85 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ротационные компрессоры принцип работы

Ротационные компрессоры: устройство, принцип работы и применение

Ротационные компрессорные установки получили распространение на предприятиях и в небольших мастерских. Оборудование для нагнетания сжатого воздуха такого типа характеризуется надежной конструкцией, обеспечивающей высокую производительность. К этому стоит добавить и практичность в обслуживании агрегата. В то же время ротационные компрессоры имеют целый ряд недостатков, ограничивающих область их использования.

Устройство компрессора

Ротационные модели представляют целую группу компрессоров, отличающихся по конструкции и рабочим качествам. Основную долю станций этого типа составляют воздушные роторные установки. В данном случае устройство ротационных компрессоров базируется на валу двигателя, обеспечивающего рабочую функцию. На вал насаживается ротор, но в процессе работы движение осуществляется не из центра окружности, а эксцентрично. Это обуславливается тем, что вал традиционных моделей имеет смещение.

Функциональная начинка, в свою очередь, заключена в металлический корпус – обычно цилиндрической формы. В обязательном порядке от вала с ротором до поверхности корпуса выдерживается технологический промежуток. В процессе работы ротационный воздушный компрессор будет его сокращать в соответствии с величиной, равной вышеупомянутому смещению вала. Также для дополнительной защиты и предотвращения перетекания технической жидкости используются специальные пластины и заслонки.

Принцип работы

При каждом обороте ротора будет образовываться свободная зона между стенкой цилиндра и рабочей группой. В этот момент она заполняется сухим перегретым или насыщенным паром – это также могут быть разновидности хладагентов и масляных жидкостей. С другой стороны начинают процесс сжатия этой зоны нагнетательные клапаны, способствующие всасыванию тех же паров из испарителя. При совершении многократного цикла оборотов достигается оптимальное рабочее давление, позволяющее выполнять основную функцию нагнетания сжатого воздуха, для которой применяется ротационный компрессор. Принцип работы роторных моделей предусматривает и автоматизированную подачу масла. Это особенно касается промышленных агрегатов, работающих при повышенных нагрузках. Заправка жидкостью реализуется из специальной цистерны – она поступает в маслоотделитель до определенного уровня. При необходимости масло может охлаждаться водой.

Виды конструкции

Обычно выделяют компрессоры ротационного типа с качающимися и неподвижными элементами сжатия. В первой модели рабочей группы предполагается сжатие хладагента посредством роторного эксцентрика на двигателе. Это в некотором роде независимый элемент, обеспечивающий относительно высокую степень сжатия. Однако, из-за повышенного трения подобные агрегаты считаются малоэффективными. По крайней мере, затратными с точки зрения технического обслуживания. С другой стороны, пластинчатые ротационные компрессоры позволяют устранить нежелательный эффект интенсивного трения. Сжатие хладагента реализуется пластинами, неподвижно установленными на валу. Они стационарны относительно самого вала, но свою функцию сжатия выполняют вместе с ним.

Особенности спиральных моделей

Модели спирального типа чаще используются в установках малой и средней мощности – например, в холодильниках. Рабочая группа формируется двумя металлическими спиралями – одна интегрируется в другую. При этом базовая спираль стационарна, а внешняя – вращается вокруг оси. Что еще важно, в компрессорах данные элементы имеют особый эвольвентный профиль, позволяющий перекатываться, но не проскальзывать. Предполагает спиральный компрессор и перемещение точки соприкасания рабочих элементов. Именно в ней происходят циклы сжимания и выталкивания через центральное отверстие. По характеру выполнения сжатия спиральные агрегаты можно назвать более мягкими и щадящими. Поэтому и выходная мощность позволяет их использовать в оборудовании средней и малой производительности. Стоит подчеркнуть и сложность технической реализации таких компрессоров, обусловленную необходимостью соблюдения плотного прилегания спиральных элементов и герметичности торцов.

Защитные системы агрегата

Высокого качества элементной базы и тщательно выверенной компоновки функциональных деталей недостаточно для того, чтобы оборудование регулярно выполняло свои задачи в условиях производства. Поэтому современные модели не обходятся без дополнительных защитных систем. В первую очередь, это автоматическое отключение агрегата при фиксации сетевых перегрузок. Таким образом, оберегается блок управления электродвигателем. Поскольку ротационные компрессоры склонны и к перегревам механической части, внедряется в конструкцию и система охлаждения. Она минимизирует тепловые нагрузки, влияющие и на технические жидкости, и на детали конструкции. Для моделей с электронным управлением предусматривают системы самодиагностики. Благодаря датчикам компрессор без участия оператора может определять неисправности узлов и в зависимости от характера поломки или также самостоятельно их исправлять, или подавать соответствующий аварийный сигнал через индикаторы.

Основные характеристики

Производительность компрессора определяет, с каким оборудованием конкретная модель сможет оптимально работать. Эта характеристика выражается отношением выпущенного объема воздуха к единице времени – обычно минуте. Бытовые агрегаты чаще всего располагают мощностью порядка 100 л/мин. Этого вполне достаточно для работы с пневмоинструментами наподобие распылителей, шлифмашин и забивателей. Но если, к примеру, на стройплощадке планируется одновременное использование нескольких пневматических устройств, то производительность должна увеличиваться до 150-200 л/мин и выше. К тому же компрессор с вращающимся ротором желательно использовать с запасом силового потенциала. То есть к суммарной планируемой нагрузке нужно будет добавить 15-20%. Это повышение оправдывается снижением нагрузки на элементную базу. Существенной характеристикой является и рабочее давление, в среднем варьирующееся от 6 до 15 бар. В этом случае подбор также делается исходя из требований к конкретному инструменту. Для оптимальной работы добавляется 2 пункта к номинальному показателю давления инструмента.

Расходные материалы

В рабочем процессе ротационных компрессоров особую роль играет масло. Главная функция компрессорных жидкостей заключается в поддержании износостойкости деталей, предотвращении разгерметизации и образования нагаров. Но представлены на рынке и модифицированные составы с отдельными улучшенными свойствами – например, это может быть морозостойкость, антикоррозийная защита и т. д. Что касается типа основы, то спиральный компрессор, работающий при температурных нагрузках до 100 градусов, можно заправлять синтетическими средствами. Если этот порог увеличивается, то следует обращаться к более дорогим, но качественным минеральным маслам. Технические аксессуары тоже являются необходимым дополнением. В этой группе расходников выделяют шланги, переходники, фитинги, клапаны, фильтры и крепежные приспособления. Благодаря компонентной оснастке и организуется инфраструктура взаимодействия компрессора с рабочим инструментом или оборудованием.

Производители и цены

Хотя сегмент компрессоров как таковой весьма обширен и предлагает продукцию практически от всех крупных производителей строительного и промышленного оборудования, категория ротационных моделей наименее популярна, поэтому и предложения существенно ограничены. Наибольшей популярностью пользуются установки изготовителей холодильной техники Matsushita, Galanz, Toshiba и т. д. Они стоят примерно от 20 до 50 тыс. руб. Для сфер строительного и промышленного использования рекомендуются фирмы Abac, FUBAG и COMARO. Данные компании предлагают в основном высокопроизводительные агрегаты, рассчитанные на эксплуатацию в условиях крупных предприятий. По цене ротационные компрессоры этого типа тоже заметно отличаются – в среднем они стоят 200-300 тыс. К слову, одну из самых дорогостоящих станций предлагает Abac в своей линейке GENESIS. Это модель с производительностью 3320 л/мин и рабочим давлением 8 бар, доступная за 650 тыс.

Что учесть в выборе?

К выбору ротационных компрессоров обычно подходят потребители, которым нужен низкозатратный, малошумный и в то же время производительный источник сжатого воздуха. Поэтому промышленность со всеми своими особенностями эксплуатации будет основной областью, где применяется данный тип компрессора. Ротационный движок чаще всего ориентируется на сетевое напряжение в 380 В. Если на участке использования отсутствует трехфазовая линия, то придется делать скидку уже на производительность, ориентируясь на 220 В. Кроме основных рабочих значений учитывается и конструкция. Обычно она стационарна, но даже крупногабаритные модификации в некоторых исполнениях предусматривают возможность перемещения. Этот нюанс надо иметь в виду, если на объекте планируется обслуживать несколько технологических точек, расположенных в разных местах.

Техническое обслуживание

В условиях регулярной эксплуатации сеансы профилактической проверки должны производиться в соответствии с графиком. Замена масла и ревизия соединительных частей выполняется перед каждой процедурой применения оборудования. При выявлении критической деформации элементов или износа расходников производится ремонт компрессоров воздушных, который может быть выражен заменой неисправных компонентов. Техническое восстановление тех же деформированных элементов нежелательно, поскольку срок их службы в любом случае будет ниже.

Отдельное внимание уделяется каналам поступления масла и охлаждающих жидкостей. С ними взаимодействуют фильтры, мембраны, уплотнители и шланги – данную инфраструктуру следует регулярно чистить, промывать и также заменять, если возникает необходимость. К слову, ремонт компрессоров воздушных в виде восстановления лопастей вентилятора и радиаторной решетки проводится как раз в тех случаях, когда обслуживающий персонал уделял недостаточно внимания борьбе с засорами и загрязнениями конструкции.

Сферы применения

Уже говорилось, что компрессорные установки часто применяют для обслуживания строительного инструмента на пневматической основе. Но это лишь часть задач, которые способны выполнять агрегаты такого типа. Их специализированной нишей все же является холодильное оборудование. Причем это могут быть и непосредственно промышленные холодильники с рефрижераторами, и бытовые кондиционеры. Во втором случае используются компактные и маломощные ротационные компрессоры. Применение в промышленности тоже акцентируется на возможности работы установки с хладагентами – оборудование задействуют на технологических этапах обработки рабы, мяса, полуфабрикатов и другой пищевой продукции.

Заключение

При всех различиях с поршневыми компрессорами, ротационные агрегаты работают по тому же принципу вытеснения обслуживаемой среды. Отличия же обуславливаются уже конструкционной реализацией механики, обеспечивающей весь процесс. Среди преимуществ, которыми обладают ротационные компрессоры на фоне поршневых аналогов, можно отметить возможность соединения с двигателем, уравновешенность хода с сокращением вибраций, равномерную подачу газовых сред и отсутствие группы клапанов. Но есть и недостатки. Так, например, плотное взаимодействие механических частей способствует их быстрому физическому износу. Есть и слабые стороны у ротационных моделей в плане технологии изготовления – они требуют высокоточной сборки, иначе агрегат не сможет соответствовать заявленным рабочим показателям.

Ротационный компрессор: устройство и принцип работы

Содержание

Ротационные компрессоры работают по тому же принципу, что и поршневые машины, т.е. по принципу вытеснения. Основная часть энергии, передаваемой газу, сообщается при непосредственном сжатии.

Сущность действия ротационного компрессора заключается в том, что независимо от его конструктивных особенностей, всасывание газа или воздуха производится той полостью компрессора, объем которой увеличивается при вращении ротора. Засасываемый газ попадает в замкнутую камеру, объем которой, перемещаясь при вращении ротора, уменьшается. Сжатие за чет уменьшения объема приводит к увеличению давления и выталкиванию газа в нагнетательный патрубок.

Типы компрессоров

Ротационные нагнетатели, развивающие избыточное давление до 0,28 – 0,3 МПа (при атмосферном давлении на входе), называют воздуходувками, а создающие более высокое давление — компрессорами.

Ротационный компрессор и воздуходувки имеют ряд преимуществ перед поршневыми:
уравновешенный ход из-за отсутствия возвратно-поступательного движения;
возможность непосредственного соединения с электродвигателем;
равномерная подача газа;
меньший вес конструкции;
отсутствие клапанов.

Вместе с тем, по сравнению с поршневыми, ротационные компрессоры имеют более низкий механический КПД, развивают более низкое давление, требуют более высокой точности изготовления.

Наибольшее распространение в различных отраслях пищевой промышленности получили два типа ротационных машин:

Ротационно пластинчатые компрессоры – применяются для создания относительно высокого давления (0,3 – 0,4 МПа). Если установить последовательно два ротационных пластинчатых компрессора с промежуточным охлаждением воздуха, то можно обеспечить давление до 0,7 МПа и более. Одноступенчатый пластинчатый компрессор работая как вакуум-насос, может создавать вакуум до 90%, а при особой тщательности изготовления и монтажа – до 95%.

Ротационный винтовой компрессор в настоящее время в основном используется в холодильной технике. Принцип его работы схож с работой винтового насоса и состоит в следующем. Когда вращаются винты, то на стороне выхода зубьев из зацепления освобождаются так называемые впадины – полости между зубьями. Из-за создаваемого компрессором разрежения эти полости заполняются паром, поступающим из всасывающего патрубка В момент, когда на противоположном торце роторов полости полностью освобождаются от заполняющих их зубьев, объем полости всасывания достигает максимальной величины. Пройдя всасывающее окно, полости разъединяются с камерой всасывания.

По мере входа зуба ведомого ротора во впадину ведущего занимаемый газом объем уменьшается и газ сжимается. Процесс сжатия паров в парной полости продолжается до тех пор, пока уменьшающийся объем со сжатым паром не подойдет к кромке окна нагнетания.

Ротационный компрессор с двумя вращающимися поршнями используется как низконапорные воздуходувки с избыточным давлением 0,06 – 0,08 МПа. Такой компрессор, работая как вакуум насос, создает вакуум до 70%.

Устройство ротационного компрессора

Ротор компрессора 2 расположен эксцентрично в цилиндре. В роторе сделаны радиальные прорези, в которых свободно перемещаются пластины 5. Вокруг цилиндра расположена водяная рубашка 4 для охлаждения компрессора. При вращении ротора по часовой стрелке через патрубок 1 происходит всасывание, а через патрубок 6 – нагнетание газа.

Благодаря эксцентричному расположению ротора при его вращении образуется серповидное пространство, разделенное пластинами на отдельные камеры. Пластины выходят из пазов ротора вследствие действия центробежной силы и прижимаются к стенкам цилиндра.

Ротационный компрессор принцип работы

Так как крышки компрессора примыкают к торцевым поверхностям ротора с малым зазором, отдельные камеры, на которые делится серповидное пространство, оказываются изолированными, увеличивающимися до некоторого объема 3, а затем уменьшающимися.

Читать еще:  Как рассчитать сечение кабеля по нагрузке

Вследствие того, что объем газа в камерах левой части серповидного пространства увеличивается, всасывание происходит через патрубок 1, а нагнетание через патрубок 6, так как при дальнейшем перемещении ротора происходит уменьшение объема газа в камерах и его выталкивание.

Для уменьшения трения центробежная сила пластин воспринимается двумя разгрузочными кольцами 2, которые охватывают пластины и свободно вращаются в цилиндре. В зазор между внешней поверхностью разгрузочных колец и внутренней поверхностью выточек в цилиндре через отверстия подается масло. Число пластин в таких компрессорах обычно бывает не менее двадцати, чтобы уменьшить перепад давления между камерами и этим ослабить перетекание газа и увеличить объемный КПД.

Для предотвращения чрезмерного износа цилиндра и пластин, окружная скорость на внешней кромке пластин должна быть не больше 10 – 12 м/с. Для обеспечения плотного прилегания пластин к внутренней поверхности цилиндра необходимо, чтобы минимальная окружная скорость была в пределах 7-7,5 м/с. Поэтому изменение частоты вращения ротационных компрессоров допустимо только в определенных пределах.

Воздуходувки

В качестве воздуходувок чаще всего применяется ротационный компрессор с двумя вращающимися поршнями.

Такие компрессоры могут применяться и как вакуум насосы, например во всасывающих системах пневмотранспорта зерна и солода на пивоваренных и спиртовых заводах.

Конструкция такого компрессора состоит из корпуса 3, в котором вращаются в противоположных направлениях два поршня 4, профилированных в виде восьмерок с циклоидальным зацеплением. Привод осуществляется с помощью зубчатой передачи.

В процессе вращения поршни непрерывно соприкасаются, разделяя объем корпуса на отдельные камеры. Воздух всасывается через патрубок 5, а затем при повороте роторов он попадает в замкнутую камеру 1 (заштрихованную на рисунке) и, не меняя объема, перемещается к нагнетательному патрубку 2, через который выталкивается в нагнетательный трубопровод или наружу.

Следовательно, сжатие происходит только в самом конце цикла в момент сообщения замкнутой камеры с воздухом в нагнетательном патрубке воздуходувки.

Недостатками ротационных компрессоров с двумя вращающимися поршнями считают существенное уменьшение объемного КПД при малейшем увеличении зазоров, а так же сильный шум, который создают воздуходувки во время работы.

Видеоматериалы

Ротационный компрессоры бывают нескольких типов – это ротационной винтовой тип компрессора, ротационный пластинчатый тип компрессора и воздуходувки.

Оборудования этого вида относится к объемному типу компрессоров и осуществляет работу по нагнетанию воздуха за счет сжатия вещества с помощью вращающегося ротора.

РОТАЦИОННЫЕ КОМПРЕССОРЫ

Согласно классификации (рис. 1) ротационные компрессоры бывают с катящимся ротором, с вращающимся ротором (пластинчатые), спиральные и роторно-поршневые.

3.1 Ротационный компрессор с катящимся ротором

Работа компрессора с катящимся ротором состоит в следующем. В положении катящегося ротора (рис. 7, а) цилиндр имеет одну полость, заполненную холодильным агентом.

Рисунок 7 – Принцип работы ротационного компрессора

При вращении эксцентрикового вала компрессора объем холодильного агента в серповидном пространстве уменьшается
(рис. 7, б), холодильный агент сжимается, повышаются его температура и давление.

При дальнейшем перемещении ротора (рис. 7, в) давление холодильного агента в нагнетательной полости повышается, открывается нагнетательный клапан и пары холодильного агента начинают поступать в конденсатор. Одновременно со сжатием происходит заполнение всасывающей полости компрессора паром. Всасывающий клапан в компрессоре отсутствует, поскольку ротор, перемещаясь по поверхности цилиндра, перекрывает всасывающее отверстие.

Последующее движение ротора (рис. 7, г) завершает процесс сжатия, холодильный агент поступает в полость всасывания.

Сравнительно с поршневыми компрессорами герметичные ротационные компрессоры имеют ряд преимуществ:

ü они имеют меньшие габариты и массу;

ü в них отсутствует всасывающий клапан, что повышает надежность компрессора;

ü компрессор имеет хорошую уравновешенность, поскольку нет линейного перемещения поршня;

ü небольшое количество движущихся частей снижает износ, повышает надежность, упрощает техническое обслуживание.

Эксплуатационные качества компрессора заключены в особенностях его конструкции. Серповидные объемы компрессора образованы, с одной стороны, контактом ротора с поверхностью разделительной лопасти, с другой – контактом ротора с поверхностью цилиндра. Геометрически этот контакт происходит по линии, разделяющей полости нагнетания и всасывания (при давлении кипения и конденсации).

Контакт ротора и цилиндра должен быть таким, чтобы предотвратить перетекание холодильного агента из полости нагнетания в полость всасывания. Это возможно при качественной обработке поверхности ротора и цилиндра, исключающей любые зазоры между ними. Именно в этом заключается одна из эксплуатационных особенностей компрессора.

При загрязнении конденсатора холодильной машины уменьшается площадь поверхности теплообмена конденсатора и ротор компрессора нагревается, переходя порог, ограничивающий величину его теплового расширения.

Следствием этого могут быть царапины на поверхности ротора и цилиндра, в худшем случае может наблюдаться «заклинивание» ротора, т. е. остановка его вращения.

Для торгового холодильного оборудования и системы кондиционирования воздуха герметичные ротационные компрессоры выпускаются холодопроизводительностью от 0,3 до 1,3 кВт.

3.2 Ротационный компрессор с вращающимся ротором

В компрессоре с вращающимся ротором (пластинчатом) эксцентрично расположенный в цилиндре ротор вращается вокруг своей оси (рис. 8). В роторе сделаны радиальные или наклонные прорези, в которых размещены скользящие (во время вращения ротора) пластины, прижимаемые к поверхности цилиндра при вращении ротора действием центробежной силы. Благодаря наличию пластин обеспечиваются всасывание и сжатие пара. Эти компрессоры характеризуются легкостью пуска, так как пластины занимают рабочее положение лишь после достижения ротором определенной частоты вращения.

Рисунок 8 – Схема компрессора с вращающимся ротором

1 – ротор; 2 – пластины; 3 – водяная рубашка; 4 — корпус

При одинаковых размерах цилиндра и частоте вращения объемная производительность компрессоров с вращающимся ротором более чем в 2 раза выше объемной производительности компрессоров с катящимся ротором.

Пластинчатые ротационные компрессоры удобны, когда требуется перемещать большие объемы пара при умеренных отношениях давлений нагнетания и всасывания. Нередко их используют в качестве поджимающих компрессоров в низкотемпературных установках. Ротационные компрессоры надежны в эксплуатации и просты в обслуживании вследствие небольшого числа движущихся частей, отсутствия всасывающих клапанов, более спокойной работы при влажном ходе.

4 СПИРАЛЬНЫЕ КОМПРЕССОРЫ

Концепция создания холодильного компрессора спирального типа запатентована в 1905 г. французским инженером Леоном Креусом (Leon Creux). Однако в силу высоких технологических требований к изготовлению компрессора спиральные компрессоры стали создаваться лишь при внедрении в металлообработку станков с числовым программным управлением.

Спиральный компрессор состоит из двух спиралей – неподвижной (слева) и подвижной (рис. 9).

Одна из спиралей, связанная с эксцентриковым валом, совершает плоскопараллельное орбитальное движение. Вторая спираль закреплена неподвижно относительно корпуса компрессора. В процессе работы места контакта подвижной спирали перемещаются по профилю неподвижной спирали против часовой стрелки. Образующиеся при этом замкнутые серповидные полости концентрически перемещаются от периферии к центру.

Рисунок 9 – Рабочие органы спиральных компрессоров

В начальный момент (рис. 10, а), когда полость еще не замкнута, в нее свободно входит всасываемый пар. В дальнейшем пар перемещается к центру (рис. 10, б, в), испытывая повышение давления и температуры из-за уменьшения объема полости, и в конце процесса сжатия (рис. 10, г) через нагнетательное отверстие в центре выводится из компрессора.

Рисунок 10 – Принцип работы спирального компрессора

Количество движущихся частей спирального компрессора сравнительно с поршневым компрессором снижено на 80%.

Движущаяся спираль совершает плавное движение, так как она хорошо сбалансирована. Поэтому движение потока на всасывании и нагнетании имеет непрерывный характер, что обеспечивает практически бесшумную работу компрессора. Он в 8 раз «тише», чем поршневой аналог.

Спиральный компрессор не боится «влажного хода», а равным образом и механических примесей. Пуск компрессора происходит без нагрузки, поэтому не требует специального вспомогательного пускового устройства.

Спиральные компрессоры имеют наименьший процент отказов по сравнению с компрессорами любых других типов, в силу чего их по праву считают «вечными».

В целом достоинства спиральных компрессоров перед герметичными или бессальниковыми поршневыми аналогами можно отразить в виде перечня следующих качеств:

ü высокая надежность и повышенный срок службы благодаря небольшому количеству деталей, участвующих в процессе сжатия хладагента;

ü крайне низкий уровень шума вследствие отсутствия клапанов и возвратно поступательного движения деталей;

ü крайне малая вибрация вследствие плавного, непрерывного сжатия;

ü очень высокий коэффициент подачи из-за отсутствия «мертвого пространства»;

ü стабильность работы компрессора при работе «влажным ходом» и попадании в зону сжатия механических примесей;

ü малый пусковой момент и пусковые токи. Для однофазных моделей нет необходимости в пусковом оборудовании;

ü компактность и малая масса.

Спиральные компрессоры используются в холодильных машинах малой и средней холодопроизводительности. Они могут быть в герметичном исполнении, бессальниковыми и сальниковыми.

Стоимость спиральных компрессоров сопоставима со стоимостью поршневых компрессоров.

Относительным недостатком компрессора является необходимость его изготовления на высокоточных станках с ЧПУ, поскольку спиральный компрессор – это техническая конструкция очень высокого технологического уровня и организации производства.

5 ВИНТОВЫЕ КОМПРЕССОРЫ

Винтовые компрессоры – компрессоры объемного типа, в которых сжатие холодильного агента осуществляется за счет уменьшения замкнутого объема рабочей полости между ведущим и ведомым винтами и корпусом компрессора (рис. 11).

Пар в полости всасывания движется в осевом и радиальном направлениях (рис. 12). Сжатие пара продолжается до тех пор, пока полость между выступом и впадиной не достигнет нагнетательного окна в цилиндре.

Рисунок 11 – Рабочие органы винтового компрессора

1 – ведущий винт; 2 – ведомый винт; 3 – синхронизирующая передача

Рисунок 12 – Принцип работы винтового компрессора

Общий вид винтового компрессора в сборе представлен на рис. 13.

Рисунок 13 –Винтовой холодильный компрессор

1 – камера всасывания; 2 – корпус; 3 – задняя крышка; 4 – ведомый ротор;

5 – ведущий ротор; 6, 7 – подшипники роторов компрессора

К достоинствам этого типа компрессора относят возможность плавного регулирования холодопроизводительности, возможность работы практически на любом холодильном агенте при высокой степени сжатия и в широком температурном диапазоне кипения, прежде всего низкотемпературном диапазоне кипения, и, соответственно, при низкой температуре воздуха в охлаждаемом объеме.

Недостатком компрессора является необходимость создания системы смазки роторов, которая ко всему прочему обеспечивает охлаждение роторов, предотвращает перегрев компрессора, уплотняет рабочие зазоры между роторами. Однако применение масляного охлаждения роторов порождает необходимость применения надежных и эффективных систем отделения масла от холодильного агента (маслоотделителей), поскольку при работе компрессора масло в него впрыскивается в большом количестве. При отсутствии маслоотделителя масло может быть унесено в конденсатор.

Все это недостатки, несмотря на очевидные достоинства компрессора, ограничивают его применение в торговом холодильном оборудовании.

Компрессоры подобного типа применяют в основном в холодильных машинах большой холодопроизводительности.

6 ЦЕНТРОБЕЖНЫЕ КОМПРЕССОРЫ

Компрессоры этого типа используют для достижения большой холодопроизводительности в установках химической промышленности или системах кондиционирования зданий и зрелищных сооружений.

Центробежные компрессоры конструктивно выполняются из сборки роторов, насаженных на один вал (рис. 14). Каждый ротор помещается в отдельной полости, выполняя функцию отдельной ступени сжатия.

Холодильный агент последовательно переталкивается из одной полости в другую, С→ с возрастающим давлением, равным на выходе давлению конденсации.

Парообразный холодильный агент, сжимаемый в компрессоре, практически не содержит масла. Отсутствие масла на внутренних поверхностях конденсатора и испарителя улучшает процесс теплопередачи в теплообменных аппаратах.

Рисунок 14 – Устройство центробежного компрессора

1 – рабочее колесо; 2 – диффузор; 3 – всасывающий патрубок;
4 – нагнетательный патрубок; С, D, E, F, G – направляющие аппараты;

I. II. III. IV. V – ступени сжатия холодильного агента

Центробежные компрессоры являются уравновешенными, однако они предназначены для работы при большой частоте вращения ротора (от 6 000 до 25 000 об/мин).

Данный тип компрессоров эффективен в холодильных установках большой холодопроизводительности, от 900 до 10 000 кВт.

Контрольные вопросы

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8540 — | 8121 — или читать все.

188.64.174.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Ротационные компрессоры

Ротационные компрессоры относятся к объёмному типу компрессоров и осуществляют нагнетание за счёт сжатия вещества с помощью вращающегося ротора. Иногда этот тип компрессоров называют роторным, но это ошибочно, возникла эта ошибка, скорее всего, из-за некорректного перевода иностранной технической литературы.

Различают ротационные компрессоры с неподвижными пластинами, с вращающимися пластинами, двухроторные и с качающимся ротором.

Компрессор с неподвижными пластинами

Другое название данного компрессора — с катящимся ротором (ККР).Конструктивно такой компрессор представляет из себя вал двигателя на котором насажен цилиндрический ротор, но вал находится не в центре окружности, а эксцентрично,то есть смещён от центра. Вращается ротор внутри также цилиндрического корпуса. Между ротором и корпусом образуется зазор, величина которого при вращении из-за эксцентричности ротора изменяется. Где его величина минимальна находится нагнетательный патрубок, а где максимальна — всасывающий. Пространство между ними перекрывает подвижная пластина, плотно прижимающаяся пружиной к вращающемуся ротору,предотвращая перетекание рабочего вещества из зоны высокого давления в зону низкого. Наглядно это видно на рисунках:

Читать еще:  Какие цифры на счетчике электроэнергии надо передавать

Приемущества этого вида компрессоров:

-очень простая конструкция

-немного движущихся деталей

-меньшие пульсации давления, так как ротор движется непрерывно

-отличные массогабаритные показатели

-маленькие газодинамичесие потери на всасывании

-невысокая цена, из-за массовой распространённости

-перетекание газа из области всасывания в область нагнетания

-наличие «горячей точки», т.е. трения в месте соприкосновения ротора с корпусом.

Компрессоры с подвижными пластинами

Принцип действия этого типа компрессора такой же как и у предыдущего, с той лишь разницей, что пластины находятся на роторе и вращаются вместе с ним. Подробней это видно рисунке, для упрощения показано всего две пластины.

Преимущества и недостатки этого типа такие же как и у первого типа, за исключением:

-возможность развивать большее давление за счёт большего количества пластин

-больше точек трения

-более сложное изготовление

Ротационные компрессоры с двумя роторами

Применяет такие компрессоры компания Toshiba. Для чего-же,собственно, понадобилось усложнять конструкцию добавлением ещё одного ротора?

Представим однороторный компрессор, ротор на его валу расположен эксцентрично, то есть смещён геометрический центр и ,соответственно, центр тяжести. Такую конструкцию, например применяют в телефонах для виброзвонка — двигатель с грузиком, смещённым относительно центра. Можно вспомнить и лопасть вентилятора с одним винтом — при вращении идут биения и вибрации. Для уравновешивания и придумали добавить ещё один ротор.

Как следствие этого:

-уменьшенный уровень вибраций и шума

-повышение надёжности и долговечности (не только самого компрессора, но и всей конструкции холодильной машины)

-возможность снижения производительности до 15 % от номинальной

Последний пункт важен для инверторных кондиционеров, так даёт возможность не выключать компрессор, работая на малых оборотах, при этом экономится электроэнергия.

Компрессор с качающимся ротором

Данный вид компрессора использует корпорация Daikin, в её терминологии SWING. Основной причиной разработки этого компрессора послужил переход с хладагента R22 на другие виды хладагентов. При использовании фреона R22 для смазки применяется минеральное масло, а в составе самого фреона присутствует хлор, поэтому при работе компрессора с этим видом хладагента на поверхностях трущихся деталей образуется защитная ферро-хлоридная плёнка. Эта плёнка значительно снижает трение и риск коррозии. При использовании R410a и R407c эта плёнка отсутствует.

Следующий неприятный момент при использовании новых хладагентов — потери давления. Эти потери происходят из-за перетекания газа из одной зоны в другую, по исследованиям 70 % перетекания между ротором и цилиндром корпуса, а 30 % между цилиндром и торцом пластины. Эти потери зависят от наличия масляной плёнки и плотности прилегания ротора и пластины,которую, в свою очередь, нельзя сильно уменьшать, иначе увеличится сила трения.

Фирма Дайкин разработала и запатентовала ротационные компрессоры с качающимся ротором. В этом компрессоре пластина и ротор выполнены в виде ондной детали, которая совершает колебательные и возвратно-поступательные движения, из-за чего компрессор и получил название «с качающимся ротором», в англоязычной терминологии SWING (качаться-англ.)

В результате этого уменьшается трение между ротором и цилиндром корпуса, а также исключаются потери на трение и перетекания между пластиной и ротором.

Схематически это выглядит так:

Основная область применения ротационных компрессоров холодильные машины малой производительности — от полутора до десяти киловатт. На данный момент в 90 % кондиционеров применяют компрессоры данного типа в герметичном исполнении.

Роторный компрессор

Для нагнетания воздуха в различных системах проводится установка роторных компрессоров. Существует довольно большое количество разновидностей подобного оборудования, распространены роторные модели, к которым также относятся винтовые конструкции. Принцип работы подобного устройства был разработан более 120 лет назад. Изначально они не применялись активно, так как были дорогими в производстве и не могли прослужить в течение длительного периода. Усовершенствование технологии производства определило распространение подобных конструкций. Роторные модели устанавливаются в случае, когда нужно обеспечить высокую производительность системы. Отличительными особенностями можно назвать отсутствие гула и вибрации на момент эксплуатации. Рассмотрим особенности подобного оборудования подробнее.

Принцип работы шестеренчатого компрессора

Винтовой блок является важным элементом конструкции роторного компрессора. Срок службы подобного элемента составляет примерно 15-20 лет. Стоит учитывать, что ротор компрессора имеет особую форму, за счет которой и обеспечиваются определенные эксплуатационные характеристики.

Принцип работы устройства определяет то, что на момент подачи воздуха не возникает вибрации или сильного шума. Основная часть компрессора роторного типа не имеет элементов, которые работают путем возвратно-поступательного движения. Поэтому конструкция может устанавливаться в непосредственном месте эксплуатации.

Принцип действия характеризуется следующими особенностями:

  1. В качестве основы конструкции применяется корпус.
  2. Внутри механизма расположены две шестерни, которые находятся в зацеплении.
  3. У механизма есть подводящий и выводящий патрубок.

Относится к ротационным компрессорам устройства, которые имеют шестерни, находящиеся в зацеплении. Стоит учитывать, что для существенного износа основных частей проводится добавление смазывающего вещества. Кроме этого, есть модели, которые также работают без смазки.

Общее описание роторных компрессоров

Основное предназначение заключается в создании давления, которое будет выше атмосферного. Рассматриваемый тип механизма относится к оборудованию объемного типа.

Название роторный компрессор получил из-за особенности формы основных вращающихся элементов. Высокая потребность в них определяет то, что появилось просто огромное количество компактных моделей, которые характеризуются высокой эффективностью в применении. Также встречается компрессор роторно-поршневой, который существенно отличается от обычного варианта исполнения.

В рассматриваемую группу устройств входят следующие механизмы:

  1. Кулачковые.
  2. Винтовые.
  3. Спиральные.
  4. Жидкостно-кольцевые.
  5. Пластинчатые.

Все разновидности подобных устройств характеризуются большим количеством особенностей, к примеру, пластинчатый компрессор роторного не имеет много различных клапанов, которые существенно снижают показатель КПД. Кроме этого, роторные варианты исполнения имеют меньший вес в сравнении с поршневыми.

В большинстве случаев компрессор роторно-лопастной представлен одинарным аппаратом с приводом. Некоторые варианты исполнения имеют промежуточный редуктор, который способен изменять передаваемое усилие.

Сегодня компрессорные установки оснащаются электрическим двигателем. В некоторых случаях проводится установка двигателей внутреннего сгорания, которые характеризуются большей производительностью.

Данный тип компрессоров встречается в самых различных случаях. Очень часто оно применяется для создания краскопульта, который требуется для равномерного нанесения специального красящего вещества на поверхность.

Роторный винтовой компрессор

Ротационный компрессор считается довольно распространенным устройством, которое применяется для сжатия воздуха и различных технологических газов. Во многом эффективность зависит от дизайна подвижных частей. Высокая надежность и другие свойства определяют то, что роторные компрессоры устанавливаются в промышленности. Давление на выходе может достигать высоких показателей, как и при всасывании.

Конструкционными особенностями рассматриваемого механизма можно назвать следующие моменты:

  1. Основные элементы представлены двумя винтовыми роторами: один вращается по часовой стрелке, второй против.
  2. Между подвижным элементом и корпусом есть небольшой зазор.
  3. Оба ротора крепятся к валу, который предназначен для непосредственной передачи вращения.
  4. Роторный компрессор оснащается впускным и выпускным клапаном.

При изготовлении основных частей могут применяться самые различные материалы, в большинстве случаев нержавеющая сталь и чугун.

Принцип работы подобного механизма достаточно прост. Он следующий:

  1. От двигателя вращение передается ведущему элементу, который за счет зацепления передает вращение ведомому.
  2. Оба элемента расположены в герметичном корпусе со впускным и отводящим отверстием.

Важным моментом назовем то, что роторные компрессоры подобного типа могут быть масляными и безмасляными. Среди их отличительных свойств следует отметить следующее:

  1. Масло существенно снижает степень износа конструкции, а также выступает в качестве охлаждения.
  2. Устройства, куда не подается масло, служат несколько меньше, однако они подают более качественную среду.

В случае, если в системе есть масло требуется специальный фильтр, который проводит отделение смазывающего вещества от основной среды. Если она будет попадать в магистраль, то существенно снижается качество лакокрасочного покрытия.

Кроме этого, выделяют довольно большое количество преимуществ у рассматриваемого механизма:

  1. Подвижные части могут работать при большой скорости.
  2. Контакта между двумя подвижными элементами практически нет. Именно поэтому износ относительно низкий даже при длительной эксплуатации устройства.
  3. Провести обслуживание можно своими руками.
  4. Относительно небольшие размеры и вес.
  5. Эксплуатационный заявленный срок составляет несколько десятков лет.
  6. Не требуется много средств для поддержания работоспособности.

Вышеприведенные достоинства определяют широкое распространение подобных видов роторного компрессора.

Они могут устанавливаться в быту или промышленности, обладать различными размерами и весом.

Роторный компрессор с кулачковыми роторами

Подобный вариант исполнения применяется в том случае, когда нужно передавать большой объем вещества за минимальный период. Среди особенностей отметим:

  1. Подвижные части не соприкасаются. Именно поэтому снижается вероятность сильного износа.
  2. Нет необходимости в добавлении масла, за счет чего существенно упрощается процесс обслуживания.
  3. Устройства с большим размером имеют электрический двигатель, который подключен напрямую к основному элементу. Меньшие варианты исполнения снабжаются клиноременной передачей.

Встречается довольно большое количество разновидностей подобного устройства. Основными элементами можно назвать:

  1. Корпус.
  2. Ротор.
  3. Распределительные шестерни.
  4. Уплотнительные прокладки.
  5. Подшипники.

Принцип действия устройства можно охарактеризовать следующим образом:

  1. Роторы не находятся в зацеплении на момент работы.
  2. Газ внутри не сжимается.
  3. Есть возможность проводить монтаж подвижных элементов на параллельных винтах.
  4. Кулачки не соприкасаются.
  5. Подшипники и распределительные части смазываются на момент работы.

Область применения подобных устройств весьма обширна. Примером можно назвать различные промышленные установки, а также оборудование для нанесения лакокрасочных материалов.

Ротационно-пластинчатый компрессор

В этом случае ротор снабжается несколькими скользящими пластинами, которые монтируются эксцентрическим методом в литом корпусе. Кроме этого, выделяют следующие особенности подобных устройств:

  1. Маслозаполненные.
  2. Эффективность механизма достигает 90%.
  3. Могут применяться для генерирования повышенного давления в магистрали.
  4. Выделяют стационарные и переносные варианты исполнения.
  5. На одной ступени может создаваться давление более 13 бар.
  6. Вращение создается при помощи двигателя.
  7. Для подключения магистрали есть фланцы.
  8. Изготовление цилиндра проводится при применении чугуна.

Высокая эффективность устройства можно связать с широким его распространением. Примером можно назвать системы охлаждения или центральной подачи вакуума.

Жидкостно-кольцевые компрессоры

Такие модели считаются универсальным устройством, у которого давление создается при помощи жидкостного кольца. Он действует по принципу поршня. В рассматриваемом случае есть только один ротор, размещенный в центральной части. В большинстве случаев при изготовлении применяется чугун, вал из углеродистой стали рассчитан на воздействие большой осевой нагрузки. Стоит учитывать, что выделяют два типа подобных приборов – одноступенчатые и многоступенчатые.

Принцип действия этого механизма характеризуется следующими особенностями:

  1. Ротор и цилиндр частично заполняются при сжимании жидкостной среды, за счет чего образуется кольцо.
  2. При непосредственном движении поршня образуется газовый карман.
  3. Сервисная жидкость в большинстве случаев представлена обычной водой бытового предназначения.

Встречаются подобные варианты исполнения не так часто, как другие. Но им свойственны следующие преимущества:

  1. Возможность эксплуатации при минусовой температуре.
  2. Надежность. Как показывает практика, механизм может прослужить в течение нескольких лет без возникновения неполадок и дефектов.
  3. Эффективный теплоотвод.
  4. Простое техническое обслуживание.
  5. Устройство может применяться для работы практически в любой среде.
  6. Между вращающимися элементами нет непосредственного контакта, за счет чего существенно снижается степень износа.

При изготовлении основных элементов применяется сталь ил чугун. Оба материала характеризуются повышенной устойчивостью к воздействию влажности или других химических веществ.

Спиральные компрессоры

Меньше всего распространены спиральные конструкции, так как они представлены объемными машинами. Внутри находятся спирали, которые вложены друг в друга, за счет которых обеспечивается создание требуемого давления.

Несмотря на то, что подобная технология получила широкое распространение, она применяется относительно недавно. Спиральные роторные компрессоры получили широкое распространение в промышленности и быту.

Среди конструктивных особенностей отметим:

  1. Корпус герметичный, часто производится путем литья или сварки. За счет этого обеспечивается высокая степень эффективности спирального нагнетателя воздуха.
  2. Есть муфта и блок спиралей.
  3. В качестве источника вращения применяется двигатель.

В большинстве случаев конструкция имеет вертикальную компоновку. Для хранения смазывающей жидкости создается специальный картер.

Основные части винтового компрессора

Роторный компрессор состоит из нескольких основных элементов, которые и обеспечивают подачу среды под большим давлением. Рассматривая конструктивные особенности отметим:

  1. Пара червячных зацепленных роторов, один из которых ведущий, второй ведомый.
  2. Корпус может изготавливаться самым различным образом, характеризуется высокой герметичностью.
  3. Объем конструкции зависит от формы ротора, а также их размеров.

В производстве встречаются самые различные профили роторов. В целом можно сказать, что от этого во многом зависят основные эксплуатационные характеристики.

В заключение отметим, что роторные компрессоры на сегодняшний день один из самых распространенных. При выборе уделяется внимание техническому состоянию, типу применяемых материалов при изготовлении, рабочему объему и многим другим моментам.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Sayway › Блог › Как работает компрессор?

С момента изобретения двигателя внутреннего сгорания автомобильные инженеры, любители скорости и проектировщики гоночных автомобилей все время находились в поисках путей увеличения мощности моторов. Один из способов увеличения мощности – построение двигателя большого внутреннего объема. Но большие двигатели, которые больше весят и обходятся существенно дороже в производстве и обслуживании, не всегда однозначно лучше.

Другой путь добавления мощности – это создание двигателя нормального размера, но более эффективного. Вы можете достичь этого, нагнетая больше воздуха в камеру сгорания. Большее количество воздуха дает возможность подать в цилиндр дополнительное количество топлива, что обозначает, что будет произведен более сильный взрыв и будет достигнута большая мощность. Добавление компрессора к впускной системе является отличным способом достижения усиленной подачи воздуха. Эта статья объяснит, что такое компрессоры (их также еще называют нагнетателями), как они работают и чем отличаются от турбокомпрессоров (турбонаддува).

Читать еще:  100 Квт сколько ампер

Компрессором является любое устройство, которое создает давление на выходе выше атмосферного. И компрессоры, и турбокомпрессоры способны это делать. На самом деле, турбокомпрессор является сокращенным названием от «турбонагнетателя» — его официального названия.

Различие между данными агрегатами заключается в способе получения энергии. Турбокомпрессоры приводятся в действие за счет плотного потока выхлопных газов, вращающих турбину. Компрессоры работают за счет энергии, передаваемой механическим путем через ременный или цепной привод от коленчатого вала двигателя.
В следующем разделе мы подробно рассмотрим, как компрессор выполняет свою работу.

Обычный четырехтактный двигатель внутреннего сгорания использует один из тактов для впуска воздуха. Этот такт можно разделить на три шага:
Поршень перемещается вниз
Это создает разрежение
Воздух под атмосферным давлением засасывается в камеру сгорания
Как только воздух поступит в двигатель, он должен быть объединен с топливом для формирования заряда – пакета потенциальной энергии, которую можно превратить в полезную кинетическую энергию в результате химической реакции, известной как горение. Свеча зажигания инициирует эту реакцию путем воспламенения заряда. Как только топливо подвергается реакции окисления, сразу же высвобождается большое количество энергии. Сила этого взрыва, сконцентрированная над днищем поршня, толкает поршень вниз и создает возвратно-поступательное движение, которое в конечном итоге передается на колеса.
Подача большего количества топливно-воздушной смеси в заряд будет порождать более сильные взрывы. Но вы не можете просто так подать больше топлива в двигатель, так как требуется строго определенное количество кислорода для сжигания определенного количества топлива. Химически-верная смесь – 14 частей воздуха к одной части топлива – имеет очень большое значение для эффективной работы двигателя. Итог – чтобы сжечь больше топлива, придется подать больше воздуха.
Это работа компрессора. Компрессоры увеличивают давление на входе в двигатель путем сжатия воздуха выше атмосферного давления без образования вакуума. Это заставляет большему количеству воздуха попадать в двигатель, обеспечивая повышение давления. С дополнительным количеством воздуха больше топлива может быть добавлено, что вызывает увеличение мощности двигателя. Компрессор добавляет в среднем 46 процентов мощности и 31 процент крутящего момента. В условиях высокогорья, где мощность двигателя снижается за счет того, что воздух имеет меньшую плотность и давление, компрессор обеспечивает более высокое давление воздуха в двигателе, что позволяет ему работать в оптимальном режиме.

В отличие от турбокомпрессоров, которые используют отработанные газы для вращения турбины, механические компрессоры приводятся в действие непосредственно от коленчатого вала двигателя. Большинство из них приводятся в движение с помощью приводного ремня, который обернут вокруг шкива, который подключен к ведущей шестерне. Ведущая шестерня, в свою очередь, вращает шестерню компрессора. Ротор компрессора может быть по-разному спроектирован, но, не смотря на это, в любом случае его работа сводится к захвату воздуха, сжатию воздуха в меньшем пространстве и сбросу его во впускной коллектор. Для того чтобы создавать давление воздуха, компрессор должен вращаться быстрее, чем сам двигатель. Создание ведущей шестерни большей, чем шестерни компрессора, заставляет компрессор вращаться быстрее. Компрессоры способны вращаться со скоростью, превышающей 50,000-60,000 оборотов в минуту. Компрессор, вращающийся со скоростью 50,000 оборотов в минуту, способен повысить давление с шести до девяти дюймов на квадратный дюйм (PSI). Это дополнительная прибавка с шести до девяти фунтов на квадратный дюйм. Атмосферное давление на уровне моря составляет 14,7 фунтов на квадратный дюйм, так что типичный эффект от применения компрессора – это увеличение подачи воздуха в двигатель примерно на 50 процентов.
Постольку поскольку воздух сжимается, он становится более горячим, а это значит, что он теряет свою плотность и не может столь сильно расширяться во время взрыва. Это обозначает, что он не может высвободить столько же энергии, сколько высвобождается при воспламенении свечой зажигания более холодной топливно-воздушной смеси. Для того чтобы компрессор работал на пике своей эффективности, сжатый воздух на выходе из компрессора должен быть охлажден перед подачей во впускной коллектор. Интеркулер несет ответственность за данный процесс охлаждения. Интеркуллеры бывают двух констуркций: «воздух-воздух» и «воздух-жидкость». Оба работают по принципу радиатора, с более холодным воздухом или жидкостью, циркулирующей по системе трубок или каналов. Горячий воздух, выходя из компрессора, попадает в трубки интеркулера и охлаждается там. Снижение температуры воздуха увеличивает его плотность, что делает плотнее заряд, поступающий в камеру сгорания.
Далее мы рассмотрим различные типы компрессоров.

Существует три вида компрессоров: роторный, двухвинтовой и центробежный. Главное отличие между ними заключается в способе подачи воздуха во впускной коллектор двигателя. Роторный и двухвинтовой компрессоры используют различные типы кулачковых валов, а центробежный компрессор – крыльчатку, которая увлекает воздух внутрь. Хотя все эти конструкции обеспечивают прибавку мощности, они значительно отличаются по своей эффективности. Каждый из этих типов компрессоров может быть доступен в различных размерах, в зависимости от того, какого результата хотите вы достичь – просто повысить мощность автомобиля или подготовить его к участию в гонках.
Конструкция роторного компрессора является самой древней. Братья Филандер и Фрэнсис Рутс в 1860 году запатентовали конструкцию своего компрессора в качестве машины, способной обеспечивать вентиляцию в шахтах. В 1900 году Готтлиб Вильгельм Даймлер включил роторный компрессор в конструкцию автомобильного двигателя.

Так как кулачковые валы вращаются, воздух, находящийся в пространстве между кулачками, оказывается между стороной наполнения и напорной стороной. Большое количество воздуха перемещается во впускной коллектор и создает условия для образования положительного давления. По этой причине рассматриваемая конструкция является не чем иным, как объемным нагнетателем, а не компрессором, при этом термин «нагнетатель» по-прежнему часто используется для описания всех компрессоров.
Роторные компрессоры, как правило, имеют довольно большие размеры и располагаются в верхней части двигателя. Они популярны в автомобилях дрэгстеров и роддеров, поскольку зачастую выступают за габариты капотов. Тем не менее, они являются наименее эффективными компрессорами по двум причинам:
Они существенно увеличивают вес транспортного средства.
Они создают дискретный прерывистый воздушный поток, а не сглаженный и непрерывный.

Двухвинтовой компрессор работает, проталкивая воздух через два ротора, напоминающих набор червячных передач. Как и в роторном компрессоре, воздух внутри двухвинтового компрессора оказывается в полостях между лопастями роторов. Но двухвинтовой компрессор сжимает воздух внутри корпуса роторов. Это происходит за счет того, что роторы имеют коническую форму, при этом воздушные карманы уменьшаются в размерах по мере продвижения воздуха из стороны наполнения в напорную сторону. Воздушные полости сжимаются, и воздух выдавливается в меньшее пространство.

Это делает двухвинтовой компрессор более эффективным, но они стоят дороже, потому что винтовые роторы требуют дополнительной точности в ходе процесса производства. Некоторые типы двухвинтовых компрессоров располагаются над двигателем, подобно роторному компрессору типа Roots. Они также порождают много шума. Сжатый воздух на выходе из компрессора издает сильный свист, который следует приглушить с помощью специальных методов поглощения шума.

Центробежный компрессор – это крыльчатка, напоминающая собой ротор, которая вращается с очень высокой скоростью и нагнетает воздух в небольшой корпус компрессора. Скорость вращения крыльчатки может достигать 50,000-60,000 оборотов в минуту. Воздух, попадающий в центральную часть крыльчатки, под действием центробежной силы увлекается к ее краю. Воздух покидает крыльчатку с высокой скоростью, но под низким давлением. Диффузор – множество стационарно расположенных вокруг крыльчатки лопаток, которое преобразует высокоскоростной поток воздуха с низким давлением в поток воздуха с малой скоростью, но высоким давлением. Скорость молекул воздуха, встретивших на своем пути лопатки диффузора, уменьшается, что влечет за собой увеличение давления воздуха.

Центробежные компрессоры являются наиболее эффективными и самым распространенными устройствами из всех систем принудительного повышения давления. Они компактные, легкие и устанавливаются на передней части двигателя, а не сверху. Они также издают характерный свист по мере роста количества оборотов двигателя, способный заставить случайных прохожих на улице поворачивать головы в сторону вашего автомобиля.
Monte Carlo и Mini-Cooper S – два автомобиля, которые доступны в версиях с компрессором. Любой из рассмотренных выше типов компрессоров может быть добавлен к транспортному средству как дополнительная опция. Несколько компаний предлагают комплекты, состоящие из всех необходимых частей для собственноручного дооснащения автомобилей компрессорами. Такие доработки также являются неотъемлемой частью культуры «машин для фана» (смешных машинок) и автомобилей из мира спорта «Fuel Racing». Некоторые производители даже включают компрессоры в оснащение своих серийных моделей автомобилей.
Далее мы узнаем обо всех преимуществах компрессора, установленного в ваш автомобиль.

Преимущества компрессора
Самое главное преимущество компрессора – это увеличение мощности двигателя, измеряемой в лошадиных силах. Добавьте компрессор к любому обычному автомобилю или грузовику, и он станет вести себя как автомобиль с двигателем большего внутреннего объема или просто как с более мощным двигателем. Но как узнать, какой из нагнетателей выбрать – механический компрессор или турбокомпрессор? Этот вопрос горячо обсуждался авто инженерами и энтузиастами, но, в целом, механические компрессоры имеют несколько преимуществ над турбокомпрессорами. Механические компрессоры лишены такого недостатка как лага (отставания) двигателя – термина, используемого для описания времени, прошедшего с момента нажатия водителем педали газа до момента ответа двигателя на это внешнее воздействие. Турбокомпрессоры, к сожалению, подвержены явлению отставания, постольку поскольку требуется некоторое время, прежде чем выхлопные газы достигнут скорости, достаточной для полноценного раскручивания крыльчатки турбины. Механические компрессоры не имеют такого лага, так как они приводятся в действие непосредственно от коленчатого вала двигателя. Одни компрессоры наиболее эффективны при работе в диапазоне низких скоростей вращения коленчатого вала, в то время как другие раскрывают весь свой потенциал лишь на высоких оборотах. Например, роторный и двухвинтовой компрессоры обеспечивают большую мощность на низких оборотах. Центробежные компрессоры, которые становятся все более эффективными по мере роста скорости вращения крыльчатки, обеспечивают большую мощность в диапазоне высоких оборотов.
Установка турбокомпрессора требует обширной переделки выпускной системы двигателя, в том время как механические компрессоры могут быть легко привинчены к передней части двигателя или сверху. Это делает их дешевле в установке и проще в эксплуатации и обслуживании.
Наконец, при использовании компрессора не требуется никакой специальной процедуры остановки двигателя. Это обусловлено тем, что они не смазываются моторным маслом и могут быть остановлены привычным образом. Турбокомпрессоры должны отработать на холостом ходу 30 секунд и более для того, чтобы дать возможность моторному маслу остыть. С учетом сказанного, для компрессоров имеет важное значение предварительный прогрев, так как они работают наиболее эффективно при нормальной рабочей температуре двигателя.
Компрессоры являются характерной составляющей частью двигателей внутреннего сгорания самолетов. Это имеет смысл, если учесть, что самолеты проводят большую часть своего времени на больших высотах, где значительно меньше кислорода доступно для сгорания. Внедрение компрессоров позволило самолетам летать на большей высоте без снижения производительности двигателя.
Компрессоры, установленные на авиационные двигатели, работают на основе тех же самых принципов, которые заложены в конструкцию автомобильных компрессоров. Компрессоры получают энергию непосредственно от вала двигателя и способствуют подаче в камеру сгорания смеси, находящейся под давлением.
Далее рассмотрим некоторые недостатки компрессоров.

Самый большой недостаток компрессоров является также и их определяющей характеристикой: постольку поскольку компрессор приводится в движение коленчатым валом двигателя, он отнимает несколько лошадиных сил у двигателя. Компрессор может потреблять до 20 процентов общей выходной мощностью двигателя. Но так как компрессор способен прибавить до 46 процентов мощности, большинство автолюбителей склоняется к тому, что игра стоит свеч. Компрессор дает дополнительную нагрузку на двигатель, который должен быть достаточно прочным, чтобы выдерживать дополнительный импульс и более сильные взрывы в камере сгорания. Большинство производителей учитывают это и создают усиленные узлы для двигателей, предназначенных для работы в паре с компрессором. Это в свою очередь удорожает автомобиль. Компрессоры также дороже в обслуживании, а большинство производителей предлагают использовать высокооктановое горючее премиум класса.
Несмотря на свои недостатки, нагнетатели по-прежнему являются наиболее экономически эффективным способом увеличения количества лошадиных сил. Компрессор может дать от 50 до 100 процентов увеличения мощности, что делает его находкой для гоночных автомобилей, автомобилей, перевозящих тяжелые грузы, а также для водителей, желающих получить от вождения своего автомобиля новую порцию острых ощущений.

Ссылка на основную публикацию
Adblock
detector