Расчет профиля на прогиб онлайн
Расчет балок из труб на изгиб и прогиб – калькулятор онлайн
Онлайн калькулятор
Предварительные соображения
Нагрузка балок может быть распределённой (“q” на схемах 3,4,5,9,15 и др.) или сосредоточенной (“P” на схемах 1,2,6,7,8 и др.).
Крепление балок может быть:
- консольным с жесткой заделкой одного из концов (например, схемы 1,2,3 и другие);
- “заделка – заделка”, когда оба конца балки из трубы жестко защемлены (заделаны), схемы 6, 7, 8, 9;
- “шарнир – шарнир”, (схемы 12, 13, 14, 15 и другие), причём левый шарнир неподвижный, а правый подвижный;
- “заделка – шарнир” (схемы 9, 10, 11 другие).
Жесткая заделка предотвращает поворот балки из трубы и перемещение её в любом направлении. Неподвижный шарнир допускает только поворот трубы в месте крепления в вертикальной плоскости.
Подвижный шарнир допускает поворот трубы в месте крепления в вертикальной плоскости и перемещение вдоль её собственной оси. Эти перемещения весьма незначительны и являются следствием деформации трубы под нагрузкой.
Жесткая заделка трубы предотвращает ее поворот и перемещение в любом направлении. Неподвижный шарнир допускает только поворот трубы в месте крепления в вертикальной плоскости.
Подвижный шарнир допускает поворот в месте крепления в вертикальной плоскости и перемещение вдоль её собственной оси. Эти перемещения весьма незначительны и являются следствием деформации балки из трубы под нагрузкой.
Основным видом этой деформации является её прогиб, величина которого наряду с приложенной нагрузкой зависит также от ее длины, размеров её поперечного сечения и физических характеристик материала, в данном случае от его модуля упругости (“E”). Модуль упругости углеродистой стали равен (2-2.1) * 10 ^ 5 MПа; легировнной (2.1 – 2.2) * 10 ^ 5 MПа; поэтому в калькуляторе принято среднее значение 2.1 * 10 ^ 5 MПа, что составляет 2142000 кг.см2.
Из размерных характеристик поперечного сечения трубы для расчёта прогиба используется момент инерции сечения (“I”); величина прогиба зависит также от положения проверяемой точки трубы относительно опор.
Допустимая величина прогиба балок определяется их назначением и местом в строительных конструкциях и регламентируется соответствующим СНиП; в легких случаях она не должна превышать 1/120 – 1/250 длины трубы.
Поэтому настоятельно рекомендуется проверять результаты расчета на допустимость.
Предназначение калькулятора для определения изгиба
Для создания каркасов различных строений самое большое распространение получила древесина. Из нее, как из пластилина, можно сотворить конструкцию любой сложности. Однако далеко не последнее место занимает и такой конструкционный материал как различные металлические профили.
Их выгодно отличает такое свойство как пластичность, долговечность и прочность. Не последнее место среди таких материалов занимают профильные и круглые трубы. Попытайтесь представить себе навес для автомобиля из профильной трубы с покрытием из поликарбоната и такое же строение из уголка.
Похоже, двух мнений быть не может. А любая балка из трубы в конструкции должна быть просчитана. Это необходимо по двум причинам:
- Получить объект с достаточным запасом прочности под воздействием собственного веса, а также ветровых и снеговых нагрузок.
- Подобрать минимально допустимый для строения профиль с целью минимизировать расходы на материалы.
Для достижения этой цели необходимо воспользоваться нашим онлайн калькулятором и рассчитать балку из трубы на изгиб. Это в случае, если деталь закреплена с одной стороны (консольная). Если же закреплены оба конца, понадобится рассчитать трубу на прогиб.
При этом необходимо учитывать следующие обстоятельства:
- Размеры и сечение: (профильная или круглая). Для профильной прямоугольной трубы расчет производится с учетом направления воздействия. При расчете балок из квадратной трубы этот фактор одинаков для любого направления воздействия.
- Прочностные характеристики материала с учетом толщины стенок и марки материала. Это особенно актуально при использовании балок из круглой трубы, расчет которой в значительной степени зависит от указанных характеристик ввиду многообразия применяемых материалов.
Виды вероятных нагрузок
Как можно классифицировать нагрузки на балку из трубы? В соответствии с СП 20.13330.2011 «Нагрузки и воздействия» моменты нагружения конструкции можно распределить по следующим признакам:
- постоянные – давление и вес которых не изменяются с течением времени, это такие, как собственный вес конструкции;
- временные длительные, учитывающие вес дополнительных конструкций сооружения, включая оборудование, мебель и прочее;
- кратковременные поперечные, зависящие от внешних условий эксплуатации – нагрузки от ветра, снега или дождя, для определения которых производится собственный расчет, зависящий от района расположения объекта. Такие нагружения в экстремальных условиях создают условия, при которых возможен прогиб балки из трубы.
- особые условия воздействия, к которым можно отнести воздействие от удара автомобиля во время парковки, в результате которого опора может прогибаться;
- сейсмические – для местностей с определенной сейсмической активностью.
Прочностью перекрытия определяется уровень безопасности проживания на загородном участке или в деревенском доме.
Степень нагружения конструкций можно подбирать по таблицам, при этом учитываются:
- величина момента инерции, обозначенная в стандартах;
- длина пролета;
- величина нагрузки;
- модуль Юнга (справочные данные).
В таблицах приводятся готовые данные, рассчитанные по специальной формуле например для круглых, квадратных и прямоугольных профилей. Все прочностные расчеты несущих конструкций по определению сложны в исполнении и требуют специальной инженерной подготовки в области сопротивления материалов. Поэтому лучше воспользоваться специальным онлайн-калькулятором. Чтобы рассчитать нагрузки достаточно ввести исходные данные в таблицу и на выходе можно получить точный результат быстро и без особых затруднений.
Балочная ферма, подсчет которой произведен таким образом, будет надежной конструкцией на долгое время. При правильном расчете предельная жесткость перекрытия гарантирована.
Расчет нагрузки на профильную трубу калькулятор
Используя профильную трубу для создания несущих конструкций, в обязательном порядке должны выполняться расчеты на изгиб. Такой вид трубного проката применяется в промышленном, коммерческом и частном строительстве. Из него изготавливают навесы, всевозможные каркасные и лестничные конструкции, фермы, стеллажи, козырьки, тепличные сооружения, элементы кровельной системы, беседки. Поэтому без правильных и тщательных расчетов никак не обойтись. Превышение допустимого давления приведет к деформации или разрыву изделия в месте сгибания профтрубы.
Используя методы расчета нагрузок на профильную трубу, можно:
- сохранить первоначальную форму изделий;
- придать конструкции повышенной прочности;
- увеличить период эксплуатации;
- минимизировать расходы на материале;
- избежать негативных разрушительных последствий.
Какая нагрузка действует на профтрубу?
Важным критерием, который учитывается при подсчетах, является время воздействия и тип нагрузок. Данные показатели регламентированы СП 20.13330.2011 «Нагрузки и воздействия». Различают силу давления:
- Постоянные, когда масса и воздействующая сила не меняются на протяжении длительного временного периода. Воздействия создаются элементами здания (несущими и ограждающими конструкциями), грунтами, гидростатическим давлением.
- Длительные. Временные перегородки из ГКЛ, стационарное оборудование, складируемые материалы, а также как результат изменения влажности или усадки.
- Кратковременные. Оборудование, вес людей и транспортных средств, климатические, создаваемые снегом, ветром, перепадами температур, обледенением.
- Особые. Сейсмические и взрывные воздействия, влекущие изменения структуры грунта, результат столкновения транспортных средств и обусловленные пожаром.
В Своде правил представлены формулы для подсчета, таблицы и схемы по каждому типу нагрузок. Также берется в учет реалистичное сочетание все типов давления.
Показатели массы и нагрузки на изгиб
При расчете профильной трубы: масса и изгиб являются основными показателями. Знать вес погонного метра проката нужно, чтобы не ошибиться в прочностных значениях создаваемой конструкции. Метод определения направлен на подбор оптимального сечения трубного проката при разной его длине. Наглядный пример соотношений этих двух показателей представлен в таблицах ниже.
Табл.№1. Значения для изделий квадратного сечения:
Табл. №2. Значения для изделий прямоугольного сечения:
Методы и формулы для вычисления
Чтобы рассчитать прочность трубы профильной на изгиб необходимо определить максимальное напряжение на ту либо иную точку конструкции. Каждый вид материала, из которого изготавливается прокатная продукция, обладает индивидуальным показателем напряжения и точкой сопротивления. В учет берутся следующие параметры: вид проката, сечение, толщина стенки, общие характеристики. Владея такими данными, можно предположить, какие будут последствия от воздействия различных факторов, в том числе окружающей среды. При давлении на поперечную часть профтрубы напряжение создается даже в точках, которые удалены от нейтральной оси.
Получить данные можно разными способами:
- Берутся готовые показатели из строительных справочников и подставляются в формулу. Такие действия предусматривают выбор трубного проката в соответствии с указанными характеристиками, что позволяет делать самые точные подсчеты прогиба. ГОСТ 8639-82 (для изделий квадратного сечения) и ГОСТ 8645-68 (прямоугольного) регламентированы: момент инерции трубы (I), длину пролета (L), нагрузку (Q), модуль упругости в соответствии СНиП. Схемы вычислений индивидуальные и для каждого случая подбирается формула.
- Самостоятельно рассчитывается прочность на изгиб. В данном случае применим Закон Гука, который выражается формулой: Pизг = M/W, где Pизг — величина прочностного предела, M — изгибающий момент; W — сопротивление. Такие вычисления требуют дополнений: учитываются характеристики исходного материала, давления и т.д.
- При помощи калькулятора. В специальную расчетную таблицу вносятся исходные данные — длина пролета, нормативная и расчетная нагрузка, Fmax,количество изделий, расчетное сопротивление, параметры. После нажатия на клавишу «Рассчитать» выдается готовый результат.
Не стоит выполнять расчеты самостоятельно. Нужно уметь пользоваться ГОСТами, СНиПами и владеть сложной специфической техникой — сопроматом. При малейших неточностях в подсчетах не избежать серьезных последствий.
Проще применить один из калькуляторов для расчета нагрузки на профильную трубу:
Также полезно будет просмотреть видео:
Расчет квадратной трубы на прогиб и изгиб
Замкнутые профили, какими являются квадратные, прямоугольные и круглые трубы, — это вариант для тех, у кого нет возможности использовать деревянные конструкции, но есть желание предать будущему сооружению хорошую эстетичность. Например, каркас козырька, сваренный из квадратных труб, выглядит более эстетично, чем тот же козырек, сваренный из уголков.
На данной странице Вам представлен калькулятор способный подбирать сечение квадратной трубы по прочности и деформациям. Другими словами, с помощью данного калькулятора Вы можете произвести расчет квадратной трубы на прогиб и изгиб по ГОСТ 30245-2003 «Профили стальные гнутые замкнутые сварные квадратные для строительных конструкций».
Рассчитать квадратную трубу можно для следующих расчетных схем:
- Тип 1 — балка с одним пролетом с приложенной на нее равномерно распределенной нагрузкой.
- Тип 2 — жестко защемленная консоль с равномерно распределенной нагрузкой.
- Тип 3 — балка лежащая на двух опорах с выведенной консолью с одной стороны.
- Тип 4 — однопролетная шарнирно опертая балка с приложенной на нее сосредоточенной нагрузкой.
- Тип 5 — то же самое, что и тип 4, только с двумя сосредоточенными нагрузками.
- Тип 6 — консоль с жестким защемлением с приложенной на нее сосредоточенной нагрузкой.
Калькулятор
![]() |
Вид балки | Длина пролета | Требования | Fmax | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Балки перекрытий, покрытий, крыши | L ≤ 1 м | Эстетико-психологические, то есть такие, при которых прогиб балки не будет «бросаться в глаза» | 1/120 (1/60) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
L = 3 м | 1/150 (1/75) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
L = 6 м | 1/200 (1/100) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
L = 12 м | 1/250 (1/125) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Балки покрытий и перекрытий при наличии на них элементов, подверженных растрескиванию (стяжек, полов, перегородок) | любая | Конструктивные | 1/150 (1/75) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Перемычки | любая | Конструктивные | 1/200 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Марка стали | Аналог | Толщина проката | Расчетное сопротивление, Ry |
Неизвестно | — | любая | 210 МПа |
C235 | Ст3кп2 по ГОСТ 535-2005 | 2 — 20 мм | 230 МПа |
20,1 — 40 мм | 220 МПа | ||
С245 | Ст3пс5, Ст3сп5 по ГОСТ 535-2005 | 2 — 20 мм | 240 МПа |
20,1 — 30 мм | 230 МПа | ||
С255 | Ст3Гпс, Ст3Гсп по ГОСТ 535-2005 | 4 — 10 мм | 250 МПа |
10,1 — 20 мм | 240 МПа | ||
20,1 — 44 мм | 230 МПа | ||
С275 | Ст3пс по ГОСТ 535-2005 | 2 — 20 мм | 270 МПа |
С285 | Ст3сп, Ст3Гпс, Ст3Гсп по ГОСТ 535-2005 | 4 — 10 мм | 280 МПа |
10,1 — 20 мм | 270 МПа | ||
С345 | 12Г2С, 09Г2С по ГОСТ 19281-2014 | 2 — 10 мм | 335 МПа |
10,1 — 20 мм | 315 МПа | ||
20,1 — 40 мм | 300 МПа | ||
С345К | 10ХНДП по ГОСТ 19281-2014 | 4 -10 мм | 335 МПа |
Размер трубы — здесь необходимо выбрать тот размер трубы, который вы хотите проверить на заданные нагрузки.
Результат
Вес балки — масса 1 погонного метра трубы.
Wтреб — требуемый момент сопротивления профиля.
Fmax — максимальный прогиб в сантиметрах, который допустим для балки, перекрывающей пролет длиной L.
Расчет по прочности:
Wбалки — момент сопротивления выбранной трубы по ГОСТ 30245-2003. Если Wбалки > Wтреб, значит прочность балки обеспечена.
Запас — если в данной графе значение с минусом (-) , то балка по прочности не проходит, а если с плюсом (+) , то здесь показано, на какой процент балка имеет запас прочности.
Расчет по прогибу:
Fбалки — прогиб, возникающий у рассчитываемой трубы под действием нормативной нагрузки.
Запас — то же самое, что и по отношению к моменту сопротивления.
Как рассчитать нагрузку на профильную трубу
Выбирая профильную трубу для несущих конструкций самостоятельно, заказчик понимает важность точных вычислений параметров и нагрузки. В этой статье мы попробуем разобраться, стоит ли экономить на расчетах.
Профильные трубы для высокой нагрузки
С приходом лета начинается строительный сезон для компаний, владельцев коттеджей, дачных участков. Кто-то строит беседку, теплицу или забор, другие люди перекрывают кровлю или возводят баню. И когда перед заказчиком возникает вопрос о несущих конструкциях, чаще выбор останавливается на профильной трубе из-за низкой стоимости и прочности на изгиб при малом весе.
Какая нагрузка действует на профильную трубу
Другой вопрос, как рассчитать размеры профильной трубы так, чтобы обойтись «малой кровью», купить подходящую по нагрузке трубу. Для изготовления перил, оградок, теплиц можно обойтись без расчетов. Но если вы строите навес, кровлю, козырек, без серьезных расчетов нагрузки не обойтись.
Каждый материал сопротивляется воздействию внешних нагрузок, и сталь – не исключение. Когда нагрузка на профильную трубу не превышает допустимых значений, то конструкция согнется, но выдержит нагрузку. Если вес груза убрать, профиль примет исходное положение. В случае превышения допустимых значений нагрузки труба деформируется и остается такой навсегда, либо разрывается в месте сгиба.
Чтобы исключить негативные последствия, при расчете профильной трубы учитывайте:
- размеры и сечение (квадратное или прямоугольное);
- напряжение конструкции;
- прочность стали;
- типы возможных нагрузок.
Классификация нагрузок на профильную трубу
Согласно СП 20.13330.2011 по времени действия выделяют следующие типы нагрузок:
- постоянные, вес и давление которых не меняется со временем (вес частей здания, грунта и т.д.);
- временные длительные (вес лестницы, котлов в коттедже, перегородок из гипсокартона);
- кратковременные (снеговые и ветровые, вес людей, мебели, транспорт и т.д.);
- особые (землетрясения, взрывы, удар машины и т.д).
К примеру, вы сооружаете навес во дворе участка и используете профильную трубу как несущую конструкцию. Тогда при расчете трубы учитывайте возможные нагрузки:
- материал для навеса;
- вес снега;
- сильный ветер;
- возможное столкновение автомобиля с опорой во время неудачной парковки во дворе.
Для этого воспользуйтесь СП 20.13330.2011 «Нагрузки и воздействия». В ней есть карты и правила, необходимые для правильного расчета нагрузки профиля.
Расчетные схемы нагрузки на профильную трубу
Кроме типов и видов нагрузки на профили, при расчете трубы учитываются виды опор и характер распределения нагрузки. Калькулятор рассчитывает, используя только 6 типов расчетных схем.
Максимальные нагрузки на профильную трубу
Некоторые читатели задаются вопросом: «Зачем делать такие сложные расчеты, если мне нужно сварить перила для крыльца». В таких случаях нет необходимости в сложных расчетах с учетом нюансов, так как можно прибегнуть к готовым решениям (таб. 1, 2).
Размеры профиля, мм | Максимальная нагрузка, кг с учетом длины пролета | |||||
---|---|---|---|---|---|---|
1 метр | 2 метра | 3 метра | 4 метра | 5 метров | 6 метров | |
Труба 40х40х2 | 709 | 173 | 72 | 35 | 16 | 5 |
Труба 40х40х3 | 949 | 231 | 96 | 46 | 21 | 6 |
Труба 50х50х2 | 1165 | 286 | 120 | 61 | 31 | 14 |
Труба 50х50х3 | 1615 | 396 | 167 | 84 | 43 | 19 |
Труба 60х60х2 | 1714 | 422 | 180 | 93 | 50 | 26 |
Труба 60х60х3 | 2393 | 589 | 250 | 129 | 69 | 35 |
Труба 80х80х3 | 4492 | 1110 | 478 | 252 | 144 | 82 |
Труба 100х100х3 | 7473 | 1851 | 803 | 430 | 253 | 152 |
Труба 100х100х4 | 9217 | 2283 | 990 | 529 | 310 | 185 |
Труба 120х120х4 | 13726 | 3339 | 1484 | 801 | 478 | 296 |
Труба 140х140х4 | 19062 | 4736 | 2069 | 1125 | 679 | 429 |
Размеры профиля, мм | Максимальная нагрузка, кг с учетом длины пролета | |||||
---|---|---|---|---|---|---|
1 метр | 2 метра | 3 метра | 4 метра | 5 метров | 6 метров | |
Труба 50х25х2 | 684 | 167 | 69 | 34 | 16 | 6 |
Труба 60х40х3 | 1255 | 308 | 130 | 66 | 35 | 17 |
Труба 80х40х2 | 1911 | 471 | 202 | 105 | 58 | 31 |
Труба 80х40х3 | 2672 | 658 | 281 | 146 | 81 | 43 |
Труба 80х60х3 | 3583 | 884 | 380 | 199 | 112 | 62 |
Труба 100х50х4 | 5489 | 1357 | 585 | 309 | 176 | 101 |
Труба 120х80х3 | 7854 | 1947 | 846 | 455 | 269 | 164 |
Пользуясь готовыми расчетами, помните, что в таблицах 2 и 3 указана максимальная нагрузка, от воздействия которой труба согнется, но не сломается. При ликвидации нагрузки (прекращение сильного ветра) профиль вновь обретет первоначальное состояние. Превышение максимальной нагрузки даже на 1 кг ведет к деформации или разрушению конструкции, поэтому покупайте трубу с запасом прочности, в 2 – 3 раза превышающим предельное значение.
Методы расчета нагрузок на профильную трубу
Для расчета нагрузок на профили используются методы:
- расчет нагрузки при помощи справочных таблиц;
- использование формулы напряжения при изгибе трубы;
- определение нагрузки при помощи специального калькулятора.
Как рассчитать нагрузку с помощью справочных таблиц
Этот метод точен и учитывает виды опор, закрепление профиля на опорах и характер нагрузки. Для расчета прогиба профильной трубы с помощью справочных таблиц необходимы следующие данные:
- значение момента инерции трубы (I) из таблиц ГОСТ 8639-82 (для квадратных труб) и ГОСТ 8645-68 (для прямоугольных труб);
- значение длины пролета (L);
- значение нагрузки на трубу (Q);
- значение модуля упругости из действующего СНиП.
Эти значения подставляют в нужную формулу, которая зависит от закрепления на опорах и распределения нагрузки. Для каждой расчетной схемы нагрузки формулы прогиба меняются.
Расчет по формуле максимального напряжения при изгибе профильной трубы
Расчет напряжения при изгибе вычисляется при помощи формулы:
где M – изгибающий момент силы, а W – сопротивление.
Согласно закону Гука сила упругости прямо пропорциональна величине деформации. Теперь подставляют значения для нужного профиля. Дальше формула уточняется и дополняется, исходя из характеристик стали для профильной трубы, нагрузки и т.д.
Юлия Петриченко, эксперт
Калькулятор для расчета нагрузки на профильную трубу
Расчет профильной трубы на прогиб – сложный и трудоемкий процесс. Для этого надо внимательно изучить ГОСТы и другие нормативные документы, изучить виды опор и нагрузок на будущую конструкцию, построить схему, добавить запас прочности. Малейшая ошибка при расчетах приведет к печальному финалу. Поэтому, не зная физики и Сопромата, лучше доверить расчеты ответственных конструкций (кровля, каркас) профессионалам. Они помогут провести точные расчеты при меньших затратах.
Если вы решили вопрос расчета нагрузки на профильную трубу, поделитесь опытом и расскажите, для чего вы ее использовали в комментариях!
Расчет деревянных балок перекрытия – Калькулятор онлайн
Онлайн-калькулятор для расчета балки на прогиб/изгиб и прочность. Расчет деревянных балок перекрытия на прогиб. Подбор сечения балки.
Цельная деревянная балка
Клееная балка из досок
Клееная балка из шпона LVL Ultralam
Бревно отёсанное на 2 канта (лафет)
Балка – это элемент строительных несущих конструкций, который широко используется для возведения межэтажных перекрытий. Перекрытия, в свою очередь, предназначены для разделения по высоте смежных помещений, а также принятия статических и динамических нагрузок от находящихся на нем предметов интерьера, оборудования, людей и т.д.
В большинстве случаев, для частного домостроения используются деревянные балки из цельного бруса, отесанного бревна, клееных досок или шпона. Эти материалы, при правильном подборе параметров, способны обеспечить необходимую прочность и жесткость основания, что является залогом долговечности постройки.
Мы предлагаем вам выполнить онлайн расчет балки перекрытия на прочность и изгиб, подобрать её сечение и определить шаг между балками. Также вы получите набор персональных чертежей и 3D-модель для лучшего восприятия возводимой конструкции. Программа учитывает СНиП II-25-80 (СП 64.13330.2011) и другие справочные источники.
Точный и грамотный расчет деревянных балок в сервисе KALK.PRO, позволяет узнать все необходимые параметры для сооружения крепкого перекрытия. Все вычисления бесплатны, есть возможность сохранения рассчитанных данных в формате PDF, плюс доступны схемы и 3D-модель.
Инструкция к калькулятору
Наш сервис предоставляет на выбор два вида расчета однопролетных балок перекрытия. В первом случае, вам предлагается рассчитать сечение балки при известном шаге между ними, во втором случае, вы можете узнать рекомендуемое значение шага между балками при выбранных характеристиках сечения. Разберем работу калькулятора на примере, когда ваша задача заключается в нахождении сечения балки.
Для расчета вам понадобится знать ряд обязательных начальных параметров. В первую очередь это характеристики самой балки:
- ширина сечения (толщина), мм;
- длина пролета балки (на изображении BLN), м;
- вид древесины (сосна, ель, лиственница…);
- класс древесины (1/К26, 2/К24, 3/К16);
- пропитка (есть, нет).
В случае, если вы не знаете толщину предполагаемой балки, в первом блоке следует выбрать пункт «Известно соотношение высоты сечения балки к её ширине — h/b» и указать значение 1,4. Эта наиболее оптимальная величина, которая получена эмпирическим методом и указывается во многих справочниках.
Затем нужно указать условия, в которых будет эксплуатироваться перекрытие:
- температурный режим ( 50 °C);
- влажностный режим;
- присутствуют постоянные повышенные нагрузки или нет.
После этого, сконфигурируйте конструкцию и заполните поля калькулятора:
- длина стены дома по внутренней стороне, м;
- шаг между балками, см;
- полная длина балки (на изображении BFL), м;
- нагрузка на балку, кг/м 2 ;
- предельный прогиб в долях пролета.
При необходимости впишите стоимость одного кубометра древесины, для того чтобы узнать общую стоимость всех пиломатериалов.
Также, обратим внимание, что обычно шаг балки не делают меньше 0,3 м, так как это нецелесообразно с экономической точки зрения и больше 1,2 м, так как возможен прогиб чернового пола со всеми вытекающими последствиями.
Когда вы нажмете кнопку «Рассчитать», сервис произведет расчет балки онлайн и выведет на экране рекомендуемые значения сечения подобранной балки.
Кроме того, в блоке «Результаты расчета» вы сможете узнать:
- параметры балки при расчете на прочность;
- параметры балки при расчете на прогиб;
- максимальный прогиб балки, см.
Квалифицированный расчет перекрытия по деревянным балкам — залог долговечности сооружения и безопасность для вашей семьи.
Расчет балок перекрытия
Самостоятельный расчет деревянной балки перекрытия – это долгое и нудное занятие, которое обязывает вас знать основы инженерных дисциплин и сопромата. Без определенных навыков и знаний, вручную подобрать материал, рассчитать необходимое сечение или шаг балки – не просто тяжело, а порой и невозможно. Тем не менее, мы попытаемся вам рассказать об основных характеристиках, которые нужны для вычислений и по какому алгоритму работает наш калькулятор.
Виды балок
В настоящее время, деревянные балки, используемые для изготовления перекрытий, можно разделить на два принципиально разных вида:
Исходя из названия становится понятно, что в первом случае, это будет цельный кусок древесины определенного типа сечения (чаще всего это брус на 2 или 4 канта), во втором случае, это клееная балка из досок или шпона LVL.
Несмотря на низкую стоимость, по ряду объективных причин, деревянные балки из цельной древесины в последнее время используются все реже. Качественные показатели этого материала значительно уступают клееному дереву: низкий модуль упругости способствует появлению больших прогибов в середине пролета (особенно это становится заметно при расстоянии между несущими стенами более 4 метров), при высыхании на балках появляются продольные трещины, которые приводят к уменьшению момента инерции прогиба, отсутствие пропитки подвергает древесину воздействиям вредителей и гниения.
Благодаря современным технологиям, клееные балки не имеют подобных недостатков. Их структура однородна и волокна ориентированы по всем направлениям – повышается общая прочность и модуль упругости материала, он получает защиту от растрескивания, а специальная пропитка обеспечивает повышенный уровень пожаробезопасности и устойчивости к влаге. Эти балки разрешено использовать при проемах в 6-9 м и можно рассматривать, как полноценный аналог железному перекрытию.
Расчет балки на прогиб — формулы, параметры и примеры решения
Расчет балки на прогиб нужно проводить практически для любой конструкции, чтобы проверить ее надежность и прочность. Под влиянием внешних, внутренних факторов, природных явлений балка подвержена деформации.
Балку сравнивают со стержнем, закрепленным на опорах. Чем больше опор, тем сложнее провести расчет самостоятельно. Основная нагрузка считается путем сложения сил, перпендикулярно направленных к сечению.
Данный расчет – основы сопромата, помогает определить наивысшую деформацию. Значения показателей должны входить в рамки допустимых величин.
Виды балок
При возведении зданий используется балки разных конфигураций, размеров, профиля, характера сечения. Их изготавливают из металла и дерева. Для любого вида используемого материала нужен индивидуальный расчёт изгиба.
Деревянные — их используют в основном при строительстве индивидуальных построек. Они применяются при возведении полов, потолков, несущих перекрытий. Дерево – капризный материал и подвержено деформации. Для определения максимального изгиба, существенны такие параметры: используемый профиль, размер, нагрузка, характер поперечного сечения.
Металлические — такие балки изготавливают из сплава металлов и сечение у них сложное. Поэтому особое внимание уделяется жесткости, а также прочности соединений. Балки из металла применяются в возведении многоэтажек, сооружений, требующих высокой прочности.
Прочность и жесткость балки
При проектировании следует учесть изгиб балок, чтобы конструкция была надежная, качественная, прочная и практичная.
На эти параметры влияют следующие факторы:
величина наружных нагрузок, их положение;
параметры, характер, нахождение поперечного сечения;
число опор, метод их закрепления.
Выделяют 2 метода исчисления: простой – применяется увеличительный коэффициент, и точный – дополнительно включает пограничные подсчеты.
Построение эпюр балки
Эпюра распределения величины нагрузки на объект:
Расчет на жесткость
В формуле обозначены:
M – max момент, возникающий в брусе;
Wn,min – момент сопротивления сечения (табличный показатель);
Ry – сопротивление на изгиб (расчётный показатель);
γc – показатель условий труда (табличный показатель).
Такой расчет не трудоемок, но для более верного значения требуется следующее:
рабочий план объекта;
определение характеристик балки, характер сечения;
определение max нагрузки, воздействующей на брус;
оценка точки max прогиба;
проверка прочности max изгибающего момента.
Расчет моментов инерции и сопротивления сечения
J – момент инерции сечения;
W – момент сопротивления.
Для определения данных параметров необходимо учитывать сечение по грани разреза. Если момент инерции возрастает, величина жесткости также возрастает.
Нахождение максимальной нагрузки и прогиба
Формула для вычисления:
q – нагрузка равномерно-распределенная;
E – гибкость (табличный показатель);
I – момент инерции сечения.
Нагрузки учитываются статические и периодические.
Расчет на прогиб и его особенности
Он необходим для всех перекрытий при высоких эксплуатационных нагрузках.
При применении соответствующих коэффициентов, придерживаются следующего:
балка, держащаяся на одной жесткой и одной шарнирной опоре, подвергающаяся воздействию сосредоточенной нагрузки;
балка, держащаяся на жесткой и шарнирной опоре, подвергающаяся воздействию распределенной нагрузки;
нагрузка консольного типа;
воздействие комплексной нагрузки.
Пример расчет балки на прогиб
Рассмотрим задачу из курса сопромата.
Дано: балка четырехугольного сечения 20 на 30 см; поперечная сила Q = 19 кН; изгибающий момент М = 28 кНм.
Необходимо рассчитать напряжение: нормальное и в пределе К, отдаленной на 11 см от оси, узнать прочность бруса из дерева, при [σ] = 10 МПа, [τ] = 3 МПа.
Чтобы узнать σ(К), τ(К), σmax, τmax определяем значение осевого момента инерции общего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсеченного ряда и статического момента середины сечения Smax:
Из этого следует:
Определение прочности по нормальному напряжению:
Определение прочности по касательному напряжению:
При проектировании конструкций важно соблюдать все физико-механические вычисления на прочность. Удобно и качественно произвести расчеты может онлайн, что существенно сократит временные сроки.
Калькулятор выполняет подробный подсчет на основе формул, эпюр усилий, подбирает номер сечения металлической балки из прокатных профильных, двутавровых материалов, а также из металлических труб.
Adblock
detector