Разница между нулем и заземлением - Строительство домов и бань
18 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Разница между нулем и заземлением

Чем отличается ноль от заземления?

Функция заземления и зануления одна – защита человека от поражения электрическим током. Оголилась токоведущая жила, произошла утечка тока на корпус электроприбора, повредился корпус розетки – подобная неполадка может привести к неприятным последствиям.

Избежать этого помогут рассматриваемые защитные приспособления, которые призваны нейтрализовать опасный фактор, обеспечить безопасность человека и его имущества. В статье расскажем про заземление и зануление в чем разница и сходство, рассмотрим их назначение и схемы монтажа.

В чем разница между занулением и заземлением?

Удобнее всего рассматривать отличие заземления от зануления на примере подключения бытовых электроприборов. Современные дома оборудованы трехпроводной электропроводкой, где проводник РЕ является заземляющим и не зависит от проводника рабочего нуля N. Таким образом, корпус электроприбора, соединенный с РЕ-проводником, получает надежную связь с землей – заземление.

Схема зануления с указанием расщепления на N и РЕ на клеммнике щитка

Старые постройки имеют двухпроводное электроснабжение, состоящее из проводника L – фазы, N – рабочего нуля. N выводится от заземляющей шины в общедомовом или подъездном электрощите. Изначально он называется PEN-проводником и может быть расщеплен на N и РЕ.

Расщепление должно быть сделано до ввода в квартирный распределительный щиток, либо непосредственно в щитке. Далее провод РЕ соединяется с корпусом электроприбора также, как в первом варианте, но такая схема будет называться занулением, так как связь с землей не является прямой, а осуществляется посредством нулевого проводника.

Какая система надежнее?

Для сравнения можно ознакомиться с несколькими пунктами:

  • Как показывает практика, нередки случаи обрыва или отгорания нулевого провода в электрощите, что делает зануляющую систему защиты не действующей. В этом случае появляется реальная угроза поражения человека электрическим током. Во избежание подобной проблемы, места коммутации нужно периодически осматривать, что создает определенные неудобства.

Подгоревший нулевой провод в распределительном щитке близок к полному обрыву

  • Заземляющая система избавлена от указанных недостатков, так как РЕ-проводник не участвует в общей работе электропроводки и задействуется только при возникновении утечки, чтобы отвести ток на землю.
  • Устройство зануления требует определенных знаний и навыков работы с электрическими цепями, что в случае их отсутствия также причиняет некоторые неудобства, связанные с необходимостью вызова электрика.

Принимая во внимание изложенное, можно сделать вывод, что система заземления более надежна и безопасна, поэтому лучше использовать ее. Однако в случае отсутствия такой возможности, можно прибегнуть к альтернативному варианту. Запрещается производить зануление непосредственно в розетке путем установки перемычки между нулевым разъемом и заземляющей скобой. Это создает угрозу для человека (поражение электротоком) и для бытовой техники.

Устройство защитных токовых отводов при работе с трехфазным электрическим оборудованием

Коммутация трехфазных потребителей электроэнергии отличается от подключения обычной бытовой электротехники, поэтому устройство защитных систем осуществляется иным способом. При этом не нужно путать нулевой или заземляющий провод, участвующий в системе управления, то есть, задействованный в схему пуска и остановки агрегата, с защитным проводником, предназначенным для отведения опасного разряда на землю.

Оформление, разводка, подключение электрооборудования

Работы производятся в несколько этапов:

  1. По периметру помещения обустраивается отдельная линия (трасса), выполненная из узкой металлической полосы 40х3 мм или медного провода сечением 16 мм.кв.
  2. На ней в скрытом месте монтируется шина (желательно медная) с контактными приспособлениями (шпильками или отверстиями для болтовых соединений). Допускается использование металлической шины, но в этом случае приваривание шпилек – обязательное условие.
  3. Эта линия соединяется с контуром заземления или зануления, выведенным отдельным проводом от распределительного щита и имеющим надежную связь с землей либо прямую, либо через рабочий ноль
  4. Корпуса всех потребителей (трехфазных электродвигателей) через медный провод соединяются с описанной шиной.

При возникновении короткого замыкания от утечки напряжения из-за нарушения изоляции или «пробития» одной из фаз на корпус заземленного электрооборудования, ток сразу будет уходить в землю по пути наименьшего сопротивления, то есть через соединенную с рабочим нулем или землей жилу. Это сохранит человека от поражения электротоком при касании корпуса прибора.

Устройство зануления допускается только в случае отсутствия возможности коммутации с земляным контуром. Во всех иных случаях правильным считается только защитное заземление.

Агрегат через медный провод соединен с шиной, смонтированной от заземляющей трассы

Обязательное использование дополнительных защитных устройств

Описанные заземляющие и зануляющие системы эффективны при возникновении значительных утечек или коротких замыканий на корпус электроприборов. Однако для достижения полной безопасности при обслуживании оборудования необходимо применение дополнительных средств защиты, обеспечивающих разрыв электрической цепи при возникновении нарушений их работы.

На производственных предприятиях это могут быть блоки автоматики (контроля изоляции БКИ или максимальной токовой защиты). Но наиболее распространенными средствами, как на производстве, так и в быту, являются автоматические выключатели и устройства защитного отключения, которые:

  • обеспечат обесточивание электрической цепи в случае возникновения неполадок;
  • защитят пользователя от поражения электрическим током;
  • предохранят технику от возгорания.

Такие приборы могут иметь исполнение для однофазных или трехфазных систем. Они бывают:

  • однополюсные – устанавливаются на одну из линий (ноль, фаза);
  • двухполюсные – устанавливаются на оба провода электропроводки;
  • многополюсные (три и более) – используются при трехфазном напряжении.

Практическая рекомендация: оба устройства ВА и УЗО являются средствами защиты, но выполняют разные функции, поэтому желательно применять их вместе.

Автоматический выключатель производит отключение при превышении токовой нагрузки номинального значения, указанного на корпусе прибора. УЗО контролирует состояние электросети и срабатывает при появлении самых незначительных утечек тока.

Практический совет: рекомендуется устанавливать УЗО в цепи всех мощных бытовых потребителей (10-30 мА) и общее УЗО в квартирном щитке (300 мА).

Возможные неисправности электрической сети и действие защитных устройств при их возникновении

Вниманию пользователей представляется описание самых распространенных неполадок, возникающих при эксплуатации электроприборов. Для удобства рассмотрения данного вопроса, информация сведена в таблицу:

№ п/пНеисправностиЗащита
1.Нарушение изоляции электропроводки в стене или потолкеЗаземление (зануление) УЗО
2.Утечка тока на корпус из-за влажности, нарушения контакта, перетирания провода-/-/-, УЗО
3.Короткое замыкание-/-/-, выключатель автоматический
4.Выход из строя ТЭНа, двигателя (пробой фазы на корпус, в том числе через воду)-/-/-, ВА
5.Действие через корпус прибора тока от конденсаторов системы электроники-/-/-, УЗО

При правильном устройстве защитного заземления (зануления) и применении дополнительных средств защиты, указанные факторы не смогут причинить значительного вреда имуществу или здоровью человека.

Ошибки, допускаемые при монтаже

Наиболее распространенными ошибками при устройстве систем защиты бывают следующие:

  1. Недостаточный контакт жилы, соединяющей корпус электроприбора с заземляющей шиной. В этом случае эффективность защиты уменьшается. Запрещается осуществлять контакт с шиной заземления через скрутку. Соединение должно быть только болтовым
  2. Использование в качестве заземлителя трубопроводов отопительной или водопроводной системы. Утечки тока могут проявляться путем поражения через воду или прикосновение к трубам. Кроме того от этого могут пострадать соседи.
  3. В случае отсутствия специального образования или навыков работы с электроприборами, лучше доверить устройство защитных систем опытным специалистам.
  4. Применение в качестве жилы между потребителем и заземляющей шиной алюминиевого провода. Может произойти окисление и контакт будет утрачен.
  5. Неправильная коммутация зануляющего провода при расщеплении с рабочим нулем (фиксация под один зажим). Возможно отгорание проводника и выход из строя защитыУстройство зануления непосредственно в розетке или в распределительной коробке. При нарушении целостности или отключении рабочего нуля (вышел из строя автомат, отгорел контакт), прибор может оказаться под опасным напряжением.

Основные отличия между занулением и заземлением

Главное требование к любому электробытовому прибору — безопасность эксплуатации. Особенно это касается техники, контактирующей с водой. При отсутствии дополнительной защиты даже небольшая проблема с электропроводкой (прожог изоляционного слоя, пробивка между витками двигателя) опасны. На корпусе неисправного прибора появляется электрический потенциал. В этом случае человека или животное, прикоснувшихся к корпусу, может ударить током. Чтобы избежать этого, разработаны такие способы защиты, как зануление и заземление.

Задачи заземления

Искусственно созданный контакт между электроустановкой и землей называется заземлением. Его задача — понизить напряжение на корпусе устройства до безопасного для живых существ уровня. При этом большая часть тока отводится в грунт. Чтобы заземлительная система работала эффективно, ее сопротивление должно быть значительно ниже, чем на остальных участках цепи. Такое требование основывается на свойстве электрического тока всегда выбирать наименьшее сопротивление на своем пути.

Обратите внимание! Заземление используется исключительно в электросетях с изолированной нейтралью.

Тока замыкания иногда недостаточно при использовании заземлителя с относительно высоким для реакции защитных устройств сопротивлением. Поэтому еще одна задача заземлительной системы — рост аварийного тока замыкания.

Типы заземляющих устройств:

  1. Молниезащитные. Отводят импульсные токи, поступающие в систему в результате ударов молнии. Используются в молниеотводах и разрядниках.
  2. Рабочие. Предназначены для поддержания нормальной работоспособности электрических установок. Используются как в обычных, так и в аварийных ситуациях.
  3. Защитные. Защищают людей и животных от поражения током, проходящим по металлическим предметам в случае пробоя фазовых проводников.

Устройства заземления бывают естественными и искусственными:

  1. К естественным относят металлические изделия, основная функция которых не заключается в отводе тока в землю. К таким заземлителям относятся трубопроводы, железобетонные элементы зданий, обсадные магистрали и т.п.
  2. Искусственные заземлители — системы, созданные специально для отвода тока. Это стальные полосы, трубы, уголки и другие металлические элементы.

Для заземлительной системы нельзя использовать трубы, предназначенные для транспортировки горючих веществ (как газов, так и жидкостей), алюминиевые детали, кабельные оболочки. Также не подходят для этой цели предметы, покрытые антикоррозийным изоляционным слоем. Запрещено использовать как заземляющие проводники трубы водопровода и отопления.

Техническое исполнение систем заземления

Существует несколько схем соединения с разным составом защитных и рабочих проводников:

На разновидность заземления указывает первая буква в обозначении:

  • I — токоведущие элементы не касаются грунта;
  • T — нейтраль источника электропитания заземлена.

Способ заземления открытых проводников определяется по второй букве:

  • N — прямой контакт между местом заземления и источником питания;
  • T — прямая связь с грунтом.

После дефиса стоят буквы, указывающие на метод функционирования защитного PE и рабочего N нулевых проводников:

S — работа проводников обеспечивается единственным PEN-проводником;

C — имеется несколько проводников.

Система TN

Заземление разновидности TN включает подсистемы TN-C, TN-S, TN-C-S. Самая старая из этих подсистем — TN-C — применяется в 3-фазных четырехпроводных и 1-фазных двухпроводных электросетях. Такие сети обычно есть в старых строениях. При всей своей простоте и относительно невысокой стоимости система не обеспечивает достаточного уровня безопасности, а потому в новостройках не используется.

Подсистема TN-C-S применяется при реновациях старых зданий. Она актуальна там, где рабочий и защитный проводники объединены на вводе. Использование TN-C-S необходимо для реконструкции системы, когда в старом строении устанавливается компьютерное или телекоммуникационное оборудование. Данное заземление представляет собой переходный тип между TN-C и самой современной подсистемой — TN-S. TN-C-S — относительно безопасная и доступная финансово заземлительная схема.

Отличием подсистемы TN-S от других типов такого оборудования является местонахождение рабочего и нулевого проводников. Они установлены по отдельности, при этом нулевой защитный PE-проводник объединяет все имеющиеся токопроводящие элементы электрической установки. Во избежание дублирования создают трансформаторную подстанцию, оснащенную основным заземлением. Дополнительное преимущество подстанции состоит в возможности уменьшить протяженность проводника, идущего от входа кабеля в оборудование до заземлителя.

Система TT

В данной системе заземления токоведущие открытые элементы непосредственно контактируют с грунтом. При этом электроды не зависят от заземлительного устройства нейтрали подстанции. TT применяется, когда по техническим причинам нельзя построить систему TN.

Система IT

В этой системе нейтраль источника питания не касается земли или заземляется с помощью электроустановки с повышенным сопротивлением. Схема популярна в ситуациях, когда необходимо подключение чувствительной аппаратуры (больницы, лаборатории и т.п.).

Зануление

Процесс зануления состоит в объединении металлических элементов, не находящихся под напряжением с заземленной нейтралью понижающего источника 3-фазного тока. Также используют заземленный вывод генератора 1-фазного тока. Зануление используется с целью провоцирования короткого замыкания в случае пробоя изоляционного слоя или проникновения тока на нетоковедущий элемент оборудования. Смысл возникновения короткого замыкания в том, что после этого срабатывает автомат-выключатель, перегорают плавкие предохранители или включаются другие защитные средства. Зануление используется в электрических установках с глухозаземленной нейтралью.

Если установить на линию устройство защитного отключения, оно будет срабатывать из-за разницы сил тока на фазе и нуле. Установленный в дополнение к УЗО автомат-выключатель позволит срабатывать обоим устройствам в случае пробоя или же подключать наиболее быстро подключающийся элемент защиты.

При монтаже зануления следует иметь в виду, что короткое замыкание должно приводить к оплавлению предохранителя или отключению выключателя-автомата. Если этого не произойдет, свободное течение тока замыкания по электроцепи станет причиной появления напряжения на всех зануленных предметах, а не только на месте пробоя. Показатель напряжения — произведение сопротивления нуля на ток замыкания, что очень опасно при ударе током живого существа.

Читать еще:  Как почистить медное кольцо в домашних условиях

Необходимо внимательно следить за исправным состоянием нулевого проводника. При его обрыве возникает напряжение на всех зануленных элементах, поскольку они автоматически входят в контакт с фазой. По этой причине запрещена установка на нулевой проводник любых защитных устройств (помимо выключателей и предохранителей), из-за которых происходит разрыв при срабатывании.

Чтобы снизить опасность удара током при обрыве нулевого проводника, каждые 200 метров линии создаются дополнительные заземления, как и на концевых и вводных опорах. Уровень сопротивления на каждом новом заземлителе не должен быть выше 30 Ом.

Отличие заземления от нуля

Главной разницей между заземлением и занулением является назначение систем. Заземление нужно, чтобы быстро понизить напряжение до приемлемого уровня. Задача зануления — полностью отключить ток на участке, где возник пробой на корпус или другой нетоковедущий элемент. Зануление связано с уменьшением потенциала корпуса в период между замыканием и отключением подачи электричества.

В новостройках зануление не используют. В новых зданиях прокладывают 3-проводный кабель с фазой, нулем и землей (1-фазная система) или 5-проводный кабель (три фазы, ноль и земля) в 3-фазной системе. Чаще всего используется схема TN-S, но встречается и TN-C-S.

Нужно ли делать зануление в квартире

Применять зануление в целях защиты жильцов и электроустановок в квартире не стоит — бывают ситуации, когда холодильник (или другой прибор) занулен, и при этом случается пробой тока. Также нередко встречается некорректно выполненный электромонтаж (электрик ведь мог и перепутать провода и вместо нуля подключил фазу). В таких случаях бытовая техника выходит из строя еще до того, как сработает автомат-выключатель.

Установка устройства защитного отключения, дифференциального автомата или автомата-выключателя необходима только вместе с занулением.

Требования к заземлению и занулению

Все электроустановки и цепи, оснащенные изоляцией нулевого провода, нуждаются в монтаже защитной системы (занулении или заземлении).

Существует несколько правил, которых следует придерживаться при создании защитной системы:

  1. Зануление необходимо делать для установок с глухозаземленным проводником мощностью до 1000 вольт. Заземление в подобных системах не делают.
  2. Зануление следует снабжать трансформатором на 380 вольт. В зануленной системе вторичное напряжение не должно превышать 380 вольт, а понижающее — 42 вольт.
  3. При занулении допускается подключение от разделяющего трансформатора лишь к одному потребителю электроэнергии. Номинал тока защитного устройства — до 15 ампер. Зануление или заземление вторичной обмотки не допускается.
  4. При заземлении нуля в 3-фазной электроцепи нужно ставить защиту от пробоя тока. Монтировать ее в нулевом проводнике или фазе от нижнего напряжения.
  5. Защитное заземление или зануление необходимо создавать на расположенных на улице установках, а также в особо опасных условиях работы. Номинал напряжения составляет 42 вольта (переменный ток) или 110 вольт (постоянный ток).
  6. Для напряжения выше 380 вольт (постоянный ток) и 440 вольт (переменный ток) защита необходима вне зависимости от других условий.

  • корпуса электрических установок;
  • приводы оборудования;
  • каркасные части и металлоконструкции распредшкафов и щитов;
  • вторичные трансформаторные обмотки;
  • стальные кабельные оболочки;
  • шинопроводы;
  • тросы;
  • металлические трубы для проводки;
  • электрооборудование, установленное на движущихся элементах.

Что касается жилья, зануление и заземление необходимо для электрической бытовой техники мощностью более 1300 ватт. Заземлению для выравнивания потенциалов подлежат такие металлические изделия, как ванны и душевые поддоны, подвесные потолки.

Чтобы заземлить кондиционеры, электрические плиты или подобные им потребители электричества мощностью свыше 1300 ватт, используют выделенный проводник. Его следует соединить с нулем электросети.

Обратите внимание! Сечения фазного и нулевого проводника должны быть одинаковыми.

Подробный список электроустановок, на которых необходима защита путем заземления или зануления, указаны в Правилах устройства электроустановок. ПУЭ — официальный документ, в нем прописаны все нормативы. Документ также устанавливает перечень оборудования, для которого защита необязательна.

Создание системы заземления и зануления крайне важно, от этого зависит безопасность людей и сохранение имущества. Поэтому цена ошибки велика. Рекомендуется поручать эту работу только квалифицированным работникам.

Заземление и зануление: разбираемся в чем разница

Любая электроустановка должна быть заземлена. Это требование Правил устройства электроустановок (ПУЭ) одинаково распространяется на электроприборы с металлическим и пластиковым корпусом, устройства подключения и коммутации: распределительные и вводные щитки, розетки, выключатели.

Для чего необходимо заземление

Если энергоснабжение в помещении организовано в соответствии с ПУЭ, на входе, в распределительном щитке установлены защитные автоматы.

Эти выключатели срабатывают при превышении установленной силы тока: нагревается биметаллическая пластина, происходит ее деформация, и контакты автомата механически размыкаются.

Важно! Именно для этого, автоматы устанавливаются в разрыв фазного проводника. Нулевая шина может быть подключена напрямую.

Происходит разрыв цепи, находящейся под напряжением, электроустановка (или вся цепь) обесточивается, обеспечивая безопасность. Как это работает на практике, и что такое заземление в данной цепочке?

Заземление, это электрический контакт между линией, специально выделенной в электросети, и реальной (физической) землей. То есть шина заземления имеет электрический контакт с грунтом. Одновременно, любая установка, вырабатывающая или распределяющая электрический ток, соединена нулевым проводом с той же землей.

Мы с вами рассматриваем однофазные сети, в которых для питания используются две линии: ноль и фаза. Трехфазные системы в быту применяются редко, поэтому знание этих систем необходимо лишь профессионалам.

Даже если к вам в дом заведено три фазы (такое встречается в частном секторе), для конечного потребления все равно используется два провода: ноль и фаза.

Допустим, у вашей электроустановки (холодильник, бойлер, стиральная машина), особенно с металлическим корпусом, произошла утечка фазы. То есть, провод под напряжением касается корпуса (отсоединился контакт, нарушена изоляция, протекла вода). Прикоснувшись к электроприбору, вы будете поражены электрическим током. Кроме того, сопротивление в точке касания мизерное, вследствие чего произойдет мгновенный нагрев провода, и возгорание электроприбора.

Если ваш бойлер заземлен, электрический ток потечет по пути наименьшего сопротивления, то есть по контуру: фаза — «земля» — нулевая шина. Сила тока спонтанно возрастет, и сработает аварийное отключение в автомате защиты. Никто не пострадает, материальный ущерб не будет нанесен.

Если вы имеете поверхностные знания устройства электроустановок, возникает вопрос: а зачем нужно заземление, если то же самое произойдет между фазным и нулевым проводом? И собственно, чем отличается заземление от зануления?

Разберем ситуацию со схемами

С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.

Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза — коричневого или белого цвета.
  2. Рабочий ноль — синего цвета.
  3. Защитное заземление — желто-зеленая оболочка.

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

Как отличить рабочий ноль и защитное заземление

Разумеется, проверять сопротивление между «нулевым» и «земляным» проводами не следует, особенно если энергосистема под напряжением. В общую щитовую вас тоже никто не пустит. Поэтому, проверять правильность разведения нуля и земли, будем с помощью мультиметра (бытового тестера).

Поскольку точки ввода заземляющих устройств (ноль на подстанции и шина заземления в доме) находятся на удалении друг от друга, между ними есть определенное сопротивление. Грунт, даже влажный, не является идеальным проводником. Если организовать электрическую цепь без нагрузки, мы увидим разницу в потенциалах.

Подключаем измерительный прибор к фазному контакту и рабочему нолю. На схеме это будет цепь «А». Фиксируем значение.

Сразу же подключаем тестер к фазному проводу и контакту защитного ноля. На схеме это цепь «Б». Разницы в потенциале нет: прибор зафиксирует одинаковое значение напряжения. Почему так произошло? При объединении рабочего и защитного ноля, ток в обоих вариантах измерения, фактически протекает по одному и тому же проводу. Сопротивление не меняется, потерь нет, падения напряжения не происходит.

Если ваши результаты измерения показали одинаковое напряжение – проводка подключена с нарушениями Правил устройства электроустановок.

Что произойдет при разнесенном рабочем ноле и защитном заземлении?

При подключении прибора к фазе и нолю, падения напряжения практически нет (на схеме это цепь «А»). Вы увидите действительное значение рабочего напряжения в сети. Подключив тестер к фазному проводу и защитному заземлению, вы замеряете потенциал в длинной цепи. Чтобы замкнуть круг, электрический ток (на схеме цепь «Б») проходит по реальному грунту между точками физических контактов «земли». Учитывая сопротивление грунта, произойдет падение напряжения от 5% до 10%. Прибор покажет более низкое напряжение.

Это говорит о том, что ваша электропроводка организована правильно, у вас имеется настоящее разнесенное защитное заземление. При наличии правильно подобранных автоматов, электрооборудование и пользователи надежно защищены.

Мы разобрались, в чем разница между заземлением и занулением. Польза от правильной организации электроснабжения очевидна.

А как быть, если в вашем доме вообще не предусмотрено защитное заземление

Понятное дело, при проведении капитального ремонта, электрики заменят проводку в соответствии с Правилами устройства электроустановок. Как минимум, в вашем вводном щитке появится три независимых провода: фаза, рабочий ноль и защитное заземление. Останется лишь заменить проводку в розеточной сети.

Но капитальный ремонт может быть выполнен через несколько лет, а вы уже сегодня пользуетесь бойлером и стиральной машинкой без заземления, или того хуже — с защитным занулением. Выход один: организовывать заземление самостоятельно. Если вы живете в частном доме — техническая сторона вопроса существенно упрощается. А вот для многоэтажек, стоимость и сложность работ зависит от этажа.

Как вариант — организовать вскладчину с соседями шину заземления, с распаячными коробками на каждой лестничной клетке.

Шина должна быть неразъемной до самого ввода в грунт. Вблизи фундамента, желательно не в дорожном покрытии, а на клумбе, организуется контур заземления согласно Правилам устройства электроустановок. Каждый жилец подъезда может подключится общей шине и завести «землю» в квартиру. Далее есть два варианта:

  1. Организовать контактную группу заземления в распределительном щитке, и заменить всю электропроводку на трехжильную.
  2. Внутри плинтуса, протянуть земляной кабель под каждую розетку, и завести его в монтажные коробочки.
Читать еще:  Гост виды конструкторских документов

При любом способе, вы защитите и свои электроприборы, и главное — свое здоровье.

Важно! Как нельзя организовывать защитное заземление

То, что «землю» нельзя брать из рабочего ноля, понятно из нашего материала. Есть любители заземлиться на трубы водоснабжения или отопления. Теоретически – стальная труба имеет связь с грунтом. На практике, по стояку могут быть вставки из полипропиленовых труб, и никакого контакта с «реальной землей» нет.

Кроме того, что вы не получаете надежного заземления, ставятся под удар соседи, которые могут получить удар током, просто взявшись за батарею отопления.

Видео по теме

Чем отличается ноль от заземления?

Функция заземления и зануления одна – защита человека от поражения электрическим током. Оголилась токоведущая жила, произошла утечка тока на корпус электроприбора, повредился корпус розетки – подобная неполадка может привести к неприятным последствиям.

Избежать этого помогут рассматриваемые защитные приспособления, которые призваны нейтрализовать опасный фактор, обеспечить безопасность человека и его имущества. В статье расскажем про заземление и зануление в чем разница и сходство, рассмотрим их назначение и схемы монтажа.

В чем разница между занулением и заземлением?

Удобнее всего рассматривать отличие заземления от зануления на примере подключения бытовых электроприборов. Современные дома оборудованы трехпроводной электропроводкой, где проводник РЕ является заземляющим и не зависит от проводника рабочего нуля N. Таким образом, корпус электроприбора, соединенный с РЕ-проводником, получает надежную связь с землей – заземление.

Схема зануления с указанием расщепления на N и РЕ на клеммнике щитка

Старые постройки имеют двухпроводное электроснабжение, состоящее из проводника L – фазы, N – рабочего нуля. N выводится от заземляющей шины в общедомовом или подъездном электрощите. Изначально он называется PEN-проводником и может быть расщеплен на N и РЕ.

Расщепление должно быть сделано до ввода в квартирный распределительный щиток, либо непосредственно в щитке. Далее провод РЕ соединяется с корпусом электроприбора также, как в первом варианте, но такая схема будет называться занулением, так как связь с землей не является прямой, а осуществляется посредством нулевого проводника.

Какая система надежнее?

Для сравнения можно ознакомиться с несколькими пунктами:

  • Как показывает практика, нередки случаи обрыва или отгорания нулевого провода в электрощите, что делает зануляющую систему защиты не действующей. В этом случае появляется реальная угроза поражения человека электрическим током. Во избежание подобной проблемы, места коммутации нужно периодически осматривать, что создает определенные неудобства.

Подгоревший нулевой провод в распределительном щитке близок к полному обрыву

  • Заземляющая система избавлена от указанных недостатков, так как РЕ-проводник не участвует в общей работе электропроводки и задействуется только при возникновении утечки, чтобы отвести ток на землю.
  • Устройство зануления требует определенных знаний и навыков работы с электрическими цепями, что в случае их отсутствия также причиняет некоторые неудобства, связанные с необходимостью вызова электрика.

Принимая во внимание изложенное, можно сделать вывод, что система заземления более надежна и безопасна, поэтому лучше использовать ее. Однако в случае отсутствия такой возможности, можно прибегнуть к альтернативному варианту. Запрещается производить зануление непосредственно в розетке путем установки перемычки между нулевым разъемом и заземляющей скобой. Это создает угрозу для человека (поражение электротоком) и для бытовой техники.

Устройство защитных токовых отводов при работе с трехфазным электрическим оборудованием

Коммутация трехфазных потребителей электроэнергии отличается от подключения обычной бытовой электротехники, поэтому устройство защитных систем осуществляется иным способом. При этом не нужно путать нулевой или заземляющий провод, участвующий в системе управления, то есть, задействованный в схему пуска и остановки агрегата, с защитным проводником, предназначенным для отведения опасного разряда на землю.

Оформление, разводка, подключение электрооборудования

Работы производятся в несколько этапов:

  1. По периметру помещения обустраивается отдельная линия (трасса), выполненная из узкой металлической полосы 40х3 мм или медного провода сечением 16 мм.кв.
  2. На ней в скрытом месте монтируется шина (желательно медная) с контактными приспособлениями (шпильками или отверстиями для болтовых соединений). Допускается использование металлической шины, но в этом случае приваривание шпилек – обязательное условие.
  3. Эта линия соединяется с контуром заземления или зануления, выведенным отдельным проводом от распределительного щита и имеющим надежную связь с землей либо прямую, либо через рабочий ноль
  4. Корпуса всех потребителей (трехфазных электродвигателей) через медный провод соединяются с описанной шиной.

При возникновении короткого замыкания от утечки напряжения из-за нарушения изоляции или «пробития» одной из фаз на корпус заземленного электрооборудования, ток сразу будет уходить в землю по пути наименьшего сопротивления, то есть через соединенную с рабочим нулем или землей жилу. Это сохранит человека от поражения электротоком при касании корпуса прибора.

Устройство зануления допускается только в случае отсутствия возможности коммутации с земляным контуром. Во всех иных случаях правильным считается только защитное заземление.

Агрегат через медный провод соединен с шиной, смонтированной от заземляющей трассы

Обязательное использование дополнительных защитных устройств

Описанные заземляющие и зануляющие системы эффективны при возникновении значительных утечек или коротких замыканий на корпус электроприборов. Однако для достижения полной безопасности при обслуживании оборудования необходимо применение дополнительных средств защиты, обеспечивающих разрыв электрической цепи при возникновении нарушений их работы.

На производственных предприятиях это могут быть блоки автоматики (контроля изоляции БКИ или максимальной токовой защиты). Но наиболее распространенными средствами, как на производстве, так и в быту, являются автоматические выключатели и устройства защитного отключения, которые:

  • обеспечат обесточивание электрической цепи в случае возникновения неполадок;
  • защитят пользователя от поражения электрическим током;
  • предохранят технику от возгорания.

Такие приборы могут иметь исполнение для однофазных или трехфазных систем. Они бывают:

  • однополюсные – устанавливаются на одну из линий (ноль, фаза);
  • двухполюсные – устанавливаются на оба провода электропроводки;
  • многополюсные (три и более) – используются при трехфазном напряжении.

Практическая рекомендация: оба устройства ВА и УЗО являются средствами защиты, но выполняют разные функции, поэтому желательно применять их вместе.

Автоматический выключатель производит отключение при превышении токовой нагрузки номинального значения, указанного на корпусе прибора. УЗО контролирует состояние электросети и срабатывает при появлении самых незначительных утечек тока.

Практический совет: рекомендуется устанавливать УЗО в цепи всех мощных бытовых потребителей (10-30 мА) и общее УЗО в квартирном щитке (300 мА).

Возможные неисправности электрической сети и действие защитных устройств при их возникновении

Вниманию пользователей представляется описание самых распространенных неполадок, возникающих при эксплуатации электроприборов. Для удобства рассмотрения данного вопроса, информация сведена в таблицу:

№ п/пНеисправностиЗащита
1.Нарушение изоляции электропроводки в стене или потолкеЗаземление (зануление) УЗО
2.Утечка тока на корпус из-за влажности, нарушения контакта, перетирания провода-/-/-, УЗО
3.Короткое замыкание-/-/-, выключатель автоматический
4.Выход из строя ТЭНа, двигателя (пробой фазы на корпус, в том числе через воду)-/-/-, ВА
5.Действие через корпус прибора тока от конденсаторов системы электроники-/-/-, УЗО

При правильном устройстве защитного заземления (зануления) и применении дополнительных средств защиты, указанные факторы не смогут причинить значительного вреда имуществу или здоровью человека.

Ошибки, допускаемые при монтаже

Наиболее распространенными ошибками при устройстве систем защиты бывают следующие:

  1. Недостаточный контакт жилы, соединяющей корпус электроприбора с заземляющей шиной. В этом случае эффективность защиты уменьшается. Запрещается осуществлять контакт с шиной заземления через скрутку. Соединение должно быть только болтовым
  2. Использование в качестве заземлителя трубопроводов отопительной или водопроводной системы. Утечки тока могут проявляться путем поражения через воду или прикосновение к трубам. Кроме того от этого могут пострадать соседи.
  3. В случае отсутствия специального образования или навыков работы с электроприборами, лучше доверить устройство защитных систем опытным специалистам.
  4. Применение в качестве жилы между потребителем и заземляющей шиной алюминиевого провода. Может произойти окисление и контакт будет утрачен.
  5. Неправильная коммутация зануляющего провода при расщеплении с рабочим нулем (фиксация под один зажим). Возможно отгорание проводника и выход из строя защитыУстройство зануления непосредственно в розетке или в распределительной коробке. При нарушении целостности или отключении рабочего нуля (вышел из строя автомат, отгорел контакт), прибор может оказаться под опасным напряжением.

Самый скандальный вопрос — заземление (зануление)

Говоря в общем, можно заметить, что великая и ужасная сила электричества давно описана, подсчитана, занесена в толстые таблицы. Нормативная база, определяющая пути синусоидальных электрических сигналах частоты 50 Гц способна ввергнуть любого неофита в ужас своим объемом. И, несмотря на это, любому завсегдатаю технических форумов давно известно — нет более скандального вопроса, чем заземление.

Масса противоречивых мнений на деле мало способствует установлению истины. Тем более, вопрос этот на самом деле серьезный, и требует более пристального рассмотрения.

Если опустить вступление «библии электрика» (ПУЭ), то для понимания технологии заземления нужно обратиться (для начала) к Главе 1.7, которая так и называется «Заземление и защитные меры электробезопастности».

В п. 1.7.2. ПУЭ сказано:

Электроустановки в отношении мер электробезопасности разделяются на:

  • электроустановки выше 1 кВ в сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю), ;
  • электроустановки выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю);
  • электроустановки до 1 кВ с глухозаземленной нейтралью;
  • электроустановки до 1 кВ с изолированной нейтралью.

В подавляющем большинстве жилых и офисных домов России используется глухозаземленная нейтраль . Пункт 1.7.4. гласит:

Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).

Термин не совсем понятный на первый взгляд — нейтраль и заземляющее устройство на каждом шагу в научно-популярной прессе не встречаются. Поэтому, ниже все непонятные места будут постепенно объяснены.

Введем немного терминов — так можно будет по крайней мере говорить на одном языке. Возможно, пункты будут казаться «вытащенными из контекста». Но ПУЭ не художественная литература, и такое раздельное использование должно быть вполне обоснованно — как применение отдельных статей УК. Впрочем, оригинал ПУЭ вполне доступен как в книжных магазинах, так и в сети — всегда можно обратиться к первоисточнику.

  • 1.7.6. Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством.
  • 1.7.7. Защитным заземлением называется заземление частей электроустановки с целью обеспечения электробезопасности.
  • 1.7.8. Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки.
  • 1.7.9. Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока.
  • 1.7.12. Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей.
  • 1.7.16. Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем.
  • 1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником.
  • 1.7.18. Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока. Совмещенным нулевым защитным и нулевым рабочим проводником (РЕN) в электроустановках до 1 кВ называется проводник, сочетающий функции нулевого защитного и нулевого рабочего проводников. В электроустановках до 1 кВ с глухозаземленной нейтралью нулевой рабочий проводник может выполнять функции нулевого защитного проводника.

Итак, прямо из терминов ПУЭ следует простой вывод. Различия между «землей» и «нулем» очень небольшие. На первый взгляд (сколько копий сломано на этом месте). По крайней мере, они обязательно должны быть соединены (или даже могут быть выполнены «в одном флаконе»). Вопрос только, где и как это сделано.

Попутно отметим п. 1.7.33.

Заземление или зануление электроустановок следует выполнять:

  • при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока — во всех электроустановках (см. также 1.7.44 и 1.7.48);
  • при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока — только в помещениях с повышенной опасностью, особо опасных и в наружных установках.
Читать еще:  Формула чугуна в химии

Однако, когда речь идет о заземлении, дело не только в напряжении питания. Хорошая иллюстрация этого — ВСН 59-88 (Госкомархитектуры) «Электрооборудование жилых и общественных зданий. Нормы проектирования» Выдержка из главы 15. Заземление (зануление) и защитные меры безопасности:

15.4. Для заземления (зануления) металлических корпусов бытовых кондиционеров воздуха, стационарных и переносных бытовых приборов класса I (не имеющих двойной или усиленной изоляции), бытовых электроприборов мощностью св. 1,3 кВт, корпусов трехфазных и однофазных электроплит, варочных котлов и другого теплового оборудования, а также металлических нетоковедущих частей технологического оборудования помещений с мокрыми процессами следует применять отдельный проводник сечением, равным фазному, прокладываемый от щита или щитка, к которому подключен данный электроприемник, а в линиях питающих медицинскую аппаратуру, — от ВРУ или ГРЩ здания. Этот проводник присоединяется к нулевому проводнику питающей сети. Использование для этой цели рабочего нулевого проводника запрещается.

Получается нормативный парадокс. Одним из видимых на бытовом уровне результатов стало комплектование стиральных машин «Вятка-автомат» моточком одножильного алюминиевого провода с требованием выполнить заземление (руками сертифицированного специалиста).

И еще один интересный момент:. 1.7.39. В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается.

Практически это означает — хочешь «заземлить» — сначала «занули». Кстати, это имеет прямое отношение к знаменитому вопросу «забатареивания» — которое по совршенно непонятной причине ошибочно считается лучше зануления (заземления).

Следующий аспект, которые необходимо рассмотреть — числовые параметры заземления. Так как физически это не более чем проводник (или множество проводников), то главной его характеристикой будет сопротивление.

1.7.62. Сопротивление заземляющего устройства, к к оторому присоединены нейтрали генераторов или трансформаторов или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений нулевого провода ВЛ до 1 кВ при количестве отходящих линий не менее двух. При этом сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более: 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Для меньшего напряжения допустимо большее сопротивление. Это вполне понятно — первая цель заземления — обеспечить безопасность человека в классическом случае попадания «фазы» на корпус электроустановки. Чем меньше сопротивление, тем меньшая часть потенциала может оказаться «на корпусе» в случае аварии. Следовательно, в первую очередь нужно снижать опасность для более высокого напряжения.

Дополнительно нужно учитывать, что заземление служит и для нормальной работы предохранителей. Для этого необходимо, что бы линия при пробое «на корпус» существенно изменяла свойства (прежде всего сопротивление), иначе срабатывания не произойдет. Чем больше мощность электроустановки (и потребляемое напряжение), тем ниже ее рабочее сопротивление, и соответственно должно быть ниже сопротивление заземления (иначе при аварии предохранители не сработают от незначительного изменения суммарного сопротивления цепи).

Следующий нормируемый параметр — сечение проводников.

1.7.76. Заземляющие и нулевые защитные проводники в электроустановках до 1 кВ должны иметь размеры не менее приведенных в табл. 1.7.1 (см. также 1.7.96 и 1.7.104) .

Приводить всю таблицу не целесообразно, достаточно выдержки:

Для неизолированных медных минимальное сечение составляет 4 кв. мм, для алюминиевых — 6 кв. мм. Для изолированных, соответственно, 1,5 кв. мм и 2,5 кв. мм. Если заземляющие проводники идут в одном кабеле с силовой проводкой, их сеч ение может составлять 1 кв. мм для меди, и 2,5 кв. мм для алюминия.

Заземление в жилом доме

В обычной «бытовой» ситуации пользователи электросети (т.е. жильцы) имеют дело только с Групповой сетью ( 7.1.12 ПУЭ. Групповая сеть — сеть от щитков и распределительных пунктов до светильников, штепсельных розеток и других электроприемников ). Хотя в старых домах, где щитки установлены прямо в квартирах, им приходится сталкиваться с частью Распределительной сети ( 7.1.11 ПУЭ. Распределительная сеть — сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов и щитков ). Это желательно хорошо понимать, ведь часто «ноль» и «земля» отличаются только местом соединения с основными коммуникациями.

Из этого в ПУЭ сформулировано первое правило заземления:

7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего ос вещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный — L, нулевой рабочий — N и нулевой защитный — РЕ проводники). Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий. Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим.

Т.е. от этажного, квартирного или группового щитка нужно прокладывать 3 (три) провода, один из которых защитный нуль (совсем не земля). Что, впрочем, вовсе не мешает использовать ее для заземления компьютера, экрана кабеля, или «хвостика» грозозащиты. Вроде бы все просто, и не совсем понятно, зачем углубляться в такие сложности.

Можно посмотреть на свою домашнюю розетку. И с вероятностью около 80% не увидеть там третьего контакта. Чем отличается нулевой рабочий и нулевой защитный проводники? В щитке они соединяются на одной шине (пусть не в одной точке). Что будет, если использовать в данной ситуации рабочий ноль в качестве защитного?

Предполагать, что нерадивый электрик перепу тает в щитке фазу и ноль, сложно. Хоть этим постоянно пугают пользователей, но ошибиться невозможно в любом состоянии (хотя бывают уникальные случаи). Однако «рабочий ноль» идет по многочисленным штробам, вероятно проходит через несколько распределительных коробочек (обычно небольшие, круглые, смонтированы в стене недалеко от потолка).

Перепутать фазу с нулем там уже намного проще (сам это делал не раз). А в результате на корпусе неправильно «заземленого» устройства окажется 220 вольт. Или еще проще — отгорит где-то в цепи контакт — и почти те же 220 пройдут на корпус через нагрузку электропотребителя (если это электроплита на 2-3 кВт, то мало не покажется).

Для функции защиты человека — прямо скажем, никуда не годная ситуация. Но для подключения заземления грозозащиты типа APC не фатальная, так как там установлена высоковольтная развязка. Впрочем, рекомендовать такой способ было бы однозначно неправильно с точки зрения безопасности. Хотя надо признать, что нарушается эта норма очень часто (и как правило без каких-либо неблагоприятных последствий).

Надо отметить, что грозозащитные возможности рабочего и защитного нуля примерно равны. Сопротивление (до соединительной шины) от личается незначительно, а это, пожалуй, главный фактор, влияющий на стекание атмосферных наводок.

Из дальнейшего текста ПУЭ можно заметить, что к нулевому защитному проводнику нужно присоединять буквально все, что есть в доме:

7.1.68. Во всех помещениях необходимо присоединять открытые проводящие части светильников общего освещения и стационарных электроприемников (электрических плит, кипятильников, бытовых кондиционеров, электрополотенец и т.п.) к нулевому защитному проводнику.

Вообще, это проще представить следующей иллюстрацией:

Картина довольна необычная (для бытового восприят ия). Буквально все, что есть в доме, должно быть заземлено на специальную шину. Поэтому может возникнуть вопрос — ведь жили без этого десятки лет, и все живы-здоровы (и слава Богу)? Зачем все так серьезно менять? Ответ простой — потребителей электричества становится больше, и они все мощнее. Соответственно, риски поражения вырастают.

Но зависимость безопасности и стоимости величина статистическая, и экономию никто не отменял. Поэтому слепо класть по периметру квартиры медную полосу приличного сечения (вместо плинтуса), заводя на нее все, вплоть до металлических ножек стула, не стоит. Как не стоит ходить в шубе летом, и постоянно носить мотоциклетный шлем. Это уже вопрос адекватности.

Так же в область ненаучного подхода стоит отнести самостоятельное рытье траншей под защитный контур (в городском доме кроме проблем это заведомо ничего не принесет). А для желающих все же испытать все прелести жизни — в первой главе ПУЭ есть нормативы на изготовление этого фундаментального сооружения (в совершено прямом смысле этого слова).

Подводя итоги вышесказанному, можно сделать следующие практические выводы:

  • Если Групповая сеть выполнена тремя проводами, для заземления/зануления можно использовать защитный ноль. Он, собственно, для того и придуман.
  • Если Групповая сеть выполнена двумя проводами, желательно завести защитный нулевой провод от ближайшего щитка. Сечение провода должно быть более, чем фазного (точнее можно справиться в ПУЭ).

Чем отличается зануление от защитного заземления?

Основные отличия

Как первая, так и вторая система защиты выполняет одну и ту же функцию – защита человека от поражения электричеством при прикосновении к оголенному проводу либо электроприбору, на котором происходит утечка тока. Разница лишь в том, что защитное зануление провоцирует моментальное отключение электроэнергии при опасном контакте человека и провода, а заземление мгновенно отводит опасное напряжение на землю. Так же оно вызывает снижение напряжения занулённых металлических нетоковедущих частей, оказавшихся под напряжением, относительно земли. Это и есть их общее отличие друг от друга, если говорить в двух словах.

Если рассматривать вопрос более подробно, то нужно остановиться на том, какой принцип действия у каждого варианта защиты, на основании чего сразу же будет видна разница альтернативных вариантов. Заземление работает следующим образом: к корпусу опасных электроприборов и бытовой техники подключается заземляющий провод, который идет на заземляющую шину в распределительном щитке. Оттуда общий заземляющий проводник выходит к главному заземляющему контуру – металлической конструкции, вкопанной в землю рядом с домом (как показано на фото). Если произойдет пробой тока на корпус прибора либо контакт с оголенной токоведущей жилой, опасность минует человека.

Что касается зануления, оно собой представляет соединение корпуса электроприбора с нейтральным проводом сети – нулем. В результате образуется замкнутый контур, как показано на схеме ниже. При возникновении опасной ситуации произойдет короткое замыкание и автоматические выключатели на вводном щитке моментально отключат электроэнергию.

Наглядно увидеть разницу между занулением и заземлением Вы можете на данной схеме:

Надеемся, теперь Вам стало понятно, чем отличаются обе защитные системы и что не менее важно – как они работают. Рекомендуем также просмотреть разницу между ними на наглядном видео примере:

Что лучше?

Чтобы Вы полностью усвоили материал, для начала предоставим отличия в использовании каждой системы, на основании чего и сделаем собственный вывод.

  • Заземление дома можно запросто сделать своими руками, имея под рукой сварочный аппарат и немного металла. В то же время для создания зануления требуются определенные знания, связанные с расчетами и выбором оптимальной точки подключения провода к нейтрали.
  • Проводник, обеспечивающий указанные соединения зануляемых частей с глухозаземлённой нейтралью источника называется нулевым защитным проводником.
  • Нулевой защитный проводник отличается от нулевого рабочего проводника, который также соединён с глухозаземлённой нейтральной точкой источника. Он предназначается для электроснабжения источника.
  • Если произойдет обрыв нулевого провода в распределительном щитке, система зануления не будет работать, и Вы можете стать жертвой поражения электрическим током. В этом плане с системой защитного заземления проще, т.к. в отличие от нуля провод PE не отгорает и практически не отваливается, если хотя бы раз в год подтягивать клемму. Хотя насчет этого можно сказать, что контур «земли» из-за того, что находится на улице, также может со временем повредиться, особенно в местах сварки электродов. Опять-таки, если Вы делаете ежегодную ревизию, проблем не будет.
  • Исходя из этого, можно сделать такой вывод – правильное заземление в частном доме не сложно сделать своими руками и к тому же такая система более долговечная, а значит и безопасная. Что касается зануления, для его создания нужен вызов мастера и в то же время более частый осмотр целостности нулевого провода, что является огромным минусом при сравнении отличий. Такой вариант не рекомендуется использовать, лучше подключить УЗО для защиты. Надеемся, что теперь Вы поняли, в чем разница зануления и заземления, как работают обе системы и какая более эффективная для дома и квартиры.

    Похожие материалы:

    Ссылка на основную публикацию
    Adblock
    detector