Невозможность полиморфных изменений при калении обусловлено ограниченной растворимостью одного компонента в другом при быстрой скорости охлаждения. Для диффузии мало времени. В итоге получается раствор с избытком нерастворенного компонента (метастабильтный).

Для увеличения скорости охлаждения стали используются такие среды как:

  • вода;
  • соляные растворы на основе воды;
  • техническое масло;
  • инертные газы.

Сравнивая скоростной режим охлаждения стальных изделий на воздухе, то охлаждение в воде с 600°С происходит в шесть раз быстрее, а с 200°С в масле в 28 раз. Растворенные соли повышают закаливающую способность. Недостатком использования воды считается появление трещин в местах образования мартенсита. Техническое масло используется для закалки легирующих сплавов, но оно пригорает к поверхности.

Металлы, использующиеся при изготовлении изделий медицинской направленности не должны иметь пленки из оксидов, поэтому охлаждение происходит в среде разряженного воздуха.

Чтобы полностью избавиться от аустенита, из-за которого у стали наблюдается высокая хрупкость, изделия подвергаются дополнительному охлаждению при температурах от — 40°С и до -100°С в специальной камере. Также можно использовать углекислую кислоту в смеси с ацетоном. Такая обработка повышает точность деталей, их твердость, магнитные свойства.

Если деталям не требуется объемная термообработка, проводится каление только поверхностного слоя на установках ТВЧ (токами высокой частоты). При этом глубина термообработки составляет от 1 мм до 10 мм, а охлаждение происходит на воздухе. В итоге поверхностный слой становится износоустойчивым, а середина вязкая.

Процесс закалки предполагает прогревание и выдержку стальных изделий при температуре, достигающей порядка 900°С. При такой температуре стали с содержанием углерода до 0,7% имеют структуру мартенсита, который при последующей термообработке перейдет в требуемую структуру с появлением нужных качеств.

Нормализация

Нормализация формирует структуру с мелким зерном. Для низкоуглеродистых сталей — это структура феррит-перлит, для легированных – сорбитоподобная. Получаемая твердость не превышает 300 НВ. Нормализации подвергаются горячекатаные стали. При этом у них увеличивается:

  • сопротивление излому;
  • производительность обработки;
  • прочность;
  • вязкость.

Процесс нормализации стали

  • происходит нагрев до температуры – на 30°С-50°С выше точки ;
  • выдерживание в данном температурном коридоре;
  • охлаждение – на открытом воздухе.

Преимущества термообработки

Термообработка стали – это технологический процесс, который стал обязательным этапом получения комплектов деталей из стали и сплавов с заданными качествами. Этого позволяет добиться большое разнообразие режимов и способов термического воздействия. Термообработку используют не только применительно к сталям, но и к цветным металлам и сплавам на их основе.

Стали без термообработки используются лишь для возведения металлоконструкций и изготовления неответственных деталей, срок службы которых невелик. К ним не предъявляются дополнительные требования. Повседневная же эксплуатация наоборот диктует ужесточение требований, именно поэтому применение термообработки предпочтительно.

В термически необработанных сталях абразивный износ высок и пропорционален собственной твердости, которая зависит от состава химических элементов. Так, незакаленные матрицы штампов хорошо сочетаются при работе с калеными пуансонами.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Типовые режимы термической обработки стали

Марка сталиТвердость Температура, ⁰СЗакалочная средаПримечания
закалкаотпускзакалка ТВЧцементацияотжиг
Сталь 2057…63790…820160…200920…950Вода
Сталь 3530…34830…840490…510
33…35450…500
42…48180…200860…880
Сталь 45≤ 22780…820С печью
20…25820…840550…600Вода
20…28550…580
24…28500…550
30…34490…520
42…51180…220Сеч. до 40 мм
49…57200…220840…880
Сталь 65Г28…33790…810550…580МаслоСеч. до 60 мм
43…49340…380Сеч. до 10 мм (пружины)
55…61160…220Сеч. до 30 мм
Сталь 20Х≤ 22840…860
57…63800…820160…200910…950Масло
59…63180…220850…870910…950Водный раствор0,2…0,7% полиакриланида

Продолжение таблицы. Типовые режимы термической обработки стали

Марка сталиТвердость Температура, ⁰СЗакалочная средаПримечания
закалкаотпускзакалка ТВЧцементацияотжиг
Сталь 40Х≤ 22840…860
24…28840…860500…550Масло
30…34490…520
47…51180…200Сеч. до 30 мм
47…57860…900Водный раствор0,2…0,7% полиакриланида
48…54Азотирование
Сталь 50Х670Азотирование
Читать еще:  Зачем нужна кислота при пайке

Продолжение таблицы. Типовые режимы термической обработки стали

Марка сталиТвердость Температура, ⁰СЗакалочная средаПримечания
закалкаотпускзакалка ТВЧцементацияотжиг
Сталь 7ХГ2ВМ≤ 25770…790С печью до 550
28…30860…875560…580ВоздухСеч. до 200 мм
58…61210…230Сеч. до 120 мм
Сталь 60С2А≤ 22840…860С печью
44…51850…870420…480МаслоСеч. до 20 мм
Сталь 35ХГС≤ 22880…900С печью до 500…650
50…53870…890180…200Масло
Сталь 50ХФА25…33850…880580…600
51…56850…870180…200Сеч. до 30 мм
53…59180…220880…940Водный раствор0,2…0,7% поли-акриланида
Сталь ШХ15≤ 18790…810С печью до 600
42…51840…850400…500МаслоСеч. до 20 мм
51…57300…400
59…63160…180
Сталь 20Х1327…35550…600Воздух
44…51
Сталь 40Х1350…561000…200…300Масло

Продолжение таблицы. Типовые режимы термической обработки стали

Марка сталиТвердость Температура, ⁰СЗакалочная средаПримечания
закалкаотпускзакалка ТВЧцементацияотжиг
Сталь У7, У7АНВ≤187740…760С печью до 600
44…51800…830300…400Вода до 250, маслоСеч. до 18 мм
55…61200…300
61…64160…200
61…64160…200МаслоСеч. до 5 мм
Сталь У8, У8АНВ≤187740…760С печью до 600
37…46790…820400…500Вода до 250, маслоСеч. до 60 мм
61…65160…200
61…65160…200МаслоСеч. до 8 мм
61…65160…180880…900Водный раствор0,2…0,7% полиакриланида
Сталь У10, У10АНВ≤197750…770
40…48770…800400…500Вода до 250, маслоСеч. до 60 мм
50…63160…200
61…65160…200МаслоСеч. до 8 мм
59…65160…180880…900Водный раствор0,2…0,7% полиакриланида
Сталь Х12М57…581000…320…350МаслоСеч. до 140 мм
61…63190…210

Продолжение таблицы. Типовые режимы термической обработки стали

Марка сталиТвердость Температура, ⁰СЗакалочная средаПримечания
закалкаотпускзакалка ТВЧцементацияотжиг
Сталь 9ХС≤ 24790…810С печью до 600
40…48860…880500…600МаслоСеч. до 30 мм
45…55450…500
59…63180…240Сеч. до 40 мм
Сталь ХВГ≤ 25780…800С печью до 650
36…47820…850500…600МаслоСеч. до 60 мм
59…63180…220
55…57280…340Сеч. до 70 мм
Сталь Р6М518…23800…830С печью до 600
26…291210…780…800Выдержка 2…3 часа, воздух
64…66560…570 3-х кратн.Масло, воздухВ масле до 300…450, воздух до 20
Сталь Р1818…26860…880С печью до 600
62…651260…560…570 3-х кратн.Масло, воздухВ масле до 150…200, воздух до 20

Продолжение таблицы. Типовые режимы термической обработки стали

Марка сталиТвердость Температура, ⁰СЗакалочная средаПримечания
закалкаотпускзакалка ТВЧцементацияотжиг
Сталь 30ХГСА≤ 20770…790С печью до 650
19…27890…910660…680Масло
27…34580…600
34…39500…540
Сталь 5ХНМ, 5ХНВ≥ 57840…860460…520Сеч. до 100 мм
42…46Сеч. 100..200 мм
39…43Сеч. 200..300 мм
37…42Сеч. 300..500 мм
НV≥ 450Азотирование. Сеч. св. 70 мм
Сталь 12Х18Н9Т≤ 181100…Вода

Примечания:

1. HV – твердость по Виккерсу (см. п.2).

2. Общее время нагрева (время нагрева и выдержки) деталей при закалке берётся из расчёта 1 минута на 1 мм наименьшего размера наибольшего сечения. В соляных ваннах – 35 секунд на 1 мм наименьшего размера наибольшего сечения.

3. Общее время нагрева (время нагрева и выдержки) деталей при отпуске берётся из расчёта: низкий отпуск (температура 130…240 ⁰С – 3 минуты на 1 мм наименьшего размера наибольшего сечения, но не менее 30…40 минут; средний отпуск (температура 240. 450 ⁰С) – 2…3 минуты на 1 мм наименьшего размера наибольшего сечения; высокий отпуск (температура 450. 700 ⁰С) – 2 минуты на 1 мм наименьшего размера наибольшего сечения.

Дата добавления: 2014-12-26 ; Просмотров: 3819 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

1 Область применения

Настоящий стандарт содержит основные технологические указания по термической обработке кованых и катаных заготовок для деталей трубопроводной арматуры из углеродистых и легированных конструкционных сталей марок: Ст3сп, Ст3пс, Ст5 по ГОСТ 380, сталь 20, 25, 35, 40, 45 по ГОСТ 1050, 09Г2С, 10ХСНД по ГОСТ 19281, 08ГДНФ по ТУ 108-11-514-80, 10Г2, 20Х, 30Х, 35Х, 40Х, 18ХГ, 30ХМА, 35ХМ, 20ХН3А, 40ХФА, 40ХН2МА (40ХНМА), 38ХН3МФА, 18Х2Н4МА (18Х2Н4ВА), 38Х2МЮА (38ХМЮА), 15ХМ по ГОСТ 4543, 12Х1МФ (12ХМФ), 18Х3МВ (ЭИ578, Н8), 25Х1МФ (ЭИ10), 20Х3МВФ (ЭИ415, ЭИ579), 15Х5М (Х5М, 12Х5МА) по ГОСТ 20072, 20ЮЧ по ТУ 14-1-3332-82.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты и нормативные документы:

ГОСТ 380-2005 Сталь углеродистая обыкновенного качества. Марки

ГОСТ 1050-2013 Металлопродукция из нелегированных конструкционных качественных и специальных сталей. Общие технические условия

ГОСТ 4543-71 Прокат из легированной конструкционной стали. Технические условия

ГОСТ 19281-2014 Прокат повышенной прочности. Общие технические условия

Читать еще:  Как убрать сульфатацию пластин аккумулятора

ГОСТ 20072-74 Сталь теплоустойчивая. Технические условия

ТУ 14-1-3332-82 Сталь горячекатаная сортовая, стойкая к коррозионному растрескиванию. Опытная партия

ТУ 108-11-514-80 Поковки из легированных сталей. Технические условия

3 Режимы термической обработки

3.1 Для обеспечения необходимых показателей механических свойств и твердости заготовки деталей должны быть подвергнуты термической обработке: нормализации или закалке (нормализации) с отпуском.

3.2 Механические свойства сталей, определяемые на продольных образцах, вырезанных из заготовок, в зависимости от толщины (диаметра) приведены в приложении А (таблица 1).

Рекомендуемые режимы термической обработки заготовок для получения соответствующего предела текучести в зависимости от толщины (диаметра) заготовок приведены в таблице 1.

Таблица 1 — Режимы термической обработки углеродистых и легированных конструкционных сталей

Предел текучести, σ0,2, МПа (кгс/мм 2 ), не менее

Наибольшая толщина (диаметр) заготовки, мм

Твердость, НВ(HRC 2) )

Вода или воздух

Вода от 20 °С до 40 °С

Масло или воздух

Масло или воздух

Масло или через воду в масло

Масло или воздух

Воздух или масло

15Х5М (12Х5МА, Х5М)

В печи до 400 °С, далее на воздухе

Масло или через воду в масло

Воздух или масло

1) По указанию технологической документации при нормализации заготовок сечением более 200 мм из сталей марок 35 и 40 для снятия напряжений производится отпуск при температуре от 620 до 650 °С.

2) См. примечания к измерениям твердости по шкале Роквелла (приложение Г).

Режимы термообработки стали, для которой необходимо получить предел текучести, не указанный в таблице 1, а также для сталей, не приведенных в настоящем стандарте, устанавливает изготовитель.

3.3 Если в сопроводительной документации на данную партию проката или поковок из стали марок Ст3, Ст5, 20, 25, 30, 40 имеется указание о проведенной нормализации, то повторную нормализацию заготовок из этой партии можно не проводить при условии соответствия механических свойств или твердости требованиям чертежа.

3.4 Термической обработке рекомендуется подвергать заготовки после предварительной механической обработки в наименьших сечениях, без надрезов, резких переходов и острых углов, являющихся местами концентрации напряжений.

3.5 Перепад температуры в рабочем пространстве печи не должен превышать 25 °С.

3.6 При установке термопар в печи, их концы (горячий спай) должны находиться на расстоянии не более 100 мм от поверхности заготовок.

Правильность показаний рабочих термопар периодически должна проверяться по контрольной платиновой термопаре.

3.7 Рекомендуемая температура печи во время посадки заготовок для термообработки в зависимости от толщины (диаметра) заготовки приведена в таблице 2 [1].

Таблица 2 — Рекомендуемая температура печи

Наибольшая толщина (диаметр) заготовки, мм

Наибольшая температура печи при посадке заготовок на закалку (нормализацию), °С

Наибольшая температура печи при посадке заготовок на отпуск, °С

Ст3сп, Ст5, Ст3пс, 20, 25, 35, 40, 45, 09Г2С, 18ХГ, 10Г2, 20Х, 30Х, 35Х, 40Х, 30ХМА, 35ХМ, 40ХФА, 15ХМ

38Х2МЮА, 10ХСНД, 08ГДНФ, 12Х1МФ, 18Х3МВ, 25Х1МФ, 20Х3МВФ, Х5М

40ХНМА, 20ХН3А, 38ХН3МФА, 18Х2Н4ВА

3.8 Время прогрева садки устанавливается с учетом наибольшей толщины (диаметра) заготовок, веса садки и расположения заготовок на поду печи.

Рекомендуемые нормы выдержки при нагреве: в пламенных печах — 1 минута, в электропечах от 1,5 до 2 минут, в соляных ваннах — 0,5 минуты, в свинцовых ваннах от 0,1 до 0,15 минуты на 1 мм толщины (диаметра).

Для более точного расчета времени прогрева садки (время нагрева и выравнивания температуры по сечению) в пламенных и электрических печах может быть рекомендована методика, приведенная в рекомендуемом приложении В. Методика пригодна для расчета при условии, что скорость нагрева не ограничена, а температура посадки заготовок в печь примерно равна температуре проведения операции.

3.9 Нагрев заготовок для закалки (нормализации) производится с производственной скоростью, если скорость нагрева в технологии не указана.

3.10 Время выдержки после полного прогрева садки (при нагреве под закалку, нормализацию) устанавливается технологической картой термической обработки с учетом массы садки из расчета нормы выдержки на 1 мм наибольшей толщины (диаметра) заготовок: для углеродистых сталей 1 минута, для легированных — от 1,5 до 2 минут.

Рекомендуемое время выдержки заготовок в печи при температурах отпуска в зависимости от толщин (диаметра) заготовки и массы садки заготовок приведено в таблице 3 [1].

3.11 При охлаждении заготовок (в процессе закалки) через воду в масло температура воды должна быть в пределах от 30 до 40 °С. При охлаждении массивных заготовок в масле начальная температура его, во избежание загорания, не должна превышать 50 °С.

Продолжительность охлаждения изделий больших сечений в охлаждающих средах при закалке приведена в приложении В (таблица В.1 [3]).

Таблица 3 — Рекомендуемое время выдержки заготовок в печи

Наибольшая масса садки заготовок, кг

Выдержка (после прогрева металла садки) при температуре отпуска, ч

Для стали марок: Ст3сп, Ст3пс, Ст5, 20, 25, 35, 09Г2С, 40, 45, 10Г2, 20Х, 30Х, 35Х, 40Х, 18ХГ, 30ХМА, 38ХМЮА, 35ХМ, 40ХФА, 15ХМ

Для стали марок: 10ХСНД, 08ГДНФ, 20ХН3А, 40ХНМА, 38ХН3МФА, 15Х5М, 18Х2Н4ВА, 12Х1МФ, 20Х3МВФ, 18Х3МВ, 25Х1МФ

Ссылка на основную публикацию
Adblock
detector