8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способы передачи вращательного движения

Способы передачи вращательного движения.

Передача – устройство, главная функция которого передача энергии на расстояние, в зависимости от способа передачи энергии, они могут быть: механические, электрические, пневматические, гидравлические. Механической передачей называется механизм, который преобразует параметры движения источника энергии (двигателя) при передаче исполнительным органам, в этом случае передача осуществляет согласование параметров движения двигателя и исполнительного рабочего органа.

Передачи вращательного движения по способу соединения тел вращения бывают: 1) передачи с контактом тел вращения – зубчатые, червячные, фрикционные, винтовые, 2) передачи гибкой связью – ремённые и цепные; по способу передачи движения – передачи с зацеплением (зубчатые, червячные, цепные), трением – ременные и фрикционные. Электри́ческая переда́ча — обеспечивает передачу тягового усилия от первичного двигателя к движителю или исполнительному органу, используя электрически соединённые электрогенератор и электродвигатель.

Сложное движение. Плоскопараллельное движение тела.

Плоскопаралле́льное движе́ние — вид движения абсолютно твёрдого тела, при котором траектории всех точек тела располагаются в плоскостях, параллельных заданной плоскости.

Примером плоскопараллельного движения по отношению к вертикальной плоскости, относительно которой тело движется в параллельном направлении, является качение колеса по горизонтальной дороге.

Пример плоскопараллельного движения относительно плоскости чертежа — качение колеса по горизонтальной дороге. Все точки колеса движутся параллельно плоскости рисунка.

Здесь плоскопараллельное движение в каждый момент времени может быть представлено в виде суммы двух движений — полюса C, являющегося не чем иным, как центром вращения колеса в связанной с ним системе координат (в общем случае по любой траектории на плоскости с точки зрения неподвижного наблюдателя) и вращательного движения остальных точек тела вокруг этого центра.

Вращение тела в случае его плоско-параллельного движения не является необходимым признаком последнего. В таком случае вектор абсолютной скорости движения любой точки будет определяться векторной суммой переносной скорости движения центра вращения С, (одинаковой для расчёта скорости любой точки колеса). И вектора относительной скорости выбранной точки, зависящей от её положения, угловой скорости вращения и расстояния от центра.

Если в данный момент для точки контакта колеса с поверхностью (точки А) эти скорости равны по модулю и противоположны по направлению, имеет место случай чистого (без проскальзывания) качения, что показано на рисунке. Только в этом случае скорость точки М будет в 2 раза больше скорости точки С и направлена в ту же сторону. В общем случае их соотношение может быть любым не только по величине, но и по направлению.

Сложное движения. Определение скорости любой точки тела.

Теорема 1. Абсолютная скорость любой точки плоской фигуры в каждый данный момент равна геометрической сумме двух скоростей: скорости произвольно выбранного полюса в поступательном движении плоской фигуры и вращательной скорости во вращательном движении фигуры относительно полюса.
Положение любой точки В тела можно определить равенством:

Взяв производную от обеих частей уравнения по времени получим,

где — искомая скорость; — скорость полюса; — скорость точки В при вращательном движении тела вокруг полюса А при Таким образом

,

Теорема 2. Проекции скоростей двух точек плоской фигуры на ось, проходящую через эти точки, равны и имеют одинаковый знак. Зная, что , спроецируем данное выражение на прямую АВ, тогда

Теорема 3. Плоская фигура в каждый момент времени имеет одну точку, абсолютная скорость которой равна нулю. Эта точка называется мгновенным центром скоростей (МЦС), обозначим ее буквой Р. Докажем существование МЦС тогда точка Р и будет искомой.

,

Последнее изменение этой страницы: 2016-04-26; Нарушение авторского права страницы

Передачи вращательного движения

Передача – устройство, главная функция которого передача энергии на расстояние, в зависимости от способа передачи энергии, они могут быть: механические, электрические, пневматические, гидравлические. В курсе деталей машин мы будем изучать только механические передачи вращательного движения.

Механической передачей называется механизм, который преобразует параметры движения источника энергии (двигателя) при передаче исполнительным органам, в этом случае передача осуществляет согласование параметров движения двигателя и исполнительного рабочего органа.

Передачи вращательного движения по способу соединения тел вращения бывают: 1) передачи с контактом тел вращения – зубчатые, червячные, фрикционные, винтовые, 2) передачи гибкой связью – ремённые и цепные; по способу передачи движения – передачи с зацеплением (зубчатые, червячные, цепные), трением – ременные и фрикционные.

3.10.1. Кинематические и силовые параметры передач

Это параметры, характеризующие вращательное движение элементов передач:

1) Частота вращения, n (об/мин), выражается через угловую скорость (рад/с):

, (3.14)

2) Крутящий момент на валу T, Нм

3) Окружная скорость (Н) – сила вызывающая вращение тел или сопротивление вращению и направленная по касательной к траектории точки ее приложения.

, (3.15)

4) Мощность на валу, Р, Вт:

; (3.16)

. (3.17)

3.10.2. Передаточное отношение и КПД механизма

Отношение угловых скоростей ведущих и ведомых тел называется передаточным отношением.

. (3.18)

Для одноступенчатого редуктора:

, (3.19)

Передаточное отношение привода состоящего из нескольких передач, расположенных последовательно, равно произведению передаточных чисел всех его передач.

, (3.20)

где n – число передач, входящих в привод.

КПД привода равен отношению мощности на ведомом и ведущем валах:

, (3.21)

В общем случае КПД привода состоящего из нескольких передач равен произведению КПД передач входящих в привод:

. (3.22)

3.10.3. Ременные и цепные передачи

Передача вращения посредством ремня, надетого на шкивы, называется ременной передачей (Рис. 3.18).

Рис. 3.18. Ременные передачи

Ременные передачи применяют преимущественно в тех случаях, когда по условиям конструкции валы расположены на значительных расстояниях или высокие скорости не позволяют применять другие виды передач.

Ременные передачи бывают: По форме поперечного сечения ремня: плоскоременные (а), клиноременные (б), круглоременные (г) а также передачи с зубчатыми ремнями (в, д, е) (Рис. 3.19).

Рис. 3.19. Формы поперечного сечения ремней

Плоскоременные передачи более простые по конструкции, однако, клиноременные обладают большей нагрузочной способностью.

Ременные передачи по расположению осей валов подразделяются:

1) Открытыми с параллельно расположенными осями валов и вращением шкивов в одном направлении, 2) перекрестные, с параллельными осями валов и вращением шкивов в противоположных направлениях, 3) полуперекрестные со скрещивающими осями валов, 4) угловые со скрещивающимися или пересекающимися осями валов.

По способу натяжения ремня: с периодическим натяжением (перемещением опоры шкива); с автоматическим натяжением (натяжным роликам).

Преимущества ременных передач: 1) возможность больших межосевых расстояний, 2) плавность работы, гашение ударов за счет эластичности ремня и возможности проскальзывания, 3) простота конструкции и эксплуатации, 4) возможность передачи большого диапазона мощностей и скоростей, 5) относительно высокий КПД.

Недостатки: 1) относительно большие размеры передачи, 2) непостоянство передаточного отношения вследствие проскальзывания, 3) повышенная нагрузка на валы от натяжения ремня, 5) не долговечность ремней в среднем 2-3 тысячи часов работы.

Материал ремней: материал ремня должен обеспечивать надежность сцепления со шкивами и достаточную долговечность. Самые распространенные – резинотканевые ремни, кожаные, хлопчатобумажные цельнотканые, полимерные.

Клиновые ремни наиболее распространены и имеют трапециидальное сечение и выпускается 2-х типов: корд-шнуровые (а) и корд-тканевые (б) (Рис. 3.20). Корд шнуровые ремни более гибкие и долговечные поэтому применяются для более сложных условий работы.

Рис. 3.20. Типы клиновых ремней

3.10.4. Расчет и проектирование ременных передач

Основными критериями работоспособности ременных передач являются: тяговая способность, определяемая силой трения между ремнем и шкивом; долговечность ремня, которая в условиях нормальной эксплуатации ограничивается разрушением от усталости (Рис. 3.21).

Геометрические параметры ременных передач: аw – межосевое расстояние передачи, d 1 и d2 – диаметры ведущего и ведомого шкивов, α1, α2 угол обхвата ведущего и ведомого шкивов.

1) Передаточное отношение передачи:

. (3.23)

Рис. 2.21. Схема ременной передачи

С учетом скольжения ремня:

. (3.24)

где ξ(дзетта) – коэффициент скольжения ремня ξ = 0,01…0,02.

Передаточное отношение ременной передачи обычно не превышает шести;

2) Скорость ремня

. (3.25)

3) Угол обхвата меньшего шкива

. (3.26)

. (3.27)

3.10.5. Силовые взаимодействия в ременной передаче

Окружная сила ременной передачи:

, (3.28)

где F1 – натяжение ведущей ветви,

F2 натяжение ведомой ветви.

Р1 – мощность на ведомом шкиву,

V – скорость ремня,

кg – коэффициент динамической нагрузки.

Окружная скорость равна:

, (3.29)

Сила начального натяжения:

, (3.30)

где А – площадь поперечного сечения ремня,

σ — начальное напряжение в ремне.

, (3.31)

Решая совместно выражения (3.30) и (3.31) получим:

; (3.32)

. (3.33)

Уравнения (3.32, 3.33) представляют систему 2-х уравнений с тремя неизвестными, для его решения Эйлером было получено уравнение, представляющее собой зависимость между силой трения ремня о шкив и тяговой способностью передачи:

, (3.34)

где е = 2,71, f – коэффициент трения ремня о шкив, α — угол обхвата шкива ремнем.

Решая совместно уравнения (3.30) и (3.34) получим выражения:

, (3.35)

, (3.36)

. (3.37)

Формулы (3.36 и 3.37) устанавливают связь сил натяжения ветвей работающей передачи с величиной нагрузки Ft и факторами трения (f и α). Они позволяют также определить минимально необходимую величину предварительного натяжения ремня F , при которой еще возможна передача заданной нагрузки Ft:

Если: , (3.38)

то в передаче начнется буксование ремня.

Тяговая способность передачи характеризуется величиной максимально допустимой окружной силы Ft или полезного напряжения σF,учитывая формулы (3.34-3.36), можно сделать вывод, что допустимое по условию отсутствия буксования напряжение возрастает с увеличением напряжения от предварительного натяжения σ:

Читать еще:  Что такое грат на трубе

. (3.39)

Практика показывает, что происходит значительное снижение долговечности ремня с увеличением σ.

Силы натяжения ветвей ремня передаются на валы и опоры. Равнодействующая нагрузку можно определить по формуле:

. (3.40)

Обычно R в два, три раза больше окружной силы Ft.

Виды механизмов передачи движения

Передачей называют техническое приспособление для передачи того или иного вида движения от одной части механизма к другой. Передача происходит от источника энергии к месту ее потребления или преобразования. Первые передаточные механизмы были разработаны в античном мире и использовались в системах орошения Древнего Египта, Междуречья и Китая. Средневековые механики значительно усовершенствовали устройства, передающие движение, и разработали множество новых видов, используя и в прялках и гончарном деле. Подлинный же расцвет начался в Новое время, с внедрением технологий производства и точной обработки стальных сплавов.

Механические передачи выполняют и другие вспомогательные функции.

Классификация механических передач

Машиностроителями принято несколько классификаций в зависимости от классифицирующего фактора.

По принципу действия различают следующие виды механических передач:

  • зацеплением;
  • трением качения;
  • гибкими звеньями.

По направлению изменения числа оборотов выделяют редукторы (снижение) и мультипликаторы (повышение). Каждый из них соответственно изменяет и крутящий момент (в обратную сторону).

По числу потребителей передаваемой энергии вращения вид может быть:

  • однопотоковый;
  • многопотоковый.

По числу этапов преобразования – одноступенчатые и многоступенчатые.

По признаку преобразования видов движения выделяют такие типы механических передач, как

  • Вращательно-поступательные. Червячные, реечные и винтовые.
  • Вращательно-качательные. Рычажные пары.
  • Поступательно-вращательные. Кривошипно-шатунные широко применяются в двигателях внутреннего сгорания и паровых машинах.

Для обеспечения движения по сложным заданным траекториям используют системы рычагов, кулачков и клапанов.

Основные показатели для выбора механических передач

Выбор типа передачи — сложная конструкторская задача. Нужно подобрать вид и спроектировать механизм, наиболее полно удовлетворяющий техническим требованиям, сформулированным для данного узла.

При выборе конструктор сопоставляет следующие основные факторы:

  • опыт предшествующих аналогичных конструкций;
  • мощность и момент на валу ;
  • число оборотов на входе и на выходе;
  • требуемый К.П.Д.;
  • массогабаритные характеристики;
  • доступность регулировок;
  • плановый эксплуатационный ресурс;
  • себестоимость производства;
  • стоимость обслуживания.

При высоких передаваемых мощностях обычно выбирают многопоточный зубчатый вид. При необходимости регулировки числа оборотов в широком диапазоне разумно будет выбрать клиноременной вариатор. Конечное решение остается за конструктором.

Цилиндрические передачи

Механизмы такого вида выполняют с внутренним или с внешним зацеплением. Если зубья расположены под углом к продольной оси, шестерню называют косозубой. По мере увеличения угла наклона зубцов прочность пары повышается. Зацепление косозубого вида также отличается лучшей износостойкостью, плавностью хода и низким уровнем шума и вибраций.

Недостатком этого типа является возникновение паразитной силы, действующей вдоль оси колеса. Это создает лишнюю нагрузку на опорные подшипники.

Коническая передача

Если необходимо изменить направление вращения, а оси валов лежат в одной плоскости, применяют конический тип передачи. Наиболее распространенный угол изменения – 90°.

Такой тип механизма более сложен в изготовлении и монтаже и, также как и косозубый, требует укрепления опорных конструкций.

Конический механизм может передать до 80% мощности по сравнению с цилиндрическим.

Реечная и ременная зубчатая передача

Реечная передача преобразует вращательное движение в поступательное. Одно из зубчатых колес пары как бы развернуто в линию и представляет собой зубчатую рейку. Такой способ используется в рулевом управлений автомобиля, в других исполнительных механизмах.

Ременная передача была изобретена в доисторические времена и с тех пор заметно видоизменилась и усовершенствовалась.

Она состоит из двух закрепленных на входном и выходном валу колес-шкивов, охваченных кольцевым приводным ремнем. Вращение передается за счет сил трения, возникающих на шкивах.

Плоские и круглые ремни используются при небольших нагрузках. Широкое распространение получил ремень в форме клина, шкив при этом выполняется со щечками, и зацепление осуществляется одной нижней и двумя боковыми поверхностями ремня.

Ремни также снабжаются зубчатыми фрагментами. Поликлиновые передачи широко применяются в современных автомобильных и мотоциклетных вариаторах. Они позволяют передавать значительный крутящий момент и плавно регулировать скорость вращения ведомого вала.

Достоинства и недостатки ременных передач

  • передача вращения на большие дистанции (до 20 метров);
  • низкий уровень шума и вибраций;
  • демпфирование динамических нагрузок упругим материалом ремня;
  • простое устройство и эксплуатация, смазка ремня не требуется).
  • большие размеры (при равной мощности шестерня в 5-6 раз меньше шкива);
  • переменное передаточное число из-за проскальзывания;
  • малая долговечность по сравнению с зубчатыми колесами.

Чтобы обеспечить тяговую способность, ремень приходится подвергать большому предварительному натяжению. Это ускоряет износ подшипников и валов шкивов.

Применение

Из всех типов передач наиболее широко применяются зубчатые. Практически любой механизм, бытовой прибор, станок, механические часы, транспортное средство включает в себя зубчатые пары.

В последнее время, с прогрессом электротехники, разработкой новых материалов и отходом двигателей внутреннего сгорания на второй план, использование зубчатых механизмов приобрело тенденцию к сокращению.

Читать еще:  Как обойти антимагнитную наклейку на электросчетчике

Все чаще вместо редуктора используют электронную схему регулировки момента и числа оборотов электродвигателя. В электромобиле из нескольких тысяч движущихся частей, 30% из которых составляли разного вида шестерни, осталось несколько сотен.

Тяговые электродвигатели размещены непосредственно в колесе, необходимость в сложной трансмиссии отпадает.

Похожие тенденции намечаются и в бытовой технике.

Свои позиции зубчатые редукторы и трансмиссии сохраняют там, где требуется передача очень больших мощностей и крутящих моментов. Это промышленные установки, горная техника, некоторые виды транспортных систем.

Обслуживание

Своевременное обслуживание любой техники в соответствии с рекомендациями ее производителя обеспечит ее нормальное функционирование, паспортную производительность и выработку планового ресурса.

Обслуживание разбивается на несколько видов

  • текущее обслуживание;
  • диагностика;
  • планово-предупредительный ремонт;
  • внеплановый ремонт;
  • аварийный ремонт.

При условии проведения текущего обслуживания и планово-предупредительных ремонтов в соответствии с графиками удается значительно снизить риски выхода оборудования из строя.

Диагностика проводится с заданной периодичностью и призвана выявить негативные изменения в работе оборудования на ранней стадии и минимизировать потери времени и средств на внеплановые ремонты.

Обслуживание зубчатых передач заключается в их своевременной смазке.

Для ременных необходимо периодическое восстановление силы натяжения ремня.

Диагностика проводится как методом визуального осмотра, таки измерением температуры, уровня шума и вибрации, ультразвуковым и рентгеновским просвечиванием механизма без его разборки.

Стандарты

Основные параметры различных видов передач нормируются соответствующими ГОСТами:

  • Зубчатые цилиндрические: 16531-83.
  • Червячные 2144-76.
  • Эвольвентные 19274-73.

Дополнительные параметры, методы расчета и особенности эксплуатации описаны в других государственных стандартах.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Передачи, их виды: фрикционные, ременные, цепные, зубчатые, червячные

материал предоставил СИДОРОВ Александр Владимирович

Механическая передача – механизм, превращающий кинематические и энергетические параметры двигателя в необходимые параметры движения рабочих органов машин и предназначенный для согласования режима работы двигателя с режимом работы исполнительных органов. [1]

Типы механических передач:

  • зубчатые (цилиндрические, конические);
  • винтовые (винтовые, червячные, гипоидные);
  • с гибкими элементами (ременные, цепные);
  • фрикционные (за счёт трения, применяются при плохих условиях работы).

В зависимости от соотношения параметров входного и выходного валов передачи разделяют на:

  • редукторы (понижающие передачи) – от входного вала к выходному уменьшают частоту вращения и увеличивают крутящий момент;
  • мультипликаторы (повышающие передачи) – от входного вала к выходному увеличивают частоту вращения и уменьшают крутящий момент.

Зубчатая передача – это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса. При этом усилие от одного элемента к другому передаётся с помощью зубьев. [2]

Зубчатые передачи предназначены для:

  • передачи вращательного движения между валами, которые могут иметь параллельные, пересекающиеся или скрещивающиеся оси;
  • преобразования вращательного движения в поступательное, и наоборот (передача “рейка-шестерня”).

Зубчатое колесо передачи с меньшим числом зубьев называется шестернёй, второе колесо с большим числом зубьев называется колесом.

Зубчатые передачи классифицируют по расположению валов:

  • с параллельными осями (цилиндрические с внутренним и внешним зацеплениями);
  • с пересекающимися осями (конические);
  • с перекрестными осями (рейка-шестерня).

Цилиндрические зубчатые передачи (рисунок 1) бывают с внешним и внутренним зацеплением. В зависимости от угла наклона зубьев выполняют прямозубые и косозубые колёса. С увеличением угла повышается прочность косозубых передач (за счёт наклона увеличивается площадь контакта зубьев, уменьшаются габариты передачи). Однако в косозубых передачах появляется дополнительная осевая сила, направленная вдоль оси вала и создающая дополнительную нагрузку на опоры. Для уменьшения этой силы угол наклона ограничивают 8-20°. Этот недостаток исключён в шевронной передаче.

Рисунок 1 – Основные виды цилиндрических зубчатых передач

Конические зубчатые передачи (рисунок 2) применяют в тех случаях, когда оси валов пересекаются под некоторым углом, чаще всего 90°. Конические передачи более сложны в изготовлении и монтаже, чем цилиндрические. Нагрузочная способность конической прямозубой передачи составляет приблизительно 85% цилиндрической. Для повышения нагрузочной способности конических колёс применяют колёса с непрямыми (тангенциальными, круговыми) зубьями.

Рисунок 2 – Конические зубчатые передачи

Достоинства зубчатых передач:

  • компактность;
  • возможность передавать большие мощности;
  • большие скорости вращения;
  • постоянство передаточного отношения;
  • высокий КПД.

Недостатки зубчатых передач:

  • сложность передачи движения на значительные расстояния;
  • жёсткость передачи;
  • шум во время работы;
  • необходимость в смазке.

Червячные передачи (рисунок 3) применяют для передачи движения между перекрещивающимися осями, угол между которыми, как правило, составляет 90°. Движение в червячных передачах передается по принципу винтовой пары.

Рисунок 3 – Червячная передача

В отличие от большинства разновидностей зубчатых в червячной передаче окружные скорости на червяке и на колесе не совпадают. Они направлены под углом и отличаются по значению. При относительном движении начальные цилиндры скользят. Большое скольжение является причиной низкого КПД, повышенного износа и заедания. Для снижения износа применяют специальные антифрикционные пары материалов: червяк – сталь, венец червячного колеса – бронза (реже – латунь, чугун).

Достоинства червячных передач:

  • большие передаточные отношения;
  • плавность и бесшумность работы;
  • высокая кинематическая точность;
  • самоторможение.

Недостатки червячных передач:

  • низкий КПД;
  • высокий износ, заедание;
  • использование дорогих материалов;
  • высокие требования к точности сборки.

Для передачи движения между сравнительно далеко расположенными друг от друга валами применяют механизмы, в которых усилие от ведущего звена к ведомому передаётся с помощью гибких звеньев. В качестве гибких звеньев применяются: ремни, шнуры, канаты разных профилей, провода, стальную ленту, цепи различных конструкций.

Передачи с гибкими звеньями могут обеспечивать постоянное и переменное передаточное отношения со ступенчатым или плавным изменением его величины.

Для сохранности постоянства натяжения гибких звеньев в механизмах применяются натяжные устройства: ролики, пружины, противовесы и т.п.

Различают следующие разновидности передач с гибкими звеньями:

  • по способу соединения гибкого звена с остальными:
    • фрикционные;
    • с непосредственным соединением;
    • с зацеплением;
  • по взаимному расположению валов и направлению их вращения:
    • открытые;
    • перекрёстные;
    • полуперекрёстные;

Ременная передача (рисунок 4) состоит из двух шкивов, закреплённых на валах, и ремня, охватывающего эти шкивы. Нагрузки передается за счёт сил трения, возникающих между шкивами и ремнём вследствие натяжения последнего.

В зависимости от формы поперечного перереза ремня различают передачи:

  • плоскоременную;
  • клиноременную (получили наиболее широкое применение);
  • круглоременную.

Рисунок 4 – Ременная передача

Наибольшие преимущества наблюдаются в передачах с зубчатыми (поликлиновыми) ремнями.

Достоинства ременных передач:

  • возможность передачи движения на значительные расстояния;
  • плавность и бесшумность работы;
  • защита механизмов от колебаний нагрузки вследствие упругости ремня;
  • защита механизмов от перегрузки за счёт возможного проскальзывания ремня;
  • простота конструкции и эксплуатации (не требует смазки).

Недостатки ременных передач:

  • повышенные габариты (при равных условиях диаметры шкивов в 5 раз больше диаметров зубчатых колёс);
  • непостоянство передаточного отношения вследствие проскальзывания ремня;
  • повышенная нагрузка на валы и их опоры, связанная с большим предварительным натяжением ремня (в 2-3 раза больше, чем у зубчатых передач);
  • низкая долговечность ремней (1000-5000 часов).

Цепная передача (рисунок 5) основана на принципе зацепления цепи и звёздочек. Цепная передача состоит из:

  • ведущей звёздочки;
  • ведомой звёздочки;
  • цепи, которая охватывает звёздочки и зацепляется за них зубьями;
  • натяжных устройств;
  • смазывающих устройств;
  • ограждения.

Рисунок 5 – Цепные передачи: а) с роликовой цепью; б) с зубчатой пластинчатой цепью

Область применения цепных передач:

  • при значительных межосевых расстояниях;
  • при передаче от одного ведущего вала нескольким ведомым;
  • когда зубчатые передачи неприменимы, а ременные недостаточно надёжны.

По типу применяемых цепей бывают:

  • роликовые;
  • втулочные (лёгкие, но большой износ);
  • роликовтулочные (тяжёлые, но низкий износ);
  • зубчатые пластинчатые (обеспечивают плавность работы).

Достоинства цепных передач (по сравнению с ременной передачей):

  • большая нагрузочная способность;
  • отсутствие скольжения и буксования, что обеспечивает постоянство передаточного отношения и возможность работы при кратковременных перегрузках;
  • принцип зацепления не требует предварительного натяжения цепи;
  • могут работать при меньших межосевых расстояниях и при больших передаточных отношениях.

Недостатки цепных передач связаны с тем, что звенья располагаются на звёздочке не по окружности, а по многоугольнику, что влечёт:

  • износ шарниров цепи;
  • шум и дополнительные динамические нагрузки;
  • необходимость обеспечения смазки.

Фрикционная передача – кинематическая пара, использующая силу трения для передачи механической энергии (рисунок 6). [3]

Рисунок 6 – Фрикционные передачи

Трение между элементами может быть сухое, граничное, жидкостное. Жидкостное трение наиболее предпочтительно, так как значительно увеличивает долговечность фрикционной передачи.

Фрикционные передачи делятся:

  • по расположению валов:
    • с параллельными валами;
    • с пересекающимися валами;
  • по характеру контакта:
    • с внешним контактом;
    • с внутренним контактом;
  • по возможности варьирования передаточного отношения:
    • нерегулируемые;
    • регулируемые (фрикционный вариатор);
  • при наличии промежуточных тел в передаче по форме контактирующих тел:
    • цилиндрические;
    • конические;
    • сферические;
    • плоские.

ПЕРЕДАЧИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ

Эти передачи служат для преобразования вращения в прямолинейное перемещение исполнительного органа станка. Применяют реечные передачи, винтовые пары (скольжения и качения), кулисные, кулачковые и др.

Реечная передача служит для преобразования вращательного движения реечного колеса (рис. 10.2, а) в поступательное перемещение рейки и наоборот. Реечная передача может быть выполнена с прямозубым и косозубым зацеплением колеса с рейкой. За один

оборот прямозубого колеса с числом зубьев z рейка, шаг которой Р = кт, переместится на Н — Pz- nmz, а за п, мин-1, зубчатого колеса — на L = nrnzn.

Рис. 10.2. Способы преобразования вращательного движения в прямолинейное поступательное:

а — реечной передачей; 6 — червячно-реечной передачей; в — гидростатической передачей червяк — рейка; г, д — винтовой парой скольжения; е — шарико-винтовой передачей; 7 — червяк; 2 — гидрораспределитель; 3 — рейка; 4,5 — насосы; 6 — суппорт; 7 — контргайки; 8, 10 — гайки; 9 — корпус; 7 7 — ходовой винт; 72 — тела качения (шарики); 13 — канал возврата; М — электродвигатель

Реечные передачи используют в металлорежущих станках, например в токарных, для осуществления движения продольной подачи суппорта с резцом относительно обрабатываемой заготовки. В более крупных станках, таких как продольно-строгальные, необходимо передавать большие усилия. Там применяют червячно-реечную передачу (рис. 10.2, б).

В приводах подачи тяжелых станков используют гидростатические червячно-реечные передачи, в которых для уменьшения трения в паре червяк—рейка между профилями их зубьев подается под давлением тонкий слой масла. На рис. 10.2, в представлено устройство гидростатической червячно-реечной передачи многоцелевого станка. С помощью гидрораспределителя 2 в каналы червяка 7 от насосов 4 под давлением подается масло. Оно создает масляный слой между зубьями червяка и рейки 3 с зубьями, армированными пластмассой. В осевые зазоры соединения масло нагнетается насосами 5. Все насосы имеют один общий привод от электродвигателя М.

Винтовая передача применяется тогда, когда нужно получить движение с малыми скоростями. Вращение сообщается винту; гайка и связанные с нею стол или салазки перемещаются прямолинейно-поступательно.

В передачах винт—гайка скольжения в станках с ручным управлением используют треугольные, прямоугольные и трапецеидальные профили резьб. Треугольную резьбу применяют для точных перемещений в микрометрических винтах, в винтах делительных и измерительных машин. Прямоугольную и трапецеидальную резьбу используют для ходовых винтов, при этом гайки ходовых винтов выполняют цельными и разъемными.

Прецизионные металлорежущие станки оснащают безлюфтовой передачей винт—гайка скольжения (рис. 10.2, д). Это достигается применением сдвоенных гаек, расположенных в одном корпусе 9. Гайки 8 и 10 смещаются одна относительно другой в осевом направлении поворотом вокруг ходового винта 77 в противоположных направлениях, после чего их положение фиксируется контргайками 7. При вращении ходового винта в одном направлении суппорт 6 будет перемещаться от левой гайки 70; если же ходовой винт изменит направление вращения, то правая гайка 8 сразу передаст движение суппорту в противоположном направлении. В такой конструкции люфт не выбирается, так как гайки работают каждая на свое направление. На увеличенном виде Л показано, как соприкасаются профили левой и правой гаек с профилями резьбы ходового винта.

Недостатками передачи винт-гайка скольжения являются большие потери на трение, низкий КПД, невозможность применения при быстрых перемещениях. Скорость скольжения профиля резьбы винта относительно профиля гайки в 10—40 раз превышает скорость осевого перемещения узла, жестко скрепленного с гайкой.

В станках с ЧПУ в приводах подач передача винт—гайка качения (ВГК) представляет собой шариковую винтовую пару (ШВП) с полукруглым профилем резьбы. При использовании ШВП для точных перемещений недопустим осевой зазор. В этом случае ВГК выполняют по аналогии с передачей винт — гайка скольжения (см. рис. 10.2, д). В едином корпусе 9 (рис. 10.2, е ) размещают две гайки 8 и 10, смещенные одна относительно другой по винтовой линии. Это создает безлюфтовую передачу. Путем затягивания резьбовых соединений создаются предварительные осевые усилия. Теперь тела качения 12 вместо точечного контакта с дорожкой качения имеют контакт по небольшой поверхности, что повышает осевую жесткость ШВП.

В большинстве конструкций шарики в гайке перемещаются по замкнутой траектории. Каналом возврата служит специальная вставка 13, соединяющая два соседних витка гайки, которая заставляет циркулировать шарики только в пределах одного шага ходового винта 11.

Преимуществами ШВП являются: высокая жесткость и отсутствие зазора в соединении, что значительно снижает вибрации, уменьшает изнашивание и поломки режущего инструмента, повышает точность и чистоту обработки; возможность передачи больших усилий; низкие потери на трение, КПД этих механизмов составляет 0,9. 0,95; малые крутящие моменты на ходовом винте при холостом ходе; весьма малое трение покоя, что способствует обеспечению устойчивости движения; высокая точность (за счет предварительного натяга); высокая чувствительность к малым перемещениям; длительное сохранение точности, малое тепловыделение, снижающее температурные деформации винта и повышающее точность обработки.

К недостаткам относятся отсутствие самоторможения, сложность изготовления, высокая стоимость, необходимость надежной защиты от стружки.

Кривошипно-шатунные механизмы предназначены для преобразования вращательного движения в поступательное, обеспечивая перемещение по определенному закону. Скорость рабочего органа не остается постоянной во время его движения. В этом есть свое преимущество: при изменении направления скорости не возникает ударов и больших нагрузок, так как к моменту реверсирования движения скорость рабочего органа постепенно падает, приближаясь к нулю. Кроме того, возвратно-поступательное движение в кривошипно-шатунных механизмах осуществляется без применения дополнительных реверсивных механизмов.

Кривошипно-шатунные механизмы имеют широкое распространение в станках с прямолинейным движением резания, например в зубодолбежных.

На рис. 10.3 представлены различные схемы работы кривошипно-шатунного механизма. Центральный кривошипно-шатунный механизм (схемы а, в и г) в зависимости от соотношения X = г/1 может иметь различные применения. При / > г (схема а) длина хода ползуна равна 2г и чем меньше X, тем в лучших условиях будет работать механизм и тем выше его КПД. При I — г (схема в) кривошипно-шатунный механизм имеет наибольший ход, равный 4г. Однако при прохождении мертвых точек в середине хода рекомендуется иметь специальные устройства, так как использование сил инерции звеньев здесь не является надежным. Поэтому механизм с X = 1 на практике применяется редко. При I

4. Основные виды механических передач.

Механической передачей называют устройство для передачи механического движения от двигателя к исполнительным органам машины. Может осуществляться с изменением значения и направления скорости движения, с преобразованием вида движения. Необходимость применения таких устройств обусловлена нецелесообразностью, а иногда и невозможностью непосредственного соединения рабочего органа машины с валом двигателя. Механизмы вращательного движения позволяют осуществить непрерывное и равномерное движение с наименьшими потерями энергии на преодоление трения и наименьшими инерционными нагрузками.

Механические передачи вращательного движения делятся:

— по способу передачи движения от ведущего звена к ведомому на передачи трением (фрикционные, ременные) и зацеплением (цепные, зубчатые, червячные);

— по соотношению скоростей ведущего и ведомого звеньев на замедляющие (редукторы) и ускоряющие (мультипликаторы);

— по взаимному расположению осей ведущего и ведомого валов на передачи с параллельными, пресекающимися и перекрещивающимися осями валов.

Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.

Зубчатая передача состоит из двух колес, посредством которых они сцепляются между собой. Зубчатое колесо с меньшим числом зубьев называют шестерней, с большим числом зубьев – колесом.

Планетарными называются передачи, содержащие зубчатые колеса с перемещающимися осями . Передача состоит из центрального колеса с наружными зубьями, центрального колеса с внутренними зубьями, водила и сателлитов . Сателлиты вращаются вокруг своих осей и вместе с осью вокруг центрального колеса, т.е. совершают движение, подобное движению планет.

Червячная передача применяется для передачи вращения от одного вала к другому, когда оси валов перекрещиваются. Угол перекрещивания в большинстве случаев равен 90º. Наиболее распространенная червячная передача состоит из так называемого архимедова червяка, т.е. винта, имеющего трапецеидальную резьбу с углом профиля в осевом сечении, равным двойному углу зацепления (2α = 40), и червячного колеса.

Волновые механические передачи

Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма.

Волновые зубчатые передачи являются разновидностью планетарных передач, у которых одно из колес гибкое.

Передачи, работа которых основана на использовании сил трения, возникающих между рабочими поверхностями двух прижатых друг к другу тел вращения, называют фрикционными передачами.

Ременная передача состоит из двух шкивов, закрепленных на валах, и охватывающего их ремня. Ремень надет на шкивы с определенным натяжением, обеспечивающим трение между ремнем и шкивами, достаточное для передачи мощности от ведущего шкива к ведомому.

В зависимости от формы поперечного сечения ремня различают: плоскоременную, клиноременную и круглоременную

Цепная передача состоит из двух колес с зубьями (звездочек) и охватывающей их цепи. Наиболее распространены передачи с втулочно-роликовой цепью и зубчатой цепью Цепные передачи применяются для передачи средних мощностей (не более 150 кВт) между параллельными валами в случаях, когда межосевые расстояния велики для зубчатых передач.

Передача винт-гайка служит для преобразования вращательного движения в поступательное. Широкое применение таких передач определяется тем, что при простой и компактной конструкции удается осуществить медленные и точные перемещения.

В авиастроении передача винт-гайка используется в механизмах управления самолетом: для перемещения взлетно-посадочных закрылков, для управления триммерами, поворотными стабилизаторами и др.

К преимуществам передачи относятся простота и компактность конструкции, большой выигрыш в силе, точность перемещений.

Недостатком передачи является большая потеря на трение и связанный с этим малый КПД.

Кулачковые механизмы (рис. 2.26) по широте применения уступают только зубчатым передачам. Их используют в станках и прессах, двигателях внутреннего сгорания, машинах текстильной, пищевой и полиграфической промышленности. В этих машинах они выполняют функции подвода и отвода инструмента, подачи и зажима материала в станках, выталкивания, поворота, перемещения изделий и др.

Ссылка на основную публикацию
Adblock
detector