90 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет оси на изгиб онлайн

Расчет опорных реакций балки на двух опорах онлайн

Определение опорных реакций

Построение эпюр поперечных сил и моментов

Просмотр хода решения

Описание

Расчет выполняется по следующей методике:

1. Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.

2. Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.

3. Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.

4. Составляем уравнения равновесия вида:
MA = 0; MB = 0,
Моментом силы относительно точки называется произведение этой силы на плечо — кратчайшее расстояние от этой точки приложения силы (в общем случае — до линии действия силы).

5. Выполним проверку решения. Для этого составим уравнение равновесия: Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.

6. Строим эпюру поперечных сил Qx. Для этого определяем значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз — отрицательной (со знаком «минус»). Для правой части балки — наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Qлев и Qправ.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;
б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Qx.

7. Строим эпюру изгибающих моментов Мx. Для этого определяем изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против — отрицательным (со знаком «минус»), а для правой части наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее. Изгибающие моменты в этих точках обозначаются соответственно Млев и Мправ. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе.

Расчет деревянных балок перекрытия – Калькулятор онлайн

Онлайн-калькулятор для расчета балки на прогиб/изгиб и прочность. Расчет деревянных балок перекрытия на прогиб. Подбор сечения балки.

Цельная деревянная балка

Клееная балка из досок

Клееная балка из шпона LVL Ultralam

Бревно отёсанное на 2 канта (лафет)

Балка – это элемент строительных несущих конструкций, который широко используется для возведения межэтажных перекрытий. Перекрытия, в свою очередь, предназначены для разделения по высоте смежных помещений, а также принятия статических и динамических нагрузок от находящихся на нем предметов интерьера, оборудования, людей и т.д.

В большинстве случаев, для частного домостроения используются деревянные балки из цельного бруса, отесанного бревна, клееных досок или шпона. Эти материалы, при правильном подборе параметров, способны обеспечить необходимую прочность и жесткость основания, что является залогом долговечности постройки.

Мы предлагаем вам выполнить онлайн расчет балки перекрытия на прочность и изгиб, подобрать её сечение и определить шаг между балками. Также вы получите набор персональных чертежей и 3D-модель для лучшего восприятия возводимой конструкции. Программа учитывает СНиП II-25-80 (СП 64.13330.2011) и другие справочные источники.

Точный и грамотный расчет деревянных балок в сервисе KALK.PRO, позволяет узнать все необходимые параметры для сооружения крепкого перекрытия. Все вычисления бесплатны, есть возможность сохранения рассчитанных данных в формате PDF, плюс доступны схемы и 3D-модель.

Инструкция к калькулятору

Наш сервис предоставляет на выбор два вида расчета однопролетных балок перекрытия. В первом случае, вам предлагается рассчитать сечение балки при известном шаге между ними, во втором случае, вы можете узнать рекомендуемое значение шага между балками при выбранных характеристиках сечения. Разберем работу калькулятора на примере, когда ваша задача заключается в нахождении сечения балки.

Для расчета вам понадобится знать ряд обязательных начальных параметров. В первую очередь это характеристики самой балки:

  • ширина сечения (толщина), мм;
  • длина пролета балки (на изображении BLN), м;
  • вид древесины (сосна, ель, лиственница…);
  • класс древесины (1/К26, 2/К24, 3/К16);
  • пропитка (есть, нет).

В случае, если вы не знаете толщину предполагаемой балки, в первом блоке следует выбрать пункт «Известно соотношение высоты сечения балки к её ширине — h/b» и указать значение 1,4. Эта наиболее оптимальная величина, которая получена эмпирическим методом и указывается во многих справочниках.

Затем нужно указать условия, в которых будет эксплуатироваться перекрытие:

  • температурный режим ( 50 °C);
  • влажностный режим;
  • присутствуют постоянные повышенные нагрузки или нет.

После этого, сконфигурируйте конструкцию и заполните поля калькулятора:

  • длина стены дома по внутренней стороне, м;
  • шаг между балками, см;
  • полная длина балки (на изображении BFL), м;
  • нагрузка на балку, кг/м 2 ;
  • предельный прогиб в долях пролета.

При необходимости впишите стоимость одного кубометра древесины, для того чтобы узнать общую стоимость всех пиломатериалов.

Также, обратим внимание, что обычно шаг балки не делают меньше 0,3 м, так как это нецелесообразно с экономической точки зрения и больше 1,2 м, так как возможен прогиб чернового пола со всеми вытекающими последствиями.

Когда вы нажмете кнопку «Рассчитать», сервис произведет расчет балки онлайн и выведет на экране рекомендуемые значения сечения подобранной балки.

Читать еще:  Как разрезать керамогранитную плитку в домашних условиях

Кроме того, в блоке «Результаты расчета» вы сможете узнать:

  • параметры балки при расчете на прочность;
  • параметры балки при расчете на прогиб;
  • максимальный прогиб балки, см.

Квалифицированный расчет перекрытия по деревянным балкам — залог долговечности сооружения и безопасность для вашей семьи.

Расчет балок перекрытия

Самостоятельный расчет деревянной балки перекрытия – это долгое и нудное занятие, которое обязывает вас знать основы инженерных дисциплин и сопромата. Без определенных навыков и знаний, вручную подобрать материал, рассчитать необходимое сечение или шаг балки – не просто тяжело, а порой и невозможно. Тем не менее, мы попытаемся вам рассказать об основных характеристиках, которые нужны для вычислений и по какому алгоритму работает наш калькулятор.

Виды балок

В настоящее время, деревянные балки, используемые для изготовления перекрытий, можно разделить на два принципиально разных вида:

Исходя из названия становится понятно, что в первом случае, это будет цельный кусок древесины определенного типа сечения (чаще всего это брус на 2 или 4 канта), во втором случае, это клееная балка из досок или шпона LVL.

Несмотря на низкую стоимость, по ряду объективных причин, деревянные балки из цельной древесины в последнее время используются все реже. Качественные показатели этого материала значительно уступают клееному дереву: низкий модуль упругости способствует появлению больших прогибов в середине пролета (особенно это становится заметно при расстоянии между несущими стенами более 4 метров), при высыхании на балках появляются продольные трещины, которые приводят к уменьшению момента инерции прогиба, отсутствие пропитки подвергает древесину воздействиям вредителей и гниения.

Благодаря современным технологиям, клееные балки не имеют подобных недостатков. Их структура однородна и волокна ориентированы по всем направлениям – повышается общая прочность и модуль упругости материала, он получает защиту от растрескивания, а специальная пропитка обеспечивает повышенный уровень пожаробезопасности и устойчивости к влаге. Эти балки разрешено использовать при проемах в 6-9 м и можно рассматривать, как полноценный аналог железному перекрытию.

Расчет опорных реакций балки на двух опорах онлайн

Определение опорных реакций

Построение эпюр поперечных сил и моментов

Просмотр хода решения

Описание

Расчет выполняется по следующей методике:

1. Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.

2. Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.

3. Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.

4. Составляем уравнения равновесия вида:
MA = 0; MB = 0,
Моментом силы относительно точки называется произведение этой силы на плечо — кратчайшее расстояние от этой точки приложения силы (в общем случае — до линии действия силы).

5. Выполним проверку решения. Для этого составим уравнение равновесия: Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.

6. Строим эпюру поперечных сил Qx. Для этого определяем значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз — отрицательной (со знаком «минус»). Для правой части балки — наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Qлев и Qправ.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;
б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Qx.

7. Строим эпюру изгибающих моментов Мx. Для этого определяем изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против — отрицательным (со знаком «минус»), а для правой части наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее. Изгибающие моменты в этих точках обозначаются соответственно Млев и Мправ. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе.

Расчёт балки на изгиб

Такие вопросы мы сегодня рассмотрим на этой страничке. Здесь есть видео урок на эту тему и описание к ней. Итак, поехали!

Основные вопросы, которые рассмотрены в видео: — правило знаков при изгибе для моментов и поперечных сил. Откуда оно появилось и как его быстрее запомнить — что такое эпюра M и Q, эпюра изгибающего момента и поперечной силы. Как ней пользоваться и зачем нужна — пара простых лайфхаков как быстрее и проще запомнить методику построения эпюр изгибающих моментов и поперечных сил В этом видео уроке доступно и просто объясняется страшная тайна ))) как построить эпюры. После моего объяснения мои студенты обычно спрашивают: «Что так просто?» Да. Действительно построение эпюр при изгибе важная часть сопротивления материалов. И часто при объяснении преподаватели в ВУЗе делают это или не качественно. Это и не удивительно, ведь этот материал они могут излагать уже 3 раз за день. Или студента могло что-то отвлечь и важную деталь он упустил. Как построить Эпюры M и Q. Сопромат. Эпюры изгибающих моментов и поперечных сил, Изгиб. Сопромат, Изгиб. Построение эпюр и определение внутренних усилий поперечная сила Q(x) и момент M(x). Понятие и правило знаков. Пример для консольной балки (консоли). 5:09 пример построения эпюр внутренних усилий при изгибе Q(x) — поперечной силы и M(x) — изгибающего момента Задаеть вопросы: — через сайт: https://stroymex.online — skype: zabolotnyiAN — email: zabolotnyiAN@gmail.com — комменты к видео Телеграм канал: https://t.me/sroymexOnline Не тратьте время зря, задавайте вопросы. Узнайте стоимость обучения: https://stroymex.online/usloviya-i-ts… Получите первую консультацию бесплатно! Facebook: https://www.facebook.com/SopromatOnline

Читать еще:  Формула параллельного соединения двух резисторов

2019-11-19

Гипотезы и определения при изгибе

Прежде всего начнем с определений:

Что такое балка? Балка — это стержень, длина которого значительно больше чем ширина и высота. При этом он испытывает деформацию изгиба.

Изгиб, что это? Это такой вид деформации, при котором происходит искривление продольной оси балки, но продольные волокна друг на друга не давят, а сечения плоские до изгиба остаются такими и после изгиба.

Сказать спасибо можно любой суммой

На рисунке выше изображена схема для вывода формулы напряжений и демонстрация напряжений, которые возникают при чистом изгибе. Этот термин придется изложить в другой статье. А пока продолжим.

Эпюра — это график изменения величины, для которой он построен. Так эпюра изгибающего момента — это график изменения внутреннего усилия — изгибающего момента по длине балки. Используя этот график, построенный в масштабе, можно с помощь простых операций определить значение изгибающего момента в любой точке по длине балки. Эпюра внутреннего усилия — поперечная сила — аналогично, график ее изменения по длине балки.

Построение эпюр при изгибе

Приступим к построению эпюр при изгибе.

Для простоты, возьмем балку защемленную с одной стороны и свободным краем балки с другой стороны (про виды опор и опорные реакции видео урок, а текст напишу чуть позже). Почему так проще? Потому, что при таком способе закрепления не придется определять опорные реакции. Не будет такой необходимости. Дальше будет понятно почему.

На рисунке изображена одна продольная ось, а поперечное сечение не изображается. Что эта за ось? Это та ось, на которой не будет деформаций (нейтральный слой, выше на рисунке). Для сечений, которые простой формы, типа круг, квадрат, прямоугольник, двутавр или сложных составных форм — эта линия всегда проходит через главные центральные оси (опять же пока видео урок «моменты инерции«, а позже статью напишу). Чтобы построить эпюры достаточно и этого.

Итак, со схемой для расчета определились теперь перейдем непосредственно к самому расчету.

Метод сечений при изгибе

Необходимое время: 10 минут.

Метод сечений при изгибе, сопромат

    Первый вопрос расчета, что мы хотим найти?

Построить эпюры изгибающего момента и поперечной силы.
А что это такое?
Это внутренние усилия, возникающие при деформации изгиба.

Как мы поступаем когда нам нужно заглянуть внутрь, чтобы найти внутренние усилия?

Мы делаем сечение и рассматриваем равновесие отсеченной части.

Записываем аналитические выражения изменения величин для изгибающего момента и поперечной силы

Рассматривая сечение видим внешние и внутренние усилия, записываем проекции для поперечной силы и сумму моментов для изгибающего момента. А затем строим графики. Это и есть эпюры моментов и поперечных сил, так они строятся в сопромате

Покажем сечение на балке и дадим к нему некоторые пояснения:

Обычно эта схема рисуется одним цветом, но чтобы в тексте было проще описывать — я разделил на три цвета.

Начало координат оси x берем под силой F. Т.е. под этой силой x =0. Положительное направление оси здесь удобно брать влево, в сторону где расположена остальная часть балки. Соответственно x изменяется от нуля до полной длины балки. Только в этих пределах балка существует.

Сечение, которое обозначено на схеме «ядовито зеленым цветом» ? — может перемещаться, т.к. расстояние до него равно x .

Поэтому x сечения может быть в начале координат, а может быть в конце ну и в промежутке тоже. Нам нужно это понимать, чтобы зависимость для внутренних усилий построить с учетом этого перемещения. Не для конкретного положения сечения, а для любого положения по всей длине балки.

Отсеченную часть рассмотрим отдельно. Запишем условия равновесия для нее. В этом и заключается метод сечений — отсечь, посмотреть на внутренние усилия и найти их из условий равновесия.

На рисунке мы видим отсеченную часть. При этом сам x меняется слева на право от нуля до l. 0 ≤ x ≤ l

При таком приложении нагрузки, если других сил на эту часть, кроме силы F, действовать не будет — то этот кусочек балки будет падать вниз, при этом вращаться и перемещаться поступательно. Т.е. совершать плоскопараллельное движение.

Логично предположить, что в реальной конструкции, по сравнению с отсеченной частью что-то эту часть балки «держит», не позволяет «падать». Это и есть силы взаимодействия на межатомном уровне и если их интегрально представлять — внутренние усилия. Значит одно должно удерживать поступательное перемещение вниз, а второе должно удерживать вращательное движение. Поступательное движение вызывает, а значит и может «остановить» — сила, а вращательное — момент. Вот эти усилия нас и интересуют. Внутренние усилия изгибающий момент M(x) и поперечная сила Q(x).

Изобразим их в нашем сечении:

Направление внутренних усилий на рисунке выбрано в соответствии с правилом знаков.

Правило знаков для внутренних усилий при изгибе

А теперь нарисуем, что получилось, немного упростив

Неправда ли, похож на улыбающийся смайлик — это правило знаков для положительного направления изгибающего момента для расчета балки на изгиб. Т.е. любое усилие, вызывающее изгиб балки таким образом, что балка изгибается выпуклостью вниз (веселый смайлик), т.е. растянутые волокна находятся внизу — это будет положительный момент.

Если же смайлик, под действием внешних сил, окажется грустным, как здесь, ниже:

Такие внешние усилия вызывают деформацию изгиба так, что растянутые волокна вверху — это будут изгибающие моменты со знаком минус.

Но пойдем дальше. Ведь наша цель расчет на прочность балки, а не правило знаков при изгибе.

Нами было получено сечение, в котором действуют как внешние, так и внутренние усилия, которые определяют прочность.

Запись аналитических выражений для эпюр внутренних усилий Q(x) и M(x)

Осталось записать внутренние усилия в виде зависимости изгибающего момента М(x) и поперечной силы Q(x). Рисунок, на котором видны эти внутренние усилия мы уже приводили:

Для определения поперечной силы будем использовать сумму проекций на вертикальную ось, а для определения момента возьмем момент относительно точки С.

Так будем всегда поступать при определении изгибающего момента при расчете балки на изгиб. Таким образом мы исключим из этого уравнения момент от Q(x). Связано это с тем, что плечо от Q(x) до точки C равно нулю, потому и момент будет ноль от этой силы.

Читать еще:  Ремонт утюга braun texstyle 3

сумма проекций на вертикальную ось:

Σ Oy: Q(x) — F = 0; ⇒ Q(x) = F;

сумма моментов относительно точки С:

Σ МС: -F · x — M(x) = 0; ⇒ M(x) = -F · x ;

Как видно из окончательных выражений мы получили уравнения для двух прямых линий.

Так как координат x в уравнение поперечной силы вообще не входит — то это уравнение прямой линии параллельной оси x . Т.е. при любом x поперечная сила равна F.

Так как в уравнении моментов координата x входит в первой степени — то это уравнение прямой линии наклоненной к оси x под углом.

Потому первая линия в школе записывалась в виде уравнения:

А вторая записывалась:

На графике же это выглядит так:

Таким образом для построения прямых линий достаточно найти на координатных осях две точки и провести прямые линии под линейку. При построении эпюр моментов и поперечных сил принято брать крайние точки, т.е. точки начала и конца участка этих линий.

Поэтому подставляем из пределов существования 0 ≤ x ≤ l сначала 0, а затем l .

M(x = 0) = -F · 0 = 0 ; ⇒ M(x = l ) = -F · l ;

Построение эпюр изгибающего момента и поперечной силы при изгибе

Полученные значения изгибающего момента и поперечной силы в двух сечениях (при положении x=0 и x=l) откладываем соответствующие ординаты, т.е. буквально строим графики обеих функций.

Что мы видим из построенных эпюр, какие выводы мы можем сделать:

  • из эпюры поперечной силы видно, что она не меняется по всей длине и равна внешней силе F
  • так как в начале координат x (т.е. справа) мы видим на эпюре «скачок» на величину этой силы, то в конце, в заделке скачок говорит о том, что реакция в заделке равна силе F
  • на эпюре моментов график выходит из нуля координаты x (справа на балке) и момент тоже равен нулю
  • по мере удаления сечения от силы влево момент растет и достигает своей наибольшей величины в заделке, где наблюдается такой же скачок как и на эпюре поперечной силы и равен (- F x). Это говорит о том, что момент в заделке равен именно этому значению

Когда график начинается не из нуля или не из значения полученного на предыдущем участке, а имеет в одном и том же сечении x два разных значения — такой разрыв функции называется скачок. Т.е. если рассматривать график бесконечно близко слева и бесконечно близко справа мы получаем два разных значения как поперечной силы, так и момента. И этот скачок для поперечной силы должен равняться приложенной сосредоточенной силе, а для момента приложенному сосредоточенному моменту.

Вот и все секреты построения эпюр для моментов и поперечных сил. Конечно дальше немного усложняется сам процесс, но принцип остается тот же.

Задать вопрос можно:

Подпишитесь на канал Ютуб, чтобы не пропустить новые видео

Расчет балки на прогиб — формулы, параметры и примеры решения

Расчет балки на прогиб нужно проводить практически для любой конструкции, чтобы проверить ее надежность и прочность. Под влиянием внешних, внутренних факторов, природных явлений балка подвержена деформации.

Балку сравнивают со стержнем, закрепленным на опорах. Чем больше опор, тем сложнее провести расчет самостоятельно. Основная нагрузка считается путем сложения сил, перпендикулярно направленных к сечению.

Данный расчет – основы сопромата, помогает определить наивысшую деформацию. Значения показателей должны входить в рамки допустимых величин.

Виды балок

При возведении зданий используется балки разных конфигураций, размеров, профиля, характера сечения. Их изготавливают из металла и дерева. Для любого вида используемого материала нужен индивидуальный расчёт изгиба.

Деревянные — их используют в основном при строительстве индивидуальных построек. Они применяются при возведении полов, потолков, несущих перекрытий. Дерево – капризный материал и подвержено деформации. Для определения максимального изгиба, существенны такие параметры: используемый профиль, размер, нагрузка, характер поперечного сечения.

Металлические — такие балки изготавливают из сплава металлов и сечение у них сложное. Поэтому особое внимание уделяется жесткости, а также прочности соединений. Балки из металла применяются в возведении многоэтажек, сооружений, требующих высокой прочности.

Прочность и жесткость балки

При проектировании следует учесть изгиб балок, чтобы конструкция была надежная, качественная, прочная и практичная.

На эти параметры влияют следующие факторы:

величина наружных нагрузок, их положение;

параметры, характер, нахождение поперечного сечения;

число опор, метод их закрепления.

Выделяют 2 метода исчисления: простой – применяется увеличительный коэффициент, и точный – дополнительно включает пограничные подсчеты.

Построение эпюр балки

Эпюра распределения величины нагрузки на объект:

Расчет на жесткость

В формуле обозначены:

M – max момент, возникающий в брусе;

Wn,min – момент сопротивления сечения (табличный показатель);

Ry – сопротивление на изгиб (расчётный показатель);

γc – показатель условий труда (табличный показатель).

Такой расчет не трудоемок, но для более верного значения требуется следующее:

рабочий план объекта;

определение характеристик балки, характер сечения;

определение max нагрузки, воздействующей на брус;

оценка точки max прогиба;

проверка прочности max изгибающего момента.

Расчет моментов инерции и сопротивления сечения

J – момент инерции сечения;

W – момент сопротивления.

Для определения данных параметров необходимо учитывать сечение по грани разреза. Если момент инерции возрастает, величина жесткости также возрастает.

Нахождение максимальной нагрузки и прогиба

Формула для вычисления:

q – нагрузка равномерно-распределенная;

E – гибкость (табличный показатель);

I – момент инерции сечения.

Нагрузки учитываются статические и периодические.

Расчет на прогиб и его особенности

Он необходим для всех перекрытий при высоких эксплуатационных нагрузках.

При применении соответствующих коэффициентов, придерживаются следующего:

балка, держащаяся на одной жесткой и одной шарнирной опоре, подвергающаяся воздействию сосредоточенной нагрузки;

балка, держащаяся на жесткой и шарнирной опоре, подвергающаяся воздействию распределенной нагрузки;

нагрузка консольного типа;

воздействие комплексной нагрузки.

Пример расчет балки на прогиб

Рассмотрим задачу из курса сопромата.

Дано: балка четырехугольного сечения 20 на 30 см; поперечная сила Q = 19 кН; изгибающий момент М = 28 кНм.

Необходимо рассчитать напряжение: нормальное и в пределе К, отдаленной на 11 см от оси, узнать прочность бруса из дерева, при [σ] = 10 МПа, [τ] = 3 МПа.

Чтобы узнать σ(К), τ(К), σmax, τmax определяем значение осевого момента инерции общего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсеченного ряда и статического момента середины сечения Smax:

Из этого следует:

Определение прочности по нормальному напряжению:

Определение прочности по касательному напряжению:

При проектировании конструкций важно соблюдать все физико-механические вычисления на прочность. Удобно и качественно произвести расчеты может онлайн, что существенно сократит временные сроки.

Калькулятор выполняет подробный подсчет на основе формул, эпюр усилий, подбирает номер сечения металлической балки из прокатных профильных, двутавровых материалов, а также из металлических труб.

Ссылка на основную публикацию
Adblock
detector