Основные области применения алюминия - Строительство домов и бань
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные области применения алюминия

Использование алюминия: сферы применения чистого металла и его сплавов

Алюминий, как наиболее легкий и пластичный металл, обладает широкой сферой использования. Он отличается устойчивостью к коррозии, имеет высокую электропроводность, а также легко переносит резкие температурные колебания. Еще одной особенностью является при контакте с воздухом появление на его поверхности особой пленки, которая защищает металл.

Все эти, а также другие особенности послужили его активному использованию. Итак, давайте узнаем подробнее, каковы области применения алюминия.

Основные области применения алюминия и его сплавов

Данный конструкционный металл имеет широкое распространение. В частности именно с его использования начали свою работу авиастроение, ракетостроение, пищевая промышленность и изготовление посуды. Благодаря своим особенностям алюминий позволяет улучшить маневренность судов за счет меньшей массы.

Отдельно стоит упомянуть способность металла проводить ток. Такая особенность позволила сделать его главным конкурентом меди. Он активно применяется при производстве микросхем и в целом в области микроэлектроники.

Наиболее популярными сферами использования можно назвать:

  • Авиастроение: насосы, двигатели, корпуса и прочие элементы;
  • Ракетостроение: как горючий компонент для ракетного топлива;
  • Судостроение: корпуса и палубные надстройки;
  • Электроника: провода, кабели, выпрямители;
  • Оборонное производство: автоматы, танки, самолеты, различные установки;
  • Строительство: лестницы, рамы, отделка;
  • Область ЖД: цистерны для нефтепродуктов, детали, рамы для вагонов;
  • Автомобилестроение: бампера, радиаторы;
  • Быт: фольга, посуда, зеркала, мелкие приборы;

Широкое распространение объясняется преимуществами металла, однако есть у него и существенный недостаток – это невысокая прочность. Чтобы минимизировать его, в металл добавляется медь и магний.

Как вы уже поняли, основное свое применение получили алюминий и его соединения в электротехнике (и просто технике), быту, промышленности, машиностроении, авиации. Теперь же мы поговорим о применении металла алюминия в строительстве.

О применении алюминия и его сплавах расскажет это видео:

Использование в строительстве

Использование алюминия человеком в области строительства обуславливается его устойчивостью к коррозии. Это дает возможность изготавливать из него конструкции, которые планируется использовать в агрессивных средах, а также на открытом воздухе.

Кровельные материалы

Алюминий активно используется для производства кровли. Этот листовой материал помимо хороших декоративных, несущих и ограждающих особенностей, отличается и доступной стоимостью по сравнению с остальными кровельными материалами. При этом такая кровля не требует профилактического осмотра или ремонта, а срок ее службы превышает многие существующие материалы.

При добавлении в чистый алюминий других металлов можно получить абсолютно любые декоративные особенности. Такая кровля позволяет иметь широкую цветовую гамму, которая идеально впишется в общий стиль.

Оконные переплеты

Можно встретить алюминий среди фонарных и оконных переплетов. Если с аналогичной целью использовать древесину, то она проявит себя как ненадежный и недолговечный материал.

Сталь же быстро покроется коррозией, будет иметь большой вес переплета и неудобства в его открытии. В свою очередь алюминиевые конструкции такими недостатками не обладают.

О свойствах и использовании алюминия расскажет видеоролик ниже:

Стеновые панели

Алюминиевые панели производятся из сплавов этого металла и используются для внешней отделки домов. Они могут иметь вид обычных штампованных листов или готовых ограждающих панелей, состоящих из листов, утеплителя и облицовки. В любом случае они максимально сдерживают тепло внутри дома и, обладая небольшим весом, не несут нагрузку на фундамент.

Отдельной характеристики заслуживает применение сплава алюминия разных марок.

Соединения металла

Сплавы получается в результате искусственного добавления к алюминию других металлов с целью получения необходимых свойств. И на сегодняшний момент существует нескончаемое количество составов таких сплавов, имеющих самое широкое применение.

  • Наиболее известной сферой их применения является авиастроение. Для производства самолетов используются сплавы, состоящие из алюминия, цинка и магния, что в результате позволяет получить сверхпрочный и надежный материал.
  • Также нередко используются сплавы алюминия с железом, титаном, никелем.

Если вы захотите самостоятельно изготовить что-либо из алюминия, то следующее видео расскажет вам о его расплавке в домашних условиях:

Сферы применения алюминия

Мы отправляем его в воздух и запускаем в космос, ставим на плиту, строим из него здания, изготавливаем шины, мажем на кожу и лечим им язву. Вы еще не поняли? Речь идет об алюминии.

Попробуйте перечислить все области применения алюминия и обязательно ошибетесь. Скорее всего о существовании многих из них вы даже не подозреваете. Все знают, что алюминий — материал авиастроителей. Но как насчет автомобилестроения или, скажем. медицины? Знаете ли вы, что алюминий является пищевой добавкой Е-137, которая обычно используется как краситель, придающий продуктам серебристый оттенок?

Алюминий — элемент, который с легкостью образует устойчивые соединения с любыми металлами, кислородом, водородом, хлором и многими другими веществами. В результате подобных химических и физических воздействий получаются диаметрально разные по своим свойствам сплавы и соединения.

Использование оксидов и гидроксидов алюминия

Сферы применения алюминия настолько обширны, что для ограждения товаропроизводителей, конструкторов и инженеров от непреднамеренных ошибок, в нашей стране применение маркировки сплавов алюминия — стало обязательным. Каждому сплаву или соединению присваивается свое буквенно-цифровое обозначение, которое в дальнейшем позволяет быстро отсортировать их и направить для дальнейшей обработки.

Наиболее распространенные природные соединения алюминия — его оксид и гидроксид. в природе они существуют исключительно в виде минералов — корундов, бокситов, нефелинов, пр. — и в качестве глинозема. Применение алюминия и его соединений связано с ювелирной, косметологической, медицинской сферами, химической промышленностью и строительством.

Цветные, «чистые» (не мутные) корунды — это известные всем нам драгоценности — рубины и сапфиры. Однако по своей сути они — не что иное, как самый обычный оксид алюминия. Помимо ювелирной сферы, применение оксида алюминия распространяется на хим.промышленность, где он обычно выступает адсорбентом, а также на производство керамической посуды. Керамические котелки, горшочки, чашки обладают замечательными жаропрочными свойствами именно благодаря содержащемуся в них алюминию. Свое применение окись алюминия нашла и как материал для изготовления катализаторов. Нередко оксиды алюминия добавляют в бетон для его лучшего затвердевания, а стекло, в которое добавили алюминий, становится жаропрочным.

Перечень областей применения гидроксида алюминия выглядит еще более внушительно. Благодаря способности поглощать кислоту и оказывать каталитическое действие на иммунитет человека, гидроксид алюминия используется при изготовлении лекарств и вакцин от гепатитов типа «А» и «В» и столбнячной инфекции. Им также лечат почечную недостаточность, обусловленную наличием большого числа фосфатов в организме. Попадая в организм, гидроксид алюминия вступает в реакцию с фосфатами и образует неразрывные с ними связи, а затем естественным путем выводится из организма.

Гидроксид, в виду его отличной растворимости и не токсичности, нередко добавляют в пасту для чистки зубов, шампунь, мыло, примешивают к солнцезащитным средствам, питательным и увлажняющим кремам для лица и тела, антиперсперантам, тоникам, очищающим лосьонам, пенкам и пр. Если необходимо равномерно и стойко окрасить ткань, то в краситель добавляют немного гидроксида алюминия и цвет буквально «втравляется» в поверхность материи.

Применение хлоридов и судьфатов алюминия

Крайне важными соединениями алюминия являются также хлориды и сульфаты. Хлорид алюминия в естественном состоянии не встречается, однако его довольно просто получить промышленным путем из бокситов и каолинов. Применение хлорида алюминия ввиде катализатора довольно однобоко, но практически бесценно для нефтеперерабатывающей отрасли.

Алюминиевые сульфаты существуют в естественном состоянии в качестве минералов вулканических пород и известны своей способностью к абсорбации воды из воздуха. Применение сернокислого алюминия распространяется на косметическую и текстильную промышленность. В первой, он выступает в качестве добавки в антиперсперанды, во второй — в виде красителя. Интересно применение сульфата алюминия в составе реппелентов от насекомых. Сульфаты не только отпугивают комаров, мух и мошек, но и обезболивают место укуса. Однако несмотря на ощутимую пользу, сульфаты алюминия неоднозначно действуют на здоровье людей. Если вдохнуть или проглотить сульфат алюминия, можно получить серьезное отравление.

Алюминиевые сплавы — основные области применения

Искусственно полученные соединения алюминия с металлами (сплавы), в отличие от естественных образований, могут иметь такие свойства, какие пожелает сам производитель — достаточно изменить состав и количество легирующих элементов. На сегодняшний день существуют практически безграничные возможности для получения сплавов алюминия и их применения.

Самая известная отрасль использования алюминиевых сплавов — авиастроение. Самолеты практически полностью изготовлены из алюминиевых сплавов. Сплавы цинка, магния и алюминия дают небывалую прочность, используемую в обшивке самолетов и изготовлении деталей конструкции.

Аналогично используются алюминиевые сплавы и в строении кораблей, подводных лодок и мелкого речного транспорта. Здесь из алюминия наиболее выгодно делать надстроечные конструкции, они более чем в половину снижают вес судна, при этом не ухудшая их надежности.

Подобно самолетам и кораблям, автомобили с каждым годом все больше и больше становятся «алюминиевыми». Алюминий применяется не только в деталях кузова, теперь это еще и рамы, балки, стойки и панели кабины. Благодаря химической инертности алюминиевых сплавов, низкой подверженности коррозии и теплоизоляционным свойствам из сплавов алюминия изготавливают цистерны для перевозок жидких продуктов.

Широко известно применение алюминия в промышленности. Нефте- и газодобыча не были бы такими как сейчас, если бы не чрезвычайно коррозионстойкие, химически инертные трубопроводы из алюминиевых сплавов. Буры, сделанные из алюминия, весят в несколько раз меньше, а значит легко перевозятся и монтируются. И это не говря уже о разного рода, резервуарах, котлах и прочих емкостях.

Читать еще:  Виды скоб для степлера канцелярского

Из алюминия и его сплавов производят кастрюли, сковороды, противни, половники и прочую домашнюю утварь. Алюминиевая посуда отлично проводит тепло, очень быстро нагревается, при этом легко чистится, не вредит здоровью и продуктам. На алюминиевой фольге мы запекаем мясо в духовке и выпекаем пироги, в алюминий упакованы масла и маргарины, сыры, шоколад и конфеты.

Крайне важная и перспективная область — применение алюминия в медицине. Помимо тех областей использования (вакцины, почечные лекарства, адсорбенты), о которых говорилось ранее, следует также упомянуть использование алюминия в лекарствах от язвы и изжоги.

Из всего вышесказанного можно сделать один вывод — марки алюминия и их применение слишком многообразны, чтобы посвящать им одну небольшую статью. Об алюминии лучше писать книги, ведь не зря же его называют «металлом будущего».

Свойства алюминия и области применения в промышленности и быту (стр. 1 из 4)

Федеральное агентство по образованию РФ

Государственный технологический университет

«Московский институт стали и сплавов»

Российская олимпиада школьников

«Инновационные технологии и материаловедение»

II-й этап: Научно-творческий конкурс

«Материаловедение и технологии новых материалов»

«Свойства алюминия и области применения в промышленности и быту«

Зайцев Виктор Владиславович

1.1 Общее определение алюминия

1.2 История получения алюминия

2. Классификация алюминия по степени чистоты и его механические свойства

3. Основные легирующие элементы в алюминиевых сплавах и их функции

4. Применение алюминия и его сплавов в промышленности и быту

4.3 Железнодорожный транспорт

4.4 Автомобильный транспорт

4.6 Нефтяная и химическая промышленность

4.7 Алюминевая посуда

5.1. Алюминий — материал будущего

6. Список используемой литературы

1. Введение

В своём реферате на тему ”Свойства алюминия и области применения в промышленности и быту” я хотел бы указать на особенность этого металла и его превосходство перед другими. Весь мой текст является доказательством того, что алюминий метал будущего и без него будет трудным наше дальнейшее развитие.

1.1 Общее определение алюминия

Алюминий (лат. Aluminium, от alumen — квасцы) — химический элемент III гр. периодической системы, атомный номер 13, атомная масса 26,98154. Серебристо-белый металл, легкий, пластичный, с высокой электропроводностью, tпл = 660 °С. Химически активен (на воздухе покрывается защитной оксидной пленкой). По распространенности в природе занимает 3-е место среди элементов и 1-е среди металлов (8,8% от массы земной коры). По электропроводности алюминий — на 4-м месте, уступая лишь серебру (оно на первом месте), меди и золоту, что при дешевизне алюминия имеет огромное практическое значение. Алюминия вдвое больше, чем железа, и в 350 раз больше, чем меди, цинка, хрома, олова и свинца вместе взятых. Его плотность равна всего 2,7*10 3 кг/м 3 . Алюминий имеет решётку гранецентрированного куба, устойчив при температурах от — 269 °С до точки плавления (660 °С). Теплопроводность составляет при 24°С 2,37 Вт×см -1 ×К -1 . Электросопротивление алюминия высокой чистоты (99,99%) при 20°С составляет 2,6548×10 -8 Ом×м, или 65% электросопротивления международного эталона из отожжённой меди. Отражательная способность полированной поверхности составляет более 90%.

1.2 История получения алюминия

Документально зафиксированное открытие алюминия произошло в 1825. Впервые этот металл получил датский физик Ганс Христиан Эрстед, когда выделил его при действии амальгамы калия на безводный хлорид алюминия (полученный при пропускании хлора через раскаленную смесь оксида алюминия с углем). Отогнав ртуть, Эрстед получил алюминий, правда, загрязненный примесями. В 1827 немецкий химик Фридрих Вёлер получил алюминий в виде порошка восстановлением гексафторалюмината калием. Современный способ получения алюминия был открыт в 1886 молодым американским исследователем Чарльзом Мартином Холлом. (С 1855 до 1890 было получено лишь 200 тонн алюминия, а за следующее десятилетие по методу Холла во всем мире получили уже 28000т. этого металла) Алюминий чистотой свыше 99,99% впервые был получен электролизом в 1920г. В 1925 г. в работе Эдвардса опубликованы некоторые сведения о физических и механических свойствах такого алюминия. В 1938г. Тэйлор, Уиллей, Смит и Эдвардс опубликовали статью, в которой приведены некоторые свойства алюминия чистотой 99,996%, полученного во Франции также электролизом. Первое издание монографии о свойствах алюминия вышло в свет в 1967г. Еще недавно считалось, что алюминий как весьма активный металл не может встречаться в природе в свободном состоянии, однако в 1978г. в породах Сибирской платформы был обнаружен самородный алюминий — в виде нитевидных кристаллов длиной всего 0,5 мм (при толщине нитей несколько микрометров). В лунном грунте, доставленном на Землю из районов морей Кризисов и Изобилия, также удалось обнаружить самородный алюминий. Предполагают, что металлический алюминий может образоваться конденсацией из газа. При сильном повышении температуры галогениды алюминия разлагаются, переходя в состояние с низшей валентностью металла, например, AlCl. Когда при понижении температуры и отсутствии кислорода такое соединение конденсируется, в твердой фазе происходит реакция диспропорционирования: часть атомов алюминия окисляется и переходит в привычное трехвалентное состояние, а часть — восстанавливается. Восстановиться же одновалентный алюминий может только до металла: 3AlCl > 2Al + AlCl3. В пользу этого предположения говорит и нитевидная форма кристаллов самородного алюминия. Обычно кристаллы такого строения образуются вследствие быстрого роста из газовой фазы. Вероятно, микроскопические самородки алюминия в лунном грунте образовались аналогичным способом.

2. Классификация алюминия по степени чистоты и его механические свойства

В последующие годы благодаря сравнительной простоте получения и привлекательным свойствам опубликовано много работ о свойствах алюминия. Чистый алюминий нашёл широкое применение в основном в электронике — от электролитических конденсаторов до вершины электронной инженерии — микропроцессоров; в криоэлектронике, криомагнетике. Более новыми способами получения чистого алюминия являются метод зонной очистки, кристаллизация из амальгам (сплавов алюминия со ртутью) и выделение из щёлочных растворов. Степень чистоты алюминия контролируется величиной электросопротивления при низких температурах. В настоящее время используется следующая классификация алюминия по степени чистоты:

ОбозначениеСодержание алюминия по массе,%
Алюминий промышленной чистоты99,5 — 99,79
Высокочистый алюминий99,80 — 99,949
Сверхчистый алюминий99,950 — 99,9959
Особо чистый алюминий99,9960 — 99,9990
Ультрачистый алюминийсвыше 99,9990

Механические свойства алюминия при комнатной температуре:

Чистота, %Предел текучести d0,2, МпаПредел прочности, dв, МПаОтносительное удлинение d,% (на базе 50 мм)
99,99104550
99,8206045
99,6307043

3. Основные легирующие элементы в алюминиевых сплавах и их функции

Чистый алюминий — довольно мягкий металл — почти втрое мягче меди, поэтому даже сравнительно толстые алюминиевые пластинки и стержни легко согнуть, но когда алюминий образует сплавы (их известно огромное множество), его твердость может возрасти в десятки раз. Наиболее широко применяются:

Бериллий добавляется для уменьшения окисления при повышенных температурах. Небольшие добавки бериллия (0,01 — 0,05%) применяют в алюминиевых литейных сплавах для улучшения текучести в производстве деталей двигателей внутреннего сгорания (поршней и головок цилиндров).

Бор вводят для повышения электропроводимости и как рафинирующую добавку. Бор вводится в алюминиевые сплавы, используемые в атомной энергетике (кроме деталей реакторов), т.к он поглощает нейтроны, препятствуя распространению радиации. Бор вводится в среднем в количестве 0,095 — 0,1%.

Висмут. Металлы с низкой температурой плавления, такие как висмут, свинец, олово, кадмий вводят в алюминиевые сплавы для улучшения обрабатываемости резанием. Эти элементы образуют мягкие легкоплавкие фазы, которые способствуют ломкости стружки и смазыванию резца.

Галлий добавляется в количестве 0,01 — 0,1% в сплавы, из которых далее изготавливаются расходуемые аноды.

Железо. В малых количествах (»0,04%) вводится при производстве проводов для увеличения прочности и улучшает характеристики ползучести. Так же железо уменьшает прилипание к стенкам форм при литье в кокиль.

Индий. Добавка 0,05 — 0,2% упрочняют сплавы алюминия при старении, особенно при низком содержании меди. Индиевые добавки используются в алюминиево-кадмиевых подшипниковых сплавах.

Примерно 0,3% кадмия вводят для повышения прочности и улучшения коррозионных свойств сплавов.

Кальций придаёт пластичность. При содержании кальция 5% сплав обладает эффектом сверхпластичности.

Кремний является наиболее используемой добавкой в литейных сплавах. В количестве 0,5 — 4% уменьшает склонность к трещинообразованию. Сочетание кремния с магнием делают возможным термоуплотнение сплава.

Магний. Добавка магния значительно повышает прочность без снижения пластичности, повышает свариваемость и увеличивает коррозионную стойкость сплава.

Медь упрочняет сплавы, максимальное упрочнение достигается при содержании меди 4 — 6%. Сплавы с медью используются в производстве поршней двигателей внутреннего сгорания, высококачественных литых деталей летательных аппаратов.

Олово улучшает обработку резанием.

Титан. Основная задача титана в сплавах — измельчение зерна в отливках и слитках, что очень повышает прочность и равномерность свойств во всём объёме.

Алюминий — один из самых распространенных и дешевых металлов. Без него трудно представить себе современную жизнь. Недаром алюминий называют металлом 20 века. Он хорошо поддается обработке: ковке, штамповке, прокату, волочению, прессованию. Чистый алюминий — довольно мягкий металл; из него делают электрические провода, детали конструкций, фольгу для пищевых продуктов, кухонную утварь и «серебряную» краску. Этот красивый и легкий металл широко используют в строительстве и авиационной технике. Алюминий очень хорошо отражает свет. Поэтому его используют для изготовления зеркал — методом напыления металла в вакууме.

Марки алюминия: виды, свойства и области применения

Сегодня алюминий используется практически во всех отраслях промышленности, начиная с производства пищевой посуды и заканчивая созданием фюзеляжей космических кораблей. Для тех или иных производственных процессов подходят только определенные марки алюминия, которые обладают определенными физико-химическими свойствами.

Читать еще:  Погружной топливный насос 12 вольт

Виды алюминия

Все марки металла описаны и внесены в единую систему признанных национальных и международных стандартов: Европейских EN, Американских ASTM и международных ISO. В нашей стране марки алюминия определены ГОСТом 11069 и 4784. Во всех документах алюминий и его сплавы рассматриваются отдельно. При этом сам металл подразделяется именно на марки, а сплавы не имеют конкретно определенных знаков.

В соответствии с национальными и международными стандартами, следует выделить два вида микроструктуры нелегированного алюминия:

  • высокой чистоты с процентным содержанием более 99,95%;
  • технической чистоты, содержащей около 1% примесей и добавок.

В качестве примесей чаще всего рассматривают соединения железа и кремния. В международном стандарте ISO для алюминия и его сплавов выделена отдельная серия.

Марки алюминия

Технический вид материала делится на определенные марки, которые закреплены за соответствующими стандартами, например АД0 по ГОСТ 4784-97. При этом в классификацию входит и металл высокой частоты, чтобы не создавать путаницу. Данная спецификация содержит следующие марки:

  1. Первичный (А5, А95, А7Е).
  2. Технический (АД1, АД000, АДС).
  3. Деформируемый (АМг2, Д1).
  4. Литейный (ВАЛ10М, АК12пч).
  5. Для раскисления стали (АВ86, АВ97Ф).

Кроме того, выделяют и категории лигатуры – соединения алюминия, которые используются для создания сплавов из золота, серебра, платины и других драгоценных металлов.

Первичный алюминий

Первичный алюминий (марка А5) – типичный пример данной группы. Его получают путем обогащения глинозема. В природе металл в чистом виде не встречается ввиду его высокой химической активности. Соединяясь с другими элементами, он образует бокситы, нефелины и алуниты. Впоследствии из этих руд получают глинозем, а из него с помощью сложных химико-физических процессов — чистый алюминий.

ГОСТ 11069 устанавливает требования к маркам первичного алюминия, которые следует отметить путем нанесения вертикальных и горизонтальных полос несмываемой краской различных цветов. Данный материал нашел широкое применение в передовых отраслях промышленности, главным образом там, где от сырья требуются высокие технические характеристики.

Технический алюминий

Техническим алюминием называют материал с процентным содержанием инородных примесей менее 1%. Очень часто его также называют нелегированным. Технические марки алюминия по ГОСТу 4784-97 характеризуются очень низкой прочностью, но высокой антикоррозионной стойкостью. Благодаря отсутствию в составе легирующих частиц на поверхности металла быстро образуется защитная оксидная пленка, которая отличается устойчивостью.

Деформируемый алюминий

К деформируемому алюминию относят материал, который подвергают горячей и холодной обработке давлением: прокатке, прессованию, волочению и другим видам. В результате пластических деформаций из него получают полуфабрикаты различного продольного сечения: алюминиевый пруток, лист, ленту, плиту, профили и другие.

Область применения деформируемого алюминия, как и та, где применяется алюминиевый пруток, достаточно обширна. Он используется как в областях, требующих высоких технических характеристик от материалов — в корабле- и самолетостроении, так и на строительных площадках в качестве сплава для сварки.

Литейный алюминий

Литейные марки алюминия используются для производства фасонных изделий. Их главной особенностью является сочетание высокой удельной прочности и низкой плотности, что позволяет отливать изделия сложных форм без образования трещин.

  1. Высокогерметичные материалы (АЛ2, АЛ9, АЛ4М).
  2. Материалы с высокой прочностью и жароустойчивостью (АЛ 19, АЛ5, АЛ33).
  3. Вещества с высокой антикоррозионной устойчивостью.

Очень часто эксплуатационные характеристики изделий из литейного алюминия повышают различными видами термической обработки.

Алюминий для раскисления

На качество изготавливаемых изделий оказывает влияние и то, какие имеет алюминий физические свойства. И применение низкосортных сортов материала не ограничивается созданием полуфабрикатов. Очень часто он используется для раскисления стали – удаления из расплавленного железа кислорода, который растворен в нем и повышает тем самым механические свойства металла. Для проведения данного процесса чаще всего применяются марки АВ86 и АВ97Ф.

Алюминий и его сплавы: характеристика, свойства, применение

Алюминий — серебристо-белый легкий парамагнитный металл. Впервые получен физиком из Дании Гансом Эрстедом в 1825 году. В периодической системе Д. И. Менделеева имеет номер 13 и символ Al, атомная масса равна 26,98.

Производство алюминия

Для производства алюминия используют бокситы — это горная порода, которая содержит гидраты оксида алюминия. Мировые запасы бокситов почти не ограничены и несоизмеримы с динамикой спроса.

Боксит дробят, измельчают и сушат. Получившуюся массу сначала нагревают паром, а затем обрабатывают щелочью — в щелочной раствор переходит большая часть оксида алюминия. После этого раствор длительно перемешивают. На этапе электролиза глинозем подвергают воздействию электрического тока силой до 400 кА. Это позволяет разрушить связь между атомами кислорода и алюминия, в результате чего остается только жидкий металл. После этого алюминий отливают в слитки или добавляют к нему различные элементы для создания алюминиевых сплавов.

Алюминиевые сплавы

Наиболее распространенные элементы в составе алюминиевых сплавов — медь, марганец, магний, цинк и кремний. Реже встречаются сплавы с титаном, бериллием, цирконием и литием.

Алюминиевые сплавы условно разделяют на две группы: литейные и деформируемые.

Для изготовления литейных сплавов расплавленный алюминий заливают в литейную форму, которая соответствует конфигурации получаемого изделия. Эти сплавы часто содержат значительные примеси кремния для улучшения литейных свойств.

Деформируемые сплавы сначала разливают в слитки, а затем придают им нужную форму.

Происходит это несколькими способами в зависимости от вида продукта:

  1. Прокаткой, если необходимо получить листы и фольгу.
  2. Прессованием, если нужно получить профили, трубы и прутки.
  3. Формовкой, чтобы получить сложные формы полуфабрикатов.
  4. Ковкой, если требуется получить сложные формы с повышенными механическими свойствами.

Марки алюминиевых сплавов

Для маркировки алюминиевых сплавов согласно ГОСТ 4784-97 пользуются буквенно-цифровой системой, в которой:

  • А — технический алюминий;
  • Д — дюралюминий;
  • АК — алюминиевый сплав, ковкий;
  • АВ — авиаль;
  • В — высокопрочный алюминиевый сплав;
  • АЛ — литейный алюминиевый сплав;
  • АМг — алюминиево-магниевый сплав;
  • АМц — алюминиево-марганцевый сплав;
  • САП — спеченные алюминиевые порошки;
  • САС — спеченные алюминиевые сплавы.

После первого набора символов указывается номер марки сплава, а следом за номером — буква, которая обозначает его состояние:

  • М — сплав после отжига (мягкий);
  • Т — после закалки и естественного старения;
  • А — плакированный (нанесен чистый слой алюминия);
  • Н — нагартованный;
  • П — полунагартованный.

Виды и свойства алюминиевых сплавов

Алюминиево-магниевые сплавы

Эти пластичные сплавы обладают хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности.

В алюминиево-магниевых сплавах содержится до 6% магния. Чем выше его содержание, тем прочнее сплав. Повышение концентрации магния на каждый процент увеличивает предел прочности примерно на 30 МПа, а предел текучести — примерно на 20 МПа. При подобных условиях уменьшается относительное удлинение, но незначительно, оставаясь в пределах 30–35%. Однако при содержании магния свыше 6% механическая структура сплава в нагартованном состоянии приобретает нестабильных характер, ухудшается коррозийная стойкость.

Для улучшения прочности в сплавы добавляют хром, марганец, титан, кремний или ванадий. Примеси меди и железа, напротив, негативно влияют на сплавы этого вида — снижают свариваемость и коррозионную стойкость.

Алюминиево-марганцевые сплавы

Это прочные и пластичные сплавы, которые обладают высоким уровнем коррозионной стойкости и хорошей свариваемостью.

Для получения мелкозернистой структуры сплавы этого вида легируют титаном, а для сохранения стабильности в нагартованном состоянии добавляют марганец. Основные примеси в сплавах вида Al-Mn — железо и кремний.

Сплавы алюминий-медь-кремний

Сплавы этого вида также называют алькусинами. Из-за высоких технических свойств их используют во втулочных подшипниках, а также при изготовлении блоков цилиндров. Обладают высокой твердостью поверхности, поэтому плохо прирабатываются.

Алюминиево-медные сплавы

Механические свойства сплавов этого вида в термоупрочненном состоянии порой превышают даже механические свойства некоторых низкоуглеродистых сталей. Их главный недостаток — невысокая коррозионная стойкость, потому эти сплавы обрабатывают поверхностными защитными покрытиями.

Алюминиево-медные сплавы легируют марганцем, кремнием, железом и магнием. Последний оказывает наибольшее влияние на свойства сплава: легирование магнием значительно повышает предел текучести и прочности. Добавление железа и никеля в сплав повышает его жаропрочность, кремния — способность к искусственному старению.

Алюминий-кремниевые сплавы

Сплавы этого вида иначе называют силуминами. Некоторые из них модифицируют добавками натрия или лития: наличие буквально 0,05% лития или 0,1% натрия увеличивает содержание кремния в эвтектическом сплаве с 12% до 14%. Сплавы применяются для декоративного литья, изготовления корпусов механизмов и элементов бытовых приборов, поскольку обладают хорошими литейными свойствами.

Сплавы алюминий-цинк-магний

Прочные и хорошо обрабатываемые. Типичный пример высокопрочного сплава этого вида — В95. Подобная прочность объясняется высокой растворимостью цинка и магния при температуре плавления до 70% и до 17,4% соответственно. При охлаждении растворимость элементов заметно снижается.

Основной недостаток этих сплавов — низкую коррозионную стойкость во время механического напряжения — исправляет легирование медью.

Авиаль

Авиаль — группа сплавов системы алюминий-магний-кремний с незначительными добавлениями иных элементов (Mn, Cr, Cu). Название образовано от сокращения словосочетания «авиационный алюминий».

Применять авиаль стали после открытия Д. Хансоном и М. Гейлером эффекта искусственного состаривания и термического упрочнения этой группы сплавов за счет выделения Mg2Si.

Эти сплавы отличаются высокой пластичностью и удовлетворительной коррозионной стойкостью. Из авиаля изготавливают кованые и штампованные детали сложной формы. Например, лонжероны лопастей винтов вертолетов. Для повышения коррозионной стойкости содержание меди иногда снижают до 0,1%.

Читать еще:  Как затягивать болты без динамометрического ключа

Также сплав активно используют для замены нержавеющей стали в корпусах мобильных телефонов.

Физические свойства

  • Плотность — 2712 кг/м 3 .
  • Температура плавления — от 658°C до 660°C.
  • Удельная теплота плавления — 390 кДж/кг.
  • Температура кипения — 2500 °C.
  • Удельная теплота испарения — 10,53 МДж/кг.
  • Удельная теплоемкость — 897 Дж/кг·K.
  • Электропроводность — 37·10 6 См/м.
  • Теплопроводность — 203,5 Вт/(м·К).

Химический состав алюминиевых сплавов

Алюминиевые сплавы
МаркаМассовая доля элементов, %Плотность, кг/дм³
ГОСТISO 209-1-89Кремний (Si)Железо (Fe)Медь (Cu)Марганец (Mn)Магний (Mg)Хром (Cr)Цинк (Zn)Титан (Ti)ДругиеАлюминий не менее
КаждыйСумма
АД000A199,8 1080A0,150,150,030,020,020,060,020,0299,82,7
АД00 1010A199,7 1070A0,20,250,030,030,030,070,030,0399,72,7
АД00Е 1010ЕЕА199,7 13700,10,250,020,010,020,010,04Бор:0,02 Ванадий+титан:0,020,199,72,7

Применение алюминия

Ювелирные изделия

В далеком прошлом из-за высокой стоимости алюминия его использовали для изготовления ювелирных изделий. Так, весы с алюминиевыми и золотыми чашами были подарены Д. И. Менделееву в 1889 г.

Когда себестоимость алюминия снизилась, мода на ювелирные изделия из этого металла прошла. Но и в наши дни его используют для изготовления бижутерии. В Японии, например, алюминием заменяют серебро при производстве национальных украшений.

Столовые приборы

По-прежнему пользуются популярностью столовые приборы и посуда из алюминия. В частности, в армии широко распространены алюминиевые фляжки, котелки и ложки.

Стекловарение

Алюминий широко применяют в стекловарении. Высокий коэффициент отражения и низкая стоимость вакуумного напыления — основные причины использования алюминия при изготовления зеркал.

Пищевая промышленность

Алюминий зарегистрирован как пищевая добавка Е173. Ее используют в качестве пищевого красителя, а также для сохранения продуктов от плесени. Е173 окрашивает кондитерские изделия в серебристый цвет.

Военная промышленность

Из-за небольшого веса и низкой стоимости алюминий широко применяют при изготовлении ручного стрелкового оружия — автоматов и пистолетов.

Ракетная техника

Алюминий и его соединения используют в качестве ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твердых ракетных топливах.

Алюмоэнергетика

В алюмоэнергетике алюминий используют для производства водорода и тепловой энергии, а также выработки электроэнергии в воздушно-алюминиевых электрохимических генераторах.

Применение алюминия и его сплавов

В настоящее время алюминий и его сплавы используют практически во всех областях современной техники. Важнейшие потребители алюминия и его сплавов — авиационная и автомобильная отрасли промышленности, железнодорожный и водный транспорт, машиностроение, электротехническая промышленность и приборостроение, промышленное и гражданское строительство, химическая промышленность, производство предметов народного потребления.

Большинство алюминиевых сплавов имеют высокую коррозионную стойкость в естественной атмосфере, морской воде, растворах многих солей и химикатов и в большинстве пищевых продуктов. Конструкции из алюминиевых сплавов часто используют в морской воде. Морские бакены, спасательные шлюпки, суда, баржи строятся из сплавов алюминия с 1930 г. В настоящее время длина корпусов кораблей из сплавов алюминия достигает 61 м. Существует опыт алюминиевых подземных трубопроводов, сплавы алюминия обладают высокой стойкостью к почвенной коррозии. В 1951 году на Аляске был построен трубопровод длиной 2,9 км. После 30 лет работы не было обнаружено ни одной течи или серьёзного повреждения из-за коррозии.

Алюминий в большом объёме используется в строительстве в виде облицовочных панелей, дверей, оконных рам, электрических кабелей. Алюминиевые сплавы не подвержены сильной коррозии в течение длительного времени при контакте с бетоном, строительным раствором, штукатуркой, особенно если конструкции не подвергаются частому намоканию. При частом намокании, если поверхность алюминиевых изделий не была дополнительно обработана, он может темнеть, вплоть до почернения в промышленных городах с большим содержанием окислителей в воздухе. Для избежания этого выпускаются специальные сплавы для получения блестящих поверхностей путём блестящего анодирования — нанесения на поверхность металла оксидной плёнки. При этом поверхности можно придавать множество цветов и оттенков. Например, сплавы алюминия с кремнием позволяют получить гамму оттенков, от серого до чёрного. Золотой цвет имеют сплавы алюминия с хромом.

В промышленности используются также и алюминиевые порошки. Применяются в металлургической промышленности: в алюминотермии, в качестве легирующих добавок, для изготовления полуфабрикатов путём прессования и спекания. Этим методом получают очень прочные детали (шестерни, втулки и др.). Также порошки используются в химии для получения соединений алюминия и в качестве катализатора (например, при производстве этилена и ацетона). Учитывая высокую реакционную способность алюминия, особенно в виде порошка, его используют во взрывчатых веществах и твёрдом топливе для ракет, используя его свойство быстро воспламеняться.

Учитывая высокую стойкость алюминия к окислению, порошок используются в качестве пигмента в покрытиях для окраски оборудования, крыш, бумаги в полиграфии, блестящих поверхностей панелей автомобилей. Также слоем алюминия покрывают стальные и чугунные изделия во избежание их коррозии.

По масштабам применения алюминий и его сплавы занимают второе место после железа (Fe) и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физических, механических и химических свойств: малой плотностью, коррозионной стойкостью в атмосферном воздухе, высокой тепло — и электропроводностью, пластичностью и сравнительно высокой прочностью. Алюминий легко обрабатывается различными способами — ковкой, штамповкой, прокаткой и др. Чистый алюминий применяют для изготовления проволоки (электропроводность алюминия составляет 65,5% от электропроводности меди, но алюминий более чем в три раза легче меди, поэтому алюминий часто заменяет медь в электротехнике) и фольги, используемой как упаковочный материал. Основная же часть выплавляемого алюминия расходуется на получение различных сплавов. На поверхности сплавов алюминия легко наносятся защитные и декоративные покрытия.

Разнообразие свойств алюминиевых сплавов обусловлено введением в алюминий различных добавок, образующих с ним твердые растворы или интерметаллические соединения. Основную массу алюминия используют для получения легких сплавов — дуралюмина (94% — алюминий, 4% медь (Cu), по 0,5% магний (Mg), марганец (Mn), железо (Fe) и кремний (Si)), силумина (85-90% — алюминий, 10-14% кремний (Si), 0,1% натрий (Na)) и др. В металлургии алюминий используется не только как основа для сплавов, но и как одна из широко применяемых легирующих добавок в сплавах на основе меди (Cu), магния (Mg), железа (Fe), >никеля (Ni) и др.

Сплавы алюминия находят широкое применение в быту, в строительстве и архитектуре, в автомобилестроении, в судостроении, авиационной и космической технике. В частности, из алюминиевого сплава был изготовлен первый искусственный спутник Земли. Сплав алюминия и циркония (Zr) — широко применяют в ядерном реакторостроении. Алюминий применяют в производстве взрывчатых веществ. При обращении с алюминием в быту нужно иметь в виду, что нагревать и хранить в алюминиевой посуде можно только нейтральные (по кислотности) жидкости (например, кипятить воду). Если, например, в алюминиевой посуде варить кислые щи, то алюминий переходит в пищу, и она приобретает неприятный «металлический» привкус. Поскольку в быту оксидную пленку очень легко повредить, то использование алюминиевой посуды все-таки нежелательно.

Использование алюминия и его сплавов во всех видах транспорта и в первую очередь — воздушного позволило решить задачу уменьшения собственной («мертвой») массы транспортных средств и резко увеличить эффективность их применения. Из алюминия и его сплавов изготовляют авиаконструкции, моторы, блоки, головки цилиндров, картеры, коробки передач. Алюминием и его сплавами отделывают железнодорожные вагоны, изготовляют корпуса и дымовые трубы судов, спасательные лодки, радарные мачты, трапы. Широко применяют алюминий и его сплавы в электротехнической промышленности для изготовления кабелей, шинопроводов, конденсаторов, выпрямителей переменного тока. В приборостроении алюминий и его сплавы используют в производстве кино — и фотоаппаратуры, радиотелефонной аппаратуры, различных контрольно-измерительных приборов. Благодаря высокой коррозионной стойкости и не токсичности алюминий широко применяют при изготовлении аппаратуры для производства и хранения крепкой азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов. Алюминиевая фольга, будучи прочнее и дешевле оловянной, полностью вытеснила ее как упаковочный материал для пищевых продуктов. Все более широко используется алюминий при изготовлении тары для консервирования и храпения продуктов сельского хозяйства, для строительства зернохранилищ и других быстровозводимых сооружений. Являясь одним из важнейших стратегических металлов, алюминий, как и его сплавы, широко используется в строительстве самолетов, танков, артиллерийских установок, ракет, зажигательных веществ, а также для других целей в военной технике.

Алюминий высокой чистоты находит широкое применение в новых областях техники — ядерной энергетике, полупроводниковой электронике, радиолокации, а также для защиты металлических поверхностей от действия различных химических веществ и атмосферной коррозии. Высокая отражающая способность такого алюминия используется для изготовления из пего отражающих поверхностей нагревательных и осветительных рефлекторов и зеркал. В металлургической промышленности алюминий используют в качестве восстановителя при получении ряда металлов (например, хрома, кальция, марганца) алюмо-термическими способами, для раскисления стали, сварки стальных деталей.

Широко применяют алюминий и его сплавы в промышленном и гражданском строительстве для изготовления каркасов зданий, ферм, оконных рам, лестниц и др. В Канаде, например, расход алюминия для этих целей составляет около 30 % от общего потребления, в США — более 20 %. По масштабам производства и значению в хозяйстве алюминий прочно занял первое место среди других цветных металлов.

Ссылка на основную публикацию
Adblock
detector