Полупроводниковый диод и его применение - Строительство домов и бань
64 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Полупроводниковый диод и его применение

Полупроводниковые диоды: виды и характеристики

Для контроля направления электрического тока необходимо применять разные радио и электро детали. В частности, современная электроника использует с такой целью полупроводниковый диод, его применение обеспечивает ровный ток.

Устройство

Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц. Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами. Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.

Фото — полупроводниковый диод

Для создания полупроводниковых диодов используются германий и селен, как и более 100 лет назад. Их структура позволяет использовать детали для улучшения электронных схем, преобразования переменного и постоянного тока в однонаправленный пульсирующий и для совершенствования разных устройств. На схеме он выглядит так:

Фото — обозначение диода

Существуют разные виды полупроводниковых диодов, их классификация зависит от материала, принципа работы и области использования: стабилитроны, импульсные, сплавные, точечные, варикапы, лазер и прочие типы. Довольно часто используются аналоги мостов – это плоскостной и поликристаллический выпрямители. Их сообщение также производится при помощи двух контактов.

Основные преимущества полупроводникового диода:

  1. Полная взаимозаменяемость;
  2. Отличные пропускные параметры;
  3. Доступность. Их можно купить в любом магазине электро-товаров или снять бесплатно со старых схем. Цена начинается от 50 рублей. В наших магазинах представлены как отечественные марки (КД102, КД103, и т. д.), так и зарубежные.

Маркировка

Маркировка полупроводникового диода представляет собой аббревиатуру от основных параметров устройства. Например, КД196В – кремниевый диод с напряжением пробоя до 0,3 В, напряжением 9,6, модель третьей разработки.

Исходя из этого:

  1. Первая буква определяет материал, из которого изготовлен прибор;
  2. Наименование устройства;
  3. Цифра, определяющая назначение;
  4. Напряжение прибора;
  5. Число, которое определяет прочие параметры (зависит от типа детали).

Видео: применение диодов

Принцип работы

Полупроводниковые или выпрямительные диоды имеют довольно простой принцип работы. Как мы уже говорили, диод изготовлен из кремния таким образом, что один его конец p-типа, а другой конец типа n. Это означает, что оба контакта имеют различные характеристики. На одном наблюдается избыток электронов, в то время как другой имеет избыток отверстий. Естественно, в устройстве есть участок, в котором все электроны заполняют определенные пробелы. Это означает, что внешние заряды отсутствуют. В связи с тем, что эта область обедняется носителями заряда и известна как объединяющий участок.

Фото — принцип работы

Несмотря на то, что объединяющий участок очень мал, (часто его размер составляет несколько тысячных долей миллиметра), ток не может протекать в нем в обычном режиме. Если напряжение подается так, что площадь типа p становится положительной, а тип n, соответственно, отрицательной, отверстия переходят к отрицательному полюсу и помогают электронам перейти через объединяющий участок. Точно так же электроны движутся к положительному контакту и как бы обходят объединительный. Несмотря на то, что все частицы движутся с разным зарядом в разном направлении, в итоге они образуют однонаправленный ток, что помогает выпрямить сигнал и предупредить скачки напряжения на контактах диода.

Если напряжение прикладывается к полупроводниковому диоду в противоположном направлении, ток не будет проходить по нему. Причина заключается в том, что отверстия привлекаются отрицательным потенциалом, который находится в области р-типа. Аналогично электроны притягиваются к положительному потенциалу, который применяется к области n-типа. Это заставляет объединяющий участок увеличиваться в размере, из-за чего поток направленных частиц становится невозможным.

Фото — характеристики полупроводников

ВАХ-характеристики

Вольт амперная характеристика полупроводникового диода зависит от материала, из которого он изготовлен и некоторых параметров. Например, идеальный полупроводниковый выпрямитель или диод имеет следующие параметры:

  1. Сопротивление при прямом подключении – 0 Ом;
  2. Тепловой потенциал – VG = +-0,1 В.;
  3. На прямом участке RD > rD, т. е. прямое сопротивление больше, чем дифференциальное.

Если все параметры соответствуют, то получается такой график:

Данная ВАХ полупроводникового диода говорит о том, что во время прямого включения, контакты должны достигнуть максимального напряжения. Тогда полупроводник откроется для пропуска электронных заряженных частиц. Эти свойства также демонстрируют, что ток будет протекать нормально и без перебоев. Но до момента достижения соответствия всех параметров, диод не проводит ток. При этом у кремниевого выпрямителя вольтаж варьируется в пределах 0,7, а у германиевого – 0,3 Вольт.

Работа прибора очень зависит от уровня максимального прямого тока, который может пройти через диод. На схеме он определяется ID_MAX. Прибора так устроен, что во время включения прямым путем, он может выдержать только электрический ток ограниченной силы. В противном случае, выпрямитель перегреется и перегорит, как самый обычный светодиод. Для контроля температуры используются разные виды устройств. Естественно, некоторые из них влияют на проводимость, но зато продлевают работоспособность диода.

Еще одним недостатком является то, что при пропуске переменного тока, диод не является идеальным изолирующим устройством. Он работает только в одном направлении, но всегда нужно учитывать ток утечки. Его формула зависит от остальных параметров используемого диода. Чаще всего схемы его обозначают, как IOP. Исследование независимых экспертов установило, что германиевые пропускают до 200 µА, а кремниевые до 30 µА. При этом многие импортные модели ограничиваются утечкой в 0.5 µА.

Фото — отечественные диоды

Все разновидности диодов поддаются напряжению пробой. Это свойство сети, которое характеризуется ограниченным напряжением. Любой стабилизирующий прибор должен его выдерживать (стабилитрон, транзистор, тиристор, диодный мост и конденсатор). Когда внешняя разница потенциалов контактов выпрямительного полупроводникового диода значительно выше ограниченного напряжения, то диод становится проводником, в одну секунду снижая сопротивление до минимума. Назначение устройства не позволяет ему делать такие резкие скачки, иначе это исказить ВАХ.

Полупроводниковый диод

Устройство, параметры и разновидности диодов

В самом начале радиотехники первым активным элементом была электронная лампа. Но уже в двадцатые годы прошлого века появились первые приборы доступные для повторения радиолюбителями и ставшие очень популярными. Это детекторные приёмники. Более того они выпускались в промышленном масштабе, стоили недорого и обеспечивали приём двух-трёх отечественных радиостанций работавших в диапазонах средних и длинных волн.

Именно в детекторных приёмниках впервые стал использоваться простейший полупроводниковый прибор, называемый вначале детектором и лишь позже получивший современное название – диод.

Диод это прибор, состоящий всего из двух слоёв полупроводника. Это слой “p”- позитив и слой “n”- негатив. На границе двух слоёв полупроводника образуется “p-n” переход. Анодом является область “p”, а катодом зона “n”. Любой диод способен проводить ток только от анода к катоду. На принципиальных схемах он обозначается так.

Как работает полупроводниковый диод.

В полупроводнике “n” типа имеются свободные электроны, частицы со знаком минус, а в полупроводнике типа “p” наличествуют ионы с положительным зарядом, их принято называть «дырки». Подключим диод к источнику питания в обратном включении, то есть на анод подадим минус, а на катод плюс. Между зарядами разной полярности возникает притяжение и положительно заряженные ионы тянутся к минусу, а отрицательные электроны дрейфуют к плюсу источника питания. В “p-n” переходе нет носителей зарядов, и отсутствует движение электронов. Нет движения электронов – нет электрического тока. Диод закрыт.

При прямом включении диода происходит обратный процесс. В результате отталкивания однополярных зарядов все носители группируются в зоне перехода между двумя полупроводниковыми структурами. Между частицами возникает электрическое поле перехода и рекомбинация электронов и дырок. Через “p-n” переход начинает протекать электрический ток. Сам процесс носит название «электронно-дырочная проводимость». При этом диод открыт.

Возникает вполне естественный вопрос, как из одного полупроводникового материала удаётся получить структуры, обладающие различными свойствами, то есть полупроводник “n” типа и полупроводник “p” типа. Этого удаётся добиться с помощью электрохимического процесса называемого легированием, то есть внесением в полупроводник примесей других металлов, которые и обеспечивают нужный тип проводимости. В электронике используются в основном три полупроводника. Это германий (Ge), кремний (Si) и арсенид галлия (GaAs). Наибольшее распространение получил, конечно, кремний, так как запасы его в земной коре поистине огромны, поэтому стоимость полупроводниковых приборов на основе кремния весьма невысока.

При добавлении в расплав кремния ничтожно малого количества мышьяка (As) мы получаем полупроводник “n” типа, а легируя кремний редкоземельным элементом индием (In), мы получаем полупроводник “p” типа. Присадок для легирования полупроводниковых материалов достаточно много. Например, внедрение атомов золота в структуру полупроводника увеличивает быстродействие диодов, транзисторов и интегральных схем, а добавление небольшого числа различных примесей в кристалл арсенида галлия определяет цвет свечения светодиода.

Типы диодов и область их применения.

Семейство полупроводниковых диодов очень большое. Внешне они очень похожи за исключением некоторых групп, которые отличаются конструктивно и по ряду параметров. Наиболее распространены следующие модификации полупроводниковых диодов:

Выпрямительные диоды. Предназначены для выпрямления переменного тока.

Стабилитроны. Обеспечивают стабилизацию выходного напряжения.

Диоды Шоттки. Предназначены для работы в импульсных преобразователях и стабилизаторах напряжения. Например, в блоках питания персональных компьютеров.

Импульсные диоды отличаются очень высоким быстродействием и малым временем восстановления. Они применяются в импульсных блоках питания и в другой импульсной технике. К этой группе можно отнести и туннельные диоды.

СВЧ диоды имеют определённые конструктивные особенности и работают в устройствах на высоких и сверхвысоких частотах.

Диоды Ганна. Они предназначены для генерирования частот до десятков гигагерц.

Лавинно-пролётные диоды генерируют частоты до 180 ГГц.

Фотодиоды имеют миниатюрную линзу и управляются световым излучением. В зависимости от типа могут работать как в инфракрасном, так и в ультрафиолетовом диапазоне спектра.

Светодиоды. Излучают видимый свет практически любой длины волны. Спектр применения очень широк. Рассматриваются как альтернатива электрическим лампам накаливания и других осветительных приборов.

Твёрдотельный лазер так же представляет собой полупроводниковый диод. Спектр применения очень широк. От приборов военного назначения до обычных лазерных указок, которые легко купить в магазине. Его можно обнаружить в лазерных считывателях CD/DVD-плееров, а также лазерных уровнях (нивелирах), используемых в строительстве. Чтобы не говорили сторонники лазерной техники, как ни крути, лазер опасен для зрения. Так что, будьте внимательны при обращении с ним.

Также стоит отметить, что у каждого типа диодов есть и подгруппы. Так, например, среди выпрямительных есть и ультрабыстрые диоды. Могут называться как Ultra-Fast Rectifier, HyperFast Rectifier и т.п. Пример – ультрабыстрый диод с малым падением напряжения STTH6003TV/CW (аналог VS-60CPH03). Это узкоспециализированный диод, который применяется, например, в сварочных аппаратах инверторного типа. Диоды Шоттки являются быстродействующими, но не способны выдерживать больших обратных напряжений, поэтому вместо них применяются ультрабыстрые выпрямительные диоды, которые способны выдерживать большие обратные напряжения и огромные прямые токи. При этом их быстродействие сравнимо с быстродействием диодов Шоттки.

Параметры полупроводниковых диодов.

Параметров у полупроводниковых диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются.

Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

U пр. – допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.

U обр. – допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине. Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

I пр. – прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.

I обр. – обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.

U стаб. – напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

Читать еще:  Гистерезис что это температуры

Принцип работы и сферы применения полупроводниковых диодов

Полупроводниковый диод является специальным устройством с одним р-n переходом, а также анодным и катодным выводом, которое предназначается для всевозможного изменения электрического сигнала. В большинстве случаев элемент изготовляется из кремния, хотя иногда используются и другие полупроводниковые материалы. Среди основных компонентов прибора — кристаллическая часть с р-n переходом.

Общая информация

Следует отметить, что современные полупроводниковые диоды создаются на основе германия или селена, как и более ста лет назад. Эти материалы обладают специфической структурой, которая позволяет применять элементы для модернизации схем и электроприборов, а также проводить преобразование разных токов.

В мире существуют разные типы таких изобретений, которые отличаются материалом изготовления, принципом действия и сферами применения. Особым спросом пользуются плоскостные и поликристаллические выпрямители, представляющие собой аналоги мостов. Они взаимодействуют посредством двух контактов.

Что касается плюсов приборов, то к ним следует отнести:

  1. Полную взаимозаменяемость. Вышедший из строя элемент можно заменить любым другим с такими же свойствами и принципом работы. Особых требований к выбору точно такой же модели нет.
  2. Высокую пропускную способность.
  3. Дешевизну и доступность. Продаются полупроводниковые диоды в каждом магазине с электротехническими товарами. Стоимость такой продукции составляет от 50 рублей. К тому же их можно изъять своими руками из схем старых устройств.

Принцип работы

Понять принцип действия полупроводникового диода несложно. Все, что для этого понадобится — разбираться в базовых законах физики и знать, как происходят некоторые электрические процессы.

Изначально электроток действует на катод, что вызывает накаливание подогревательного элемента. В свою очередь, электродом испускаются электроны, а между двумя частями появляется электрическое поле.

Аноды с положительным зарядом воздействуют на электроны и притягивают их, а образованное поле выступает в качестве катализатора такой реакции. Также в этот момент формируется эмиссионный ток.

В двух электродах начинается формирование пространственно-отрицательного заряда, который может препятствовать протеканию электронов. Однако случается это лишь при снижении потенциала анода, в результате чего масса электронов не способна справиться с отрицательными элементами, что заставляет их перемещаться в обратном порядке, то есть электроны снова возвращаются к катоду.

Нередко показатели катодного тока держатся нулевой отметки — происходит это при воздействии частиц с зарядом минус. В результате образованное поле не заставляет электроны двигаться быстрее, а вызывает обратную реакцию — притормаживает их и заставляет вернуться обратно к катоду. В конечном итоге цепь размыкается, так как диод остается в запертом состоянии.

Устройство и конструкция

Разобравшись с принципом работы полупроводникового диода, можно начать изучать его устройство и конструкцию. Эти сведения понадобятся для дальнейшего использования диода и более глубокого понимания его рабочих свойств. В основе элемента лежат такие составляющие:

  1. Внешняя оболочка. В качестве корпуса используется небольшой баллон. Он полностью вакуумный и может быть стеклянным, металлическим или изготовленным из керамики.
  2. Внутри конструкции находится два электрода. Первый используется в качестве катода с накалом, обеспечивающим стабильную эмиссию электронов. В самом простом исполнении он являет собой нить с минимальной толщиной, способную накаливаться по мере подачи тока. Но в настоящее время активно распространяются модели косвенного накала. В отличие от классических типов они представлены в виде небольших цилиндров со специфическим слоем, где происходит испускание электронов.
  3. Что касается второго электрода, то он является анодом, принимающим электроны от катода. Элемент обладает плюсовым зарядом и цилиндрической формой. При изготовлении кристалла диода применяется кремний или германий.

Сферы применения и назначение

Сферы применения полупроводниковых диодов очень обширны. Сегодня без них тяжело представить работу большинства электрических приборов, и это неудивительно. Элементы задействуются для изготовления диодных мостов, а также следующих приспособлений:

  1. Устройств для защиты приборов от неверной полярности или перегрузок.
  2. Переключателей.
  3. Систем диодной искрозащиты.

Что касается диодных мостов, то они представляют собой устройство из четырех, шести или двенадцати соединенных диодов (точное количество диодов определяется типом схемы, которая бывает 1-фазной, 3-фазной полумостовой или 3-фазной полномостовой). Система используется в качестве выпрямителя и зачастую устанавливается в генераторах автомобилей. Дело в том, что применение такого моста позволило существенно уменьшить устройство и сделать его более надежным.

Диодные детекторы состоят из диодов и конденсаторов, что позволяет осуществлять модуляцию с низкими частотами из разных сигналов, включая амплитудно-модулированный радиосигнал. Устройства незаменимы для функционирования различных бытовых приборов, например, телевизор или радиоприемник. Также с помощью полупроводниковых диодов можно обеспечить полноценную защиту от нарушения полярности при запуске съемных входов и перегрузках.

Задача переключателей на основе диодов заключается в коммутации высокочастотных сигналов. Для управления схемой используется постоянный электроток, разделение частот и подача сигнала к конденсаторам. Также на основе диодов создается мощная искрозащита, предотвращающая перегрузки и отклонения от допустимого предела напряжения.

Без применения диодов в современной электронике практически не обойтись. Поэтому очень полезно знать, как устроены, как работают и для чего предназначаются столь распространенные устройства.

Способы включения

На r-n переход воздействуют внешние напряжения, а также величина и полярность, которые влияют на конечные показатели электрического тока. При использовании прямого включения положительно заряженный проводник подключается к области р-типа, а отрицательный полюс к области n-типа. В таком случае события будут развиваться следующим образом:

  1. Из-за подающего внешнего напряжения в переходе r-n-типа произойдет образование электрического поля, которое будет направлено в противоположную сторону от диффузионного поля внутри.
  2. После этого показатели напряжения поля заметно упадут, что сузит запирающий слой.
  3. Дальше большая часть электронов сможет перемещаться из одной области в другую, а затем возвращаться обратно.
  4. Параметры дрейфующего тока останутся неизменными, так как на них влияет лишь количество заряженных носителей в области r-n.

При росте обратного напряжения ток будет достигать наивысших показателей и перейдет в следующую стадию — насыщение. По мере повышения температуры растут параметры тока насыщения.

Распространенные неисправности

Порой полупроводниковые приборы перестают функционировать, что объясняется естественной амортизацией или завершением установленного эксплуатационного срока. Существуют и другие типы неисправностей, к которым следует отнести:

  1. Пробой перехода. При таком явлении полупроводник становится обычным проводником, который не имеет установленных свойств и не удерживает электрический ток в установленном направлении. Решить проблему можно с помощью стандартного мультиметра, подающего звуковой сигнал и определяющего уровень сопротивления.
  2. Обрыв перехода. Представляет собой обратный процесс, в результате которого прибор превращается в изолятор. Электрический ток в таком случае пропускается только в одном направлении. Чтобы определить место обрыва, необходимо задействовать тестер с работающими щупами. Если эти элементы недостаточно качественные, то провести точную и правильную диагностику не удастся.
  3. Нарушение герметичности. Любая утечка является серьезной угрозой для нормальной работы полупроводниковых приборов.

Типы пробоев

Существует несколько типов пробоев, которые происходят при росте показателей обратного тока. К ним относятся:

  1. Тепловые пробои.
  2. Электрические пробои.

Первая опасность происходит при несбалансированной работе теплоотводящего элемента или при перегреве r-n-перехода из-за воздействия чрезмерно высоких показателей тока. Проблема теплового пробоя может привести к массе неприятных последствий, включая:

  1. Рост колебания атомов из состава кристалла.
  2. Взаимодействие электронов с проводимой областью.
  3. Стремительный рост температурных показателей.
  4. Деформационные процессы в структуре кристаллов.
  5. Полное повреждение радиокомпонента.

Что касается электрического пробоя, то его нельзя назвать необратимым процессом, ведь при такой неприятности кристалл остается работоспособным. Поэтому вовремя принятые меры позволят сохранить диод от разрушения, а также продлить срок его службы.

В зависимости от типа электрические пробои бывают туннельными и лавинными. В первом случае неприятность развивается из-за прохождения чрезмерно высокого напряжения через узкие переходы, в результате чего электроны свободно проскакивают сквозь пробой. Образуются такие дефекты при появлении в молекулах большого количества примесей. Явление вызывает рост обратного тока и снижение напряжения.

Что касается лавинных пробоев, то они случаются из-за воздействия сильных полей, которые разгоняют носитель до пиковых показателей, а затем вышибают из атомов массу валентных электронов. Из-за этого электроны попадают в проводимую область, теряя свои свойства. Специфическое поведение, напоминающее по характеру схождение лавины, стало называться лавинным пробоем.

Без сомнений, современные электроприборы и различные радиотехнические изобретения не могут полноценно функционировать без полупроводниковых диодов. И чтобы продлить срок службы бытовой техники с этими элементами, необходимо знать о принципе их работы, основных неисправностях и способах борьбы с ними.

Разновидности и области применения полупроводниковых диодов

В зависимости от типа используемых полупроводников и степени их легирования можно создать диоды, обладающие характерными особенностями и имеющие определенное функциональное назначение.

Рассмотрим особенности различных типов диодов (см. рис. 1.4, в), их параметры и области применения.

Выпрямительные диоды, предназначенные для выпрямления низкочастотного переменного тока, используются в устройствах питания. Существуют кремниевые, германиевые и селеновые плоскостные диоды (сплавные и диффузные). Условия применения выпрямительных диодов определяют предельные значения их параметров:

максимальный средний прямой ток Iпр max;

максимальный импульсный прямой ток Iи.пр max;

максимальное обратное напряжение Uобр max;

среднее за период значение обратного тока Iобр при заданном обратном напряжении Uобр.

Мощные выпрямительные диоды пропускают прямой ток до 1500 А, а высоковольтные кремниевые диоды выдерживают обратное напряжение до 1600 В. Для отвода тепла мощные диоды монтируются на металлических радиаторах, имеющих большую поверхность и высокую теплопроводность.

Высокочастотные диоды (детекторные, смесительные и модуляторные) применяют для детектирования маломощных ВЧ сигналов. В этом случае существенное значение имеет собственная емкость диода, для уменьшения которой используется контактная технология, позволяющая формировать небольшую базовую область р-п-перехода в месте контакта острия вольфрамовой иглы с полупроводником. Эта технология заключается в следующем: мощный импульс тока разогревает место контакта, возникает диффузия вольфрама в полупроводник и после его охлаждения образуется небольшая область перехода. Емкость такого диода, составляющая десятые доли пикофарад (пФ), обеспечивает диапазон рабочих частот 300ѕ600 МГц. Точечные диоды на более высокие частоты изготавливают с использованием прижимного контакта металл—полупроводник без разогревания. Такие диоды могут работать при частотах до 20 ГГц.

Основными характеристиками ВЧ диодов являются: предельная частота, дифференциальное прямое сопротивление переменному току Rд = DUпр/DIпр (гдеDUпри DIпр— изменения прямых напряжения и тока) и емкость диода Сд. Остальные их параметры аналогичны параметрам низкочастотных выпрямительных диодов.

Импульсные диоды (мезодиоды, диоды с накоплением заряда, диоды Шоттки) работают в режиме электронного ключа в импульсных схемах, т.е. у них имеется два состояния: открыто—закры­то. При этом в открытом состоянии диод должен иметь малое сопротивление, а в закрытом — большое. Быстродействие импульсных схем определяется временем перехода диода из одного состояния в другое. Условия применения импульсных диодов определяют предельные значения их параметров:

максимальный выпрямленный ток Iпр max;

максимальный импульсный прямой ток Iи.пр max;

максимальное обратное напряжение Uобр max;

максимальный обратный ток Iобр max;

прямое импульсное напряжение на диоде при заданном импульсе прямого тока;

время включения tвкл;

время восстановления обратного сопротивления tвос.

В мезодиодах р-п-переход формируется путем травления полупроводника.

В диодах с накоплением зарядов р-n-переход формируется мето­дом диффузии, благодаря чему в приповерхностном слое создается большой градиент концентрации примеси. В результате возника­ет электрическое поле, направленное в сторону возрастания концен­трации примеси, обеспечивающее накопление зарядов вблизи границы р- и п-областей, что ускоряет переходные процессы.

Диоды с накоплением заряда способны накапливать и удерживать заряд в потенциальных ямах. Они используются как элементы задержки включения за счет наличия стадии рассасывания зарядов, а также как элементы памяти. С их помощью формируют задер­жку в слаботочных импульсных приборах. На их основе созданы приборы с зарядовой связью: ПЗС-линейки и ПЗС-матрицы. Послед­ние используются как быстродействующие запоминающие устройства и элементы памяти.

Диоды Шоттки работают на основе перехода металл—n-полупроводник. При этом металл имеет работу выхода больше, чем полупроводник n-проводимостью. На границе раздела формируется контактный выпрямляющий переход.

Прямой ток возникает за счет основных носителей зарядов металла (электронов). В отличие от обычных диодов накопления зарядов в переходе диода Шоттки не происходит, т.е. эти диоды имеют малую емкость р-n-перехода (Сp-n

Диоды Шоттки нашли широкое применение в транзисторных клю­чевых схемах. Транзисторный ключ в сочетании с диодом Шоттки имеет повышенное быстродействие и называется транзисто­ром Шот­тки. Это сочетание часто применяется в логических микросхемах.

Стабилитрон — полупроводниковый плоскостной диод из сильно­легированного кремния. ВАХ стабилитрона имеет вид кривой 1, представленной на рис. 1.4, б. На участке электрического пробоя дифференциальное сопротивление Rд=dU/dI очень мало. Резкий рост обратного тока наблюдается вблизи значения обратного напряжения, равного Uпроб. Поскольку вблизи Uпробмалое изменение обратного напряжения соответствует большому изменению обратного тока, напряжение пробоя называют напряжением стабилизации Uст. Основными параметрами стабилитронов являются:

напряжение стабилизации Uст;

дифференциальное сопротивление Rдпри напряжении Uст;

температурный коэффициент напряжения стабилизации

(где DUст— изменение напряжения стабилизации при изменении температуры DT);

минимально допустимый ток стабилизации Imin, при котором Uстнаходится в заданных пределах;

максимально допустимый ток стабилизации Imax;

максимально допустимая рассеиваемая мощность Рр max.

Стабилитроны применяют в устройствах питания для стабилизации напряжения (см. гл. 4). В зависимости от структуры, состава и конструкции стабилитроны имеют разные значения напряжения стабилизации. Имея разные номиналы, они обеспечивают диапазон стабилизации напряжения в блоках питания от 3 до 200 В. Стабилизация осуществляется при обратном напряжении на стабилитроне, и идет она тем лучше, чем круче кривая зависимости тока от напряжения и соответственно, чем меньше дифференциальное сопротивление.

Варикап — полупроводниковый диод, действие которого основано на использовании зависимости емкости протяженного и слаболегированного р-п-перехода от обратного напряжения. Емкость варикапа с увеличением обратного напряжения уменьшается примерно от 500 до 50 пФ.

Варикапы — это диоды с низколегированной областью между п- и р- областями. При обратном включении такого диода его емкость изменяется пропорционально напряжению. Варикапы используются в колебательных контурах с управляемой резонансной частотой в диапазоне дециметровых и сантиметровых волн СВЧ (от 300 МГц до 30 ГГц). Наиболее часто варикап используется для формирования радиосигналов с линейной частотной модуляцией.

Читать еще:  Как заклепать заклёпку гайку

Туннельными являются диоды с высокой концентрацией легирующих присадок и узкими p-n-переходом и запрещенной зоной. В p-n-переходе такого диода при прямом включении возникают высокие напряжения, и электроны туннелируют в р-область. Туннельный эффект состоит в способности заряженной частицы проникнуть за потенциальный барьер даже в том случае, если ее энергия ниже потенциального барьера.

В сильных электрических полях вблизи границы раздела р- и п-областей туннельных диодов может образоваться тонкий потенциальный барьер, через который с определенной вероятностью электроны проходят без изменения собственной энергии благодаря туннельному эффекту. Формируемая в результате N-образная ВАХ с ниспадающим участком и отрицательной дифференциальной проводимостью позволяет использовать туннельные диоды в качестве генераторов СВЧ колебаний на частотах от 10 до 100 ГГц.

Светодиод излучает свет при прохождении прямого инжекционного тока. Этот ток называется инжекционным, так как при нем происходит впрыскивание электронов из п-области в р-п-переход. Излучение света связано с рекомбинацией носителей зарядов (электронов и дырок), а также с возбуждением валентных электронов атомов р-области электронами, проникающими через р-п-переход. Основными характеристиками светодиодов являются предельные ток и напряжение питания, крутизна ВАХ и квантовый выход (отношение потребляемой мощности к мощности излучения).

Фотодиоды создаются на основе использования эффекта возбуждения электронов полупроводника квантами света. Если р-п-переход осветить светом, то в нем возникают носители зарядов (электроны и дырки), увеличивающие прямую и обратную прово­димости. Наиболее чувствительными являются фотодиоды, основан­ные на изменении собственной проводимости полу­про­вод­никовых структур, и лавинные фотодиоды. В средней части p-i-п-структуры фотодиода находится полупроводник без приме­сей, обладающий слабой собственной проводимостью. Однако его проводимость резко возрастает под действием света, и при подаче прямого или обратного напряжения на фотодиод возникает ток, пропорциональный интенсивности поданного света.
В лавин­ных фотодиодах используются более сложные полупроводниковые структуры и более высокие напряжения (около 100 В). Возни­кающие под действием света возбужденные электроны ускоря­ются электрическим полем и, соударяясь с атомами полупроводника, вызывают лавинный поток вторичных электронов.

Основными характеристиками фотодиодов являются пороговая чувствительность (минимальная мощность излучения, регистри­руемая фотоприемником), чувствительность (отношение изменения тока или напряжения на выходе фотоприемника к мощности на входе) и время срабатывания или предельная частота воспроизведения входного сигнала.

Полупроводниковые диоды широко используются в электронной технике. Их применяют как смесители частот сигнала и гетеродина в супергетеродинных схемах, для детектирования радиосигналов, выпрямления переменного напряжения (выпрямители), селекции импульсов определенной полярности (импульсные диоды), стабилизации напряжения (стабилитроны), в качестве управ­ляемой напряжением емкости (варикапы) и т.п.

Туннельные диоды с N-образной ВАХ и диоды с S-образной ВАХ используются для генерации СВЧ колебаний.

Существуют и специализированные диоды – диоды Гана и обращенные диоды, используемые в СВЧ генераторах и усилителях.

Используют и такие специализированные полупроводниковые устройства варисторы и термисторы. В термисторах, в отличие от резисторов сопротивление при нагреве падает. Поэтому их используют в качестве компенсаторов температурного изменения в резисторах.

В импульсной технике широкое распространение получили диодные электронные ключи, работающие по принципу включено — выключено (ток есть — тока нет). Применяются последовательные и парал­лельные схемы диодных ключей. В схемах последовательных диодных ключей диод пропускает ток только в одном направ­лении (от плюса к минусу) как в выпрямителях (см. гл. 4). При параллельном соединении используются стабилитроны (см. раздел 4.3).

Биполярные транзисторы

Транзисторы — это полупроводниковые приборы с тремя электродами, подобные электровакуумному триоду, предназначенные для усиления тока или напряжения. Различают биполярные транзисторы, обычно называемые просто транзисторами, полевые транзисторы и фототранзисторы.

Биполярный транзистор — это прибор, составленный из полупроводников с двумя рп-переходами и имеющий три вывода: эмиттер (Э), базу (Б) и коллектор (К). Существуют два типа биполяр­ных транзисторов: прп-транзисторы (рис. 1.5, а) и рпр-транзисторы (рис. 1.5, б). Принципы их работы аналогичны, отличаются они количеством и порядком расположения полупроводников с р— и п-проводимостями, а также полярностью подаваемого постоянного напряжения смещения.

Рис. 1.5. Структуры и УГО биполярных транзисторов п-р-п- (а) и р-п-р-типа (б)

Рассмотрим работу транзистора прп-типа (рис. 1.6, а) при подаче напряжения смещения на базу. Переход база—эмиттер (или просто эмиттерный переход) такого транзистора смещен в прямом направлении напряжением UБ-Э, поэтому электроны из области эмиттера перетекают через этот переход в область базы, создавая ток IБ. Это обычный прямой ток рп-перехода, смещенного в прямом направлении. Как только электроны попадают в область базы, они начинают испытывать притяжение положительного потенциала коллектора. Если область базы сделать очень узкой, то почти все эти электроны пройдут через нее к коллектору, и только очень малая их часть соберется базой, формируя базовый ток IБ. Фактически более 95% всех электронов эмиттерного тока IЭсобирается коллектором, формируя коллекторный ток IК транзистора. Таким образом, IЭ= IБ+ IК.

Так как базовый ток IБочень мал (чаще всего он измеряется микроамперами), то им обычно пренебрегают. Тем самым предполагают, что токи эмиттера и коллектора равны, и каждый из них называют током транзистора.

Рис. 1.6. Схемы протекания тока в п-р-п- (а) и р-п-p-транзисторах (б) при подаче напряжения смещения на базу

Отметим, что переход база—коллектор (или просто коллекторный переход) смещен в обратном направлении напряжением UБ-К. Это необходимое условие работы транзистора, поскольку в противном случае электроны не притягивались бы к коллектору. При этом в соответствии с правилом выбора направления тока (от положительного потенциала к отрицательному) считается, что ток транзистора течет от коллектора к эмиттеру.

В рпр-транзисторах полярность подаваемого напряжения смещения должна быть обратной (рис. 1.6, б). В этом случае ток транзистора будет представлять собой перемещение дырок от эмиттера к коллектору или электронов от коллектора к эмит­теру.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Полупроводниковый диод

Эксплуатация некоторого электрооборудования невозможна без контроля направления движения электрического тока. В электронике для достижения этой цели эффективно используют полупроводниковый диод. Применение двухполюсника позволяет преобразовывать переменный ток и постоянный в пульсирующий однонаправленный.

Устройство

Полупроводниковый диод – это двухполюсный прибор, изготовленный из полупроводникового вещества, пропускающий ток в одном направлении и практически не пропускающий в другом.

Главный элемент диода – кристаллическая составляющая с p-n переходом, к которой припаивают (приваривают) металлический анод и катод. Прохождение прямого тока осуществляется при подаче на анод положительного, относительно катода, потенциала.

Обратите внимание! В направлении прямого тока происходит движение дырок. Движение электронов осуществляется в противоположном направлении.

Устройство диодов может быть точечным, плоскостным, поликристаллическим.

Дополнительная информация. Принципиальных отличий между точечными и плоскостными двухполюсными приборами не существует.

Устройство точечного диода показано на рисунке (а).

При приваривании тонкой иглы, с нанесённой на неё примесью, к пластине из полупроводника, с обусловленным видом электропроводности, происходит образование полусферического мини p-n перехода, с другим типом проводимости. Это действие получило название – формовка диода.

Изготовление плоскостного двухполюсника осуществляется методом сплавления диффузии. На рисунке (б) представлены сплавной германиевый диод, принцип его устройства. В пластине германия n-типа, при вплавлении туда капли индия при 500 градусах, образуется слой германия р-типа. Выводные контакты, припаиваемые к основной пластине германия и индия, изготавливают из никеля.

При производстве полупроводниковых пластин применяются германий, кремний, арсенид галлия и карбид. В качестве основы точечного и плоскостного двухполюсников используют полупроводниковые монокристаллические пластины с правильным по всему объему строением.

В поликристаллических двухполюсниках p-n переход образуется полупроводниковыми слоями, в состав которых входит большое количество беспорядочно ориентированных малых кристаллов, не представляющих единой монокристаллической формы. Это селеновые, титановые и медно-закисные двухполюсники.

Основные характеристики и параметры диодов

Чтобы прибор правильно работал, выбирать его нужно в соответствии с:

  • Вольтамперной характеристикой;
  • Максимально допустимым постоянным обратным напряжением;
  • Максимально допустимым импульсным обратным напряжением;
  • Максимально допустимым постоянным прямым током;
  • Максимально допустимым импульсным прямым током;
  • Номинальным постоянным прямым током;
  • Прямым постоянным напряжением при номинальном токе;
  • Постоянным обратным током, указываемым при максимально допустимом обратном напряжении;
  • Диапазоном рабочих частот;
  • Ёмкостью;
  • Пробивным напряжением (для защитных диодов и стабилитронов);
  • Тепловым сопротивлением корпуса при различных вариантах монтажа;
  • Максимально допустимой мощностью рассеивания.

Классификация диодов

Промышленность выпускает большое разнообразие полупроводниковых вентилей, которые могут применяться во многих отраслях хозяйствования.

Классифицировать эти устройства можно по общим признакам:

  1. По материалу полупроводника, из которого они изготавливаются (кремний, германий, арсенид галлия);
  2. По физическим процессам, совершающим работу (в туннельных, в фотодиодах, в светодиодах);
  3. По предназначению (стабилитрон, выпрямительный, импульсный, варикап и др.);
  4. По технике изготовления электрического перехода (сплавной, диффузный и др.);
  5. По виду (типу) электрического перехода (точечный, плоскостной).

Дополнительная информация. В основном используются классификации по типу электрического перехода и по назначению диода.

Типы диодов по назначению

По функциональному назначению различают диоды:

  • Выпрямительный (для преобразования переменного тока в постоянный);
  • Импульсный (применяют в импульсных режимах);
  • Шотки (для преобразования и обработки сверхвысокочастотных сигналов при частоте более 300 МГц);
  • Детекторный СВЧ (для детектирования сверхвысокочастотных сигналов);
  • Переключающий СВЧ (для управления в устройствах уровнем СВЧ мощности);
  • Стабилитрон (для стабилизации напряжения);
  • TVS (для подавления импульсных электрических перенапряжений, превышающих напряжение лавинного пробоя прибора);
  • Стабистор (для стабилизации напряжения);
  • Стабилитрон с напряжением, равняющимся ширине запрещенной зоны;
  • Лавинно-пролетный (ЛПД) (для генерации сверхвысокочастотных колебаний);
  • Туннельный (для генерирования колебаний);
  • Обращенный (проводимость которого при обратном напряжении больше, чем при прямом);
  • Варикап (применяют как элемент с управляемой электричеством ёмкостью);
  • Фотодиод (для нагнетания под воздействием света заряженных неосновных носителей в базу);
  • Светодиод (для излучения основных носителей заряда под воздействием электрического тока).

Типы диодов по частотному диапазону

Классификация диодов осуществляется по рабочей частоте. Двухполюсники могут быть:

  1. Низкочастотными, с частотой меньше 1000 Гц;
  2. Высокочастотными, с частотой больше 1000 Гц;
  3. Импульсными, используемыми в цепи, где требуется высокая скорость срабатывания.

Диоды с выпрямляющим переходом металл-полупроводник отличаются меньшим, чем у двухполюсников с p-n переходом, напряжением пробоя и более высокими частотными характеристиками (Шоттки). Маломощные высокочастотные и импульсные диоды (вентили) работают на высоких частотах или в быстродействующей импульсной схеме.

Типы диодов по размеру перехода

По размеру перехода диоды делятся на:

В точечных приборах применяются пластины германия или кремния с электропроводностью n-типа, толщиной 0,1 …0,6 мм и площадью 0,5 … 1,5 кв. мм. В плоскостных устройствах образование р-n перехода происходит между двумя полупроводниками с различными типами электропроводности.

Обратите внимание! Площадь перехода у разных двухполюсников находится в пределах от сотых долей квадратного миллиметра до десятков квадратных сантиметров (в силовых диодах).

Типы диодов по конструкции

По конструкции корпуса п/п диоды могут быть в штыревом, таблеточном, с корпусом под запрессовку, модульном исполнении. Штыревой корпус состоит из мощной основы со штырем и герметично закрывающейся крышки. В образовавшуюся непроницаемую полость помещают структуру полупроводника.

Обратите внимание! Различают двухполюсники прямой полярности, когда анод находится на основании, и обратной полярности, когда катод – на основании.

Корпусы фланцевой конструкции отличаются от штыревой конструкции отсутствием штыря и внешней формой основания в виде фланца. Особенности штыревой и фланцевой конструкций диодов способствуют процессу одностороннего охлаждения их структуры. Применяют эти двухполюсники для токов 320-500 А.

Таблеточный корпус приспособлен для присоединения отводов тепла и проводников тока к основанию посредством прижимного устройства. Такая конструкция позволяет осуществлять односторонний и двухсторонний тепловой отвод от структуры прибора. Используется на токах 250 А и выше.

Корпус диода под запрессовку состоит из пустотелого цилиндра с рифлёной поверхностью и дна – основания, на котором расположена структура полупроводника. Закрытие второго торца цилиндра осуществляется проходным изолятором с гибким или жестким выводом.

Двухполюсники в корпусах под запрессовку производятся в прямой полярности, когда анод находится на основании, и в обратной полярности, когда катод находится на основании. Корпус под запрессовку предусматривает одностороннее охлаждение полупроводника, используется на ток до 25 А.

Модульные конструкции полупроводниковых двухполюсников состоят из основания с изолирующей теплопроводной прокладкой, на которой расположена одна или несколько п/п структур, и защитного корпуса с электрическими выводами. Основание устройства, обеспечивающее отвод тепла, выпускается электрически изолированным от выводов полупроводниковых структур, включенных в состав модуля. Модульные конструкции изготавливают в разных комбинациях полупроводников на токи до 160 А.

Другие типы

Селеновые выпрямители, уступающие устройствам из кремния и германия по многим показателям, обладают уникальными возможностями самовосстановления при пробое. В месте выгорания селена не происходит короткого замыкания.

Дополнительная информация. Радиационная стойкость селеновых вентилей намного выше, чем у других выпрямителей.

Медно-закисные выпрямители характеризуются низким обратным напряжением, низкой рабочей температурой, малым отношением прямого и обратного сопротивления.

Обратите внимание! В настоящее время эти вентили больше не применяются, так как на рынке появились более совершенные выпрямительные полупроводниковые приборы.

Маркировка диодов

Система обозначений полупроводниковых диодов включает в себя код, состоящий из букв и цифр.

Первая составляющая маркировки может быть представлена в виде цифры для приборов специального назначения или в виде буквы для приборов широкого применения.

Если в обозначении материала используется:

  • Г или 1, то это германий и соединения германия;
  • К или 2, это кремний и соединения кремния;
  • А или 3 – арсенид галлия;
  • И или 4 – фосфид индия.

Для обозначения второй цифры в маркировке используют:

  • Д – в выпрямительных, импульсных;
  • Ц – в выпрямительных столбах и мостах;
  • В – в обозначениях варикапов;
  • И – в туннельных;
  • А – в СВЧ;
  • С – в стабилитронах и стабисторах;
  • Г– в генераторах шума;
  • Л – в излучающих светодиодах.

Третий элемент характеризует основные признаки устройства, зависит от его подкласса. Например, 2Д204В – это диод кремниевый выпрямительный с постоянной и средней токовой величиной 0,3-10 А, номером разработки 04, группой В.

Читать еще:  Как пользоваться старой стиральной машиной

Преимущества непосредственного включения в схему

Включение полупроводниковых приборов непосредственно в схему даёт гарантированные плюсы:

  1. Высококачественную обработку сигналов;
  2. Полную взаимозаменяемость устройств;
  3. Миниатюрность и долговечность использования;
  4. Удобство при монтаже и замене;
  5. Доступность приобретения и дешевизну цен.

Дополнительная информация. Можно подобрать не только отечественный, но и зарубежный аналог полупроводникового прибора.

Вольтамперные характеристики (идеальная и реальная)

ВА характеристика приводится в виде взаимосвязи тока внешней цепи p-n перехода прибора и полярности напряжения на его электродах. Это соотношение можно получить экспериментально или рассчитать на основании уравнения вольтамперной характеристики.

Идеальная характеристика

Основной задачей выпрямительного диода является проведение электрического тока в одном направлении и непропускание его в обратном. Поэтому при прямой подаче напряжения (плюс подаётся на анод, а минус – на катод) идеальный прибор должен быть отличным проводником, с сопротивлением, равным нулю. При противоположном подключении, наоборот, должен иметь огромное сопротивление, став полным изолятором.

Дополнительная информация. На практике идеальная модель применяется в цифровой электронике, потому что в этой сфере имеет значение только логическая функция устройства.

Реальная ВАХ

Реальный диод, благодаря структуре полупроводника, имеет множество минусов, в сравнении с идеальным двухполюсником.

Параметры промышленных п/п элементов значительно разнятся с теми, которые для удобства принимаются за идеальные. В реальности, нелинейная ВАХ показывает большие отклонения и по значениям тока, и по крутизне преобразования. Поэтому прибор может выдержать лишь нагрузки, представленные этими предельными показателями:

  • Максимальным прямым выпрямленным током;
  • Током обратной утечки;
  • Максимальным прямым и обратным напряжением;
  • Падением потенциала на p-n переходе;
  • Предельной рабочей частотой обрабатываемого сигнала.

Вольтамперная характеристика для диодных элементов – важный параметр, по которому можно определить, как будет работать прибор в электрической схеме.

Важно! Прежде, чем использовать двухполюсник по назначению, нужно изучить ВАХ этого устройства.

Видео

Полупроводниковый диод и его применение

Полупроводниковый диод самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция — это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P (Рисунок 1.2.1)

Рисунок 1.2.1 Строение диода

На стыке соединения P и N образуется PN-переход. Электрод, подключенный к P, называется анод. Электрод, подключенный к N, называется катод. Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя.

Диод находится в состоянии покоя, когда ни к аноду, ни к катоду не подключено напряжения (Рисунок 1.2.2).

Рисунок 1.2.2 Диод в состоянии покоя

В части N имеются в наличии свободные электроны – отрицательно заряженные частицы. В части P находятся положительно заряженные ионы – дырки. В результате, в том месте, где есть частицы с зарядами разных знаков, возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки. В итоге получается очень слабый электрический ток, измеряемый в наноамперах. В результате, плотность вещества в P части повышается и возникает диффузия (стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.

Обратное включение диода.

Теперь рассмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении. Подключим источник питания — плюс к катоду, минус к аноду (рисунок 1.2.3)

Рисунок 1.2.3 Обратное включение диода

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.

Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода.

Меняем полярность источника питания – плюс к аноду, минус к катоду.

Рисунок 1.2.4 Прямое включения диода

В таком положении, между зарядами одинаковой полярности возникает сила отталкивания. Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь, положительно заряженные дырки отталкиваются от плюса и направляются навстречу электронам. PN переход обогащается заряженными частицами с разной полярностью, между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода. Под его действием электроны начинают дрейфовать на сторону P. Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона). Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток ID.

1.2.1 Выпрямительные диоды

Выпрямительный диод — это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный.

В основе работы выпрямительных диодов лежит свойство односторонней проводимости рn-перехода, которое заключается в том, что последний хорошо проводит ток (имеет малое сопротивление) при прямом включении и практически не проводит ток (имеет очень высокое сопротивление) при обратном включении.

Основными параметрами выпрямительных полупроводниковых диодов являются:

  • прямой ток диода Iпр, который нормируется при определенном прямом напряжении (обычно Uпр=1…2В);
  • максимально допустимый прямой ток Iпр.мах диода;
  • максимально допустимое обратное напряжение диода Uобр.мах, при котором диод еще может нормально работать длительное время;
  • постоянный обратной ток Iобр, протекающий через диод при обратном напряжении, равном Uобр.мах;
  • средний выпрямленный ток Iвп.ср, который может длительно проходить через диод при допустимой температуре его нагрева;
  • максимально допустимая мощность Pмах, рассеиваемая диодом, при которой обеспечивается заданная надежность диода.

Для сохранения работоспособности германиевого диода его температура не должна превышать +85°С, кремниевые диоды могут работать при температуре до +150°С.

Вольт-амперная характеристика германиевого и кремниевого диода представлена на рисунке 1.2.1.1

Рисунок 1.2.1.1 Вольт-амперная характеристика германиевого и кремниевого диода: а−германиевый диод; б−кремниевый диод

Падение напряжения при пропускании прямого тока у германиевых диодов составляет Uпр=0,3…0,6В, у кремниевых диодов Uпр=0,8…1,2В.

Большие падения напряжения при прохождении прямого тока через кремниевые диоды по сравнению с прямым падение напряжения на германиевых диодах связаны с большей высотой потенциального барьера рn- переходов, сформированных в кремнии. С увеличением температуры прямое падение напряжения уменьшается, что связано с уменьшением высоты потенциального барьера. При подаче на полупроводниковый диод обратного напряжения в нем возникает незначительный обратный ток, обусловленный движением не основных носителей заряда через рn-переход. При повышении температуры рn-перехода число не основных носителей заряда увеличивается за счет перехода части электронов из валентной зоны в зону проводимости и образования пар носителей заряда электрон-дырка. Поэтому обратный ток диода возрастает. В случае приложения к диоду обратного напряжения в несколько сотен вольт внешнее электрическое поле в запирающем слое становится настолько сильным, что способно вырвать электроны из валентной зоны в зону проводимости (эффект Зенера). Обратный ток при этом резко увеличивается, что вызывает нагрев диода, дальнейшей рост тока и, наконец, тепловой пробой (разрушение) рn-перехода.

Большинство диодов может надежно работать при обратных напряжениях, не превышающих (0,7…0,8) Uпроб. Допустимое обратное напряжение германиевых диодов достигает − 100…400В, а кремниевых диодов − 1000…1500В.

Выпрямительные диоды применяются для выпрямления переменного тока (преобразования переменного тока в постоянный); используются в схемах управления и коммутации для ограничения паразитных выбросов напряжений, в качестве элементов электрической развязки цепей и т.д.

1.2.2 Полупроводниковый стабилитрон

Полупроводниковый стабилитрон — это полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока и который используется для стабилизации напряжения.

В полупроводниковых стабилитронах используется свойство незначительного изменения обратного напряжения на рn-переходе при электрическом (лавинном или туннельном) пробое. Это связано с тем, что небольшое увеличение напряжения на рn-переходе в режиме электрического пробоя вызывает более интенсивную генерацию носителей заряда и значительное увеличение обратного тока.

Низковольтные стабилитроны изготовляют на основе сильнолегированного (низкоомного) материала. В этом случае образуется узкий плоскостной переход, в котором при сравнительно низких обратных напряжениях (менее 6В) возникает туннельный электрический пробой. Высоковольтные стабилитроны изготавливают на основе слаболегированного (высокоомного) материала. Поэтому их принцип действия связан с лавинным электрическим пробоем.

Основные параметры стабилитронов:

  • Напряжение стабилизации Uст (Uст=1…1000В);
  • минимальный Iст.міn и максимальный Iст.мах токи стабилизации (Iст.міn»1,0…10мА, Iст.мах»0,05…2,0А);
  • максимально допустимая рассеиваемая мощность Рмах;
  • дифференциальное сопротивление на участке стабилизации
  • температурный коэффициент напряжения на участке стабилизации:

TKU стабилитрона показывает на сколько процентов изменится стабилизирующее напряжение при изменении температуры полупроводника на 1°С (TKU=−0,5…+0,2)

Условно графическое обозначение стабилитрона представлена на рисунке 1.2.2.1.

Рисунок 1.2.2.1 Условно графическое обозначение стабилитрона а) не симметричный стабилитрон б) симметричный стабилитрон

Вольт-амперная характеристика стабилитрона на рисунке 1.2.2.2

Рисунок 1.2.2.2 Вольт-амперная характеристика стабилитрона

Стабилитроны используют для стабилизации напряжений источников питания, а также для фиксации уровней напряжений в различных схемах.

Существуют также двухсторонние (симметричные) стабилитроны, имеющие симметричную ВАХ относительно начала координат. Стабилитроны допускают последовательное включение, при этом результирующее стабилизирующее напряжение равно сумме напряжений стабилитронов: Uст = Uст1 + Uст2 +…

1.2.3 Туннельный диод

Туннельный диод — это полупроводниковый диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на вольт-амперной характеристике при прямом напряжении участка отрицательного дифференциального сопротивления.

Туннельный диод изготовляется из германия или арсенида галлия с очень большой концентрацией примесей, т.е. с очень малым удельным сопротивлением. Такие полупроводники с малым сопротивлением называют вырожденными. Это позволяет получить очень узкий рn-переход. В таких переходах возникают условия для относительно свободного туннельного прохождения электронов через потенциальный барьер (туннельный эффект). Туннельный эффект приводит к появлению на прямой ветви ВАХ диода участка с отрицательным дифференциальным сопротивлением.

Основные параметры туннельных диодов:

  • Пиковый ток Iп – прямой ток в точке максимума ВАХ;
  • ток впадины Iв − прямой ток в точке минимума ВАХ;
  • отношение токов туннельного диода Iп/Iв;
  • напряжение пика Uп – прямое напряжение, соответствующее пиковому току;
  • напряжение впадины Uв − прямое напряжение, соответствующее току впадины;

Туннельные диоды используются для генерации и усиления электромагнитных колебаний, а также в быстродействующих переключающих и импульсных схемах.

Вольт-амперная характеристика туннельного диода и его УГО представлена на рисунке 1.2.3.1

Рисунок 1.2.3.1 Вольт-амперная характеристика туннельного диода и его УГО

1.2.4 Обращенный диод

Обращенный диод — диод на основе полупроводника с критической концентрацией примесей, в котором проводимость при обратном напряжении вследствие туннельного эффекта значительно больше, чем при прямом напряжении.

Принцип действия обращенного диода основан на использовании туннельного эффекта. Но в обращенных диодах концентрацию примесей делают меньше, чем в обычных туннельных. Поэтому контактная разность потенциалов у обращенных диодов меньше, а толщина рn-перехода больше. Это приводит к тому, что под действием прямого напряжения прямой туннельный ток не создается. Прямой ток в обращенных диодах создается инжекцией не основных носителей зарядов через рn-переход, т.е. прямой ток является диффузионным. При обратном напряжении через переход протекает значительный туннельный ток, создаваемый перемещение электронов сквозь потенциальный барьер из р-области в n-область. Рабочим участком ВАХ обращенного диода является обратная ветвь. Таким образом, обращенные диоды обладают выпрямляющим эффектом, но пропускное (проводящее) направление у них соответствует обратному включению, а запирающее (непроводящее) – прямому включению.

Вольт-амперная характеристика обращенного диода и его УГО представлена на рисунке 1.2.4.1

Рисунок 1.2.4.1 Вольт-амперная характеристика обращенного диода и УГО

Обращенные диоды применяют в импульсных устройствах, а также в качестве преобразователей сигналов (смесителей и детекторов) в радиотехнических устройствах.

1.2.5 Варикапы

Варикап — это полупроводниковый диод, в котором используется зависимость емкости от величины обратного напряжения и который предназначен для применения в качестве элемента с электрически управляемой емкостью. Полупроводниковым материалом для изготовления варикапов является кремний.

Основные параметры варикапов:

  • номинальная емкость Св– емкость при заданном обратном напряжении (Св=10…500 пФ);
  • коэффициент перекрытия по емкости (отношение емкостей варикапа при двух заданных значениях обратных напряжений.)

Варикапы широко применяются в различных схемах для автоматической подстройки частоты, в параметрических усилителях.

На рисунке 1.2.5.1 представлена вольт-амперная характеристика варикапа и его УГО

Рисунок 1.2.5.1 Вольт-амперная характеристика варикапа и УГО

1.2.6 Светоизлучающие диоды

Светодиодами называются маломощные полупроводниковые источники света, основой которых является излучающий рппереход. Свечение рn-перехода вызвано рекомбинацией носителей заряда. При подаче прямого напряжения электроны из n-области проникают в p-область, где рекомбинируют с дырками и излучают освободившуюся энергию в виде света.

Светодиоды изготавливаются из карбида кремния, арсенида или фосфида галлия. Свечение может быть весьма интенсивным и лежит в инфракрасной, красной, зеленой и синей частях спектра. Светодиод начинает испускать свет, как только подается прямое напряжение, причем с ростом тока интенсивность свечения увеличивается.

Основными параметрами светодиодов являются:

  • Ризлуч – полная мощность излучения (до 100 мВт).
  • Unp – постоянное прямое напряжение (порядка единиц вольт) при — const.
  • Iпр. – постоянный прямой ток (до 110 мА).
  • Цвет свечения.

Прямая ветвь ВАХ светодиода и его условное обозначение показаны на рисунке 1.2.6.1

Рисунок 1.2.6.1 ВАХ светодиода и его УГО

Светодиоды применяют в устройствах визуального отображения информации.

1.2.7 Фотодиоды

Фотодиод — это полупроводниковые приборы, принцип действия которых основан на внутреннем фотоэффекте, состоящем в генерации под действием света электронно-дырочных пар в рппереходе, в результате чего увеличивается концентрация основных и неосновных носителей заряда в его объеме. Обратный ток фотодиода определяется концентрацией неосновных носителей и, следовательно, интенсивностью облучения. Вольт-амперные характеристики фотодиода (рисунок 1.2.7.1 (см. стр.28)) показывает, что каждому значению светового потока Ф соответствует определенное значение обратного тока. Такой режим работы прибора называют фотодиодным.

Фотодиод обозначается на схеме на рисунке 1.2.7.2

Рисунок 1.2.7.2 УГО фотодиода

Рисунок 1.2.7.1 Вольт-амперная характеристика фотодиода

Фотодиоды применяются в качестве датчиков освещенности.

Задание для самостоятельной работы

по теме 1.2 «Полупроводниковые диоды»

№1. Заполнить таблицу и поместить ее в чате.

Оценить работы своих одногруппников с помощью смайликов.

Ссылка на основную публикацию
Adblock
detector