12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные физические и механические свойства металлов

ФИЗИЧЕСКИЕ, ХИМИЧЕСКИЕ И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ

СВОЙСТВА МЕТАЛЛОВ И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ

Одним из основных факторов, обеспечивающих выпуск надежной и качественной продукции машиностроительных предприятий, является правильный выбор металлов для различных изделий и конструкций. Для этого надо хорошо знать условия работы деталей и конструкций и свойства предназначаемых, для них металлов.

Свойства металлов и сплавов делятся на несколько групп: физические, механические, химические, технологические, специальные.

Физические свойства металлов. Плотность (кг/м 3 ) — отношение массы металла к его объему. Металлы с малой плотностью применяют при изготовлении легких конструкций, например сплавы магния и алюминия в самолетостроении.

Температура плавления (°С) — температура, при которой металл переходит в жидкое состояние. Легкоплавкие сплавы — алюминий с Тпл 660°С, олово с Тпл 232°С, тугоплавкие — вольфрам с Тпл 3416°С, железо с Тпл 1539°С.

Тепловое расширение — равномерное увеличение объема (длины) тела при нагревании. Характеризуется коэффициентом расширения α (град -1 ). Этот коэффициент показывает относительное изменение линейных размеров тела при изменении температуры на один градус.

Обычно определяют средний коэффициент линейного расширения ее, характеризующий тепловое расширение в широком интервале температур: от 0° или 20°С до заданной.

Коэффициент объемного расширения в три раза больше коэффициента линейного расширения.

Тепловое расширение при выборе металлов учитывают для конструкций, работающих при переменных и повышенных температурах.

Коэффициент линейного расширения углеродистой стали при 20°С составляет 12 ×10 -6 , вольфрама — 4,3×10 -6 дуралюмина — 22×10 -6 град -1 .

Теплопроводность [Вт/(м×К)] — способность передавать теплоту от нагретых зон более холодным.

Коэффициент теплопроводности λ показывает, какое количество теплоты может пройти перпендикулярно площади 1 м 2 на расстояние 1 м при разности температур 1К на противоположных сторонах куба.

Теплопроводность учитывается при конструировании узлов, в которых металл не должен перегреваться. Коэффициент теплопроводности стали 45,4, алюминия 209,3, серебра 418,7 Вт/(м×К).

Электропроводность — способность металла проводить электрический ток.

С повышением температуры электропроводность уменьшается, с понижением — повышается. Электропроводность учитывается при выборе материала для изготовления электрических проводов и различных датчиков.

Удельное электросопротивление алюминия 2,69×10 -6 , вольфрама — 5,5×10 -6 , меди — 1,67 ×10 -6 Ом/см при 20°С.

Магнитные свойства характеризуются магнитной восприимчивостью — способностью вещества намагничиваться в магнитном поле. Хорошо намагничивающиеся вещества называют ферромагнетиками. Это железо, никель, кобальт и ряд сплавов. Их применяют в электротехнике и приборостроении.

Химические свойства металлов. К этим свойствам относят способность металлов вступать в реакцию с рабочей средой. Распространенным явлением является коррозия — разрушение металлов вследствие химического и электрохимического взаимодействия их с внешней средой. Из-за коррозии ежегодно теряется

1,5% всего эксплуатируемого металла. Поэтому применяют специальные методы защиты металлов от коррозии, а также коррозионно-стойкие в различных средах сплавы.

Технологические свойства металлов. Пригодность металла для изготовления различных конструкций и деталей не всегда можно оценить по физическим и механическим свойствам. Для более точной оценки качества металла проводят определение его технологических свойств. К ним относятся литейные свойства, свариваемость, способность обрабатываться давлением и резанием. Определение технологических свойств проводится с помощью специальных проб. Ниже рассматриваются некоторые из них. Известно, что сталь одной марки, но разных плавок может иметь различную пластичность. Для выбора способа горячей обработки давлением необходима предварительная оценка пластичности.

Определение ковкости проводят на пробах массой до 1 кг, отлитых по ходу плавки или разливки. Процесс определения ковкости заключается в том, что пробы в форме стаканчика проковывают на квадратный стержень сечением 15×15 мм. Затем стержень загибают молотком на 180° до соприкосновения сторон.

Ковкость считается хорошей при отсутствии на пробе надрывов, трещин и других дефектов, Ковкость считается удовлетворительной при появлении на наружных гранях пробы незначительных надрывов. Считают, что при разрушении пробы или появлении больших надрывов и трещин сталь непригодна для горячей обработки давлением.

Проба на свариваемость служит для определения способности стали принимать заданный по размерам и форме загиб по месту сварки.

Испытание заключается в загибе сваренного образца в месте сварки по одному из следующих вариантов: загиб до определенного угла, загиб вокруг оправки до параллельности сторон; загиб до соприкосновения сторон образца. Сталь считают выдержавшей пробу при отсутствии в образце после загиба трещин, надрывов, расслоений или излома. Такая сталь, имеющая сварные швы, может подвергаться пластической деформации.

Листовая сталь испытывается на загиб по такой же схеме, но без разрезки и сварки образца. Сохранение сплошности после испытания считается признаком того, что образец выдержал пробу.

Существует ряд других технологических проб, применяемых в различных производствах.

|следующая лекция ==>
МАКРО- И МИКРОСТРУКТУРА|МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ. Основными механическими свойствами металлов являются прочность, упругость, пластичность, твердость и вязкость

Дата добавления: 2014-01-14 ; Просмотров: 3084 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Физические, химические, механические и технологические свойства металлов

Чтобы правильно выбрать материал для определённых целей, необходи­мо знать свойства металлов. Так, например, для изготовления режущих инструментов требуются прочные, твердые и износоустойчивые металлические мате­риалы.

Физические свойства металлов и сплавов определяются цве­том, удельным весом, плотностью, температурой плавления, тепло­вым расширением, тепло- и электропроводностью, а также магнит­ными свойствами.

Физические свойства металлов характеризуются определенными числовыми значениями, которые приведены в таблице 1.

Физические свойства некоторых металлов

МеталлСимволЦветПлотность, кг/м 3Температура плавления, °СУдел. электро- сопротивление при 20 °С, 10 -6 Ом∙м
АлюминийAlСеребристо-белый2700658,70,029
ВольфрамWБлестящий белый1930033800,053
ЖелезоFeСеребристо-белый780015390,100
КобальтCoСеребристо-белый890014900,062
МагнийMgБлестящий серебристо-белый17006500,047
МедьCuКрасный890010830,017
НикельNiСеребристо-белый с серова­тым оттенком890014520,070
ОловоSnСеребристо-белый7300231,90,124
СвинецРЬСиневато-серый11400327,40,220
ТитанTiСеребристо-белый450016680,470
ХромСrБлестящий серовато-белый710015500,150
ЦинкZnСиневато-серый7100419,50,060

Отношение массы тела к его объему является постоянной вели­чиной для данного вещества и называется плотностью.

Плотность и удельный вес имеют большое значение при вы­боре металлических материалов для изготовления различных из­делий. Так, детали и конструкции в приборостроении, в авиа- и вагоностроении наряду с высокой прочностью должны обладать малой плотностью. Из металлов, наиболее широко применяемых в технике, наименьшую плотность имеют магний и алюминий.

Все металлы как тела кристаллического строения переходят при определенной температуре из твердого состояния в жидкое и наоборот. Температура, при которой металл переходит из твердого состояния в жидкое, называется температурой плавления.

Температура плавления является важным физическим свой­ством металлов. Знание температуры плавления металлов и спла­вов необходимо в металлургии, в литейном производстве, при горя­чей обработке металлов давлением, при сварке, пайке и других процессах, сопровождающихся нагреванием металлических мате­риалов.

Способность металлов передавать тепло­ту от более нагретых частей тела к менее нагретым называется теплопроводностью.

Среди металлических материалов лучшей теплопроводностью обладают серебро, медь, алюминий. Эти же металлы являются и лучшими проводниками электрического тока.

Теплопроводность металлов имеет большое практическое значе­ние. Из металлов и сплавов, обладающих высокой теплопроводно­стью, изготовляют детали машин, которые при работе поглощают или отдают теплоту.

Металлы и сплавы с низкой теплопроводностью для полного прогрева нуждаются в медленном и длительном нагревании. Быст­рый нагрев и быстрое охлаждение таких металлических материа­лов может вызвать образование трещин. Это необходимо учиты­вать при термической обработке, горячей обработке давлением, литье в металлические формы и т. д.

Различные вещества, в том числе и металлы, при нагревании расширяются, при охлаждении — сжима­ются. Неодинаковость величины теплового линейного расширения материалов характеризуется коэффициентом линейного расшире­ния α, который показывает, на какую долю первоначальной длины l при 0 °С удлинилось тело вследствие нагревания его на 1°С. Единица измерения α — °С -1 .

Тепловое расширение металлов необходимо учитывать при изго­товлении и эксплуатации точных измерительных приборов и инст­рументов, изготовлении литейных форм, горячей обработке метал­лов давлением и в других случаях, связанных с нагреванием и охлаждением.

Детали точных приборов и измерительных инструментов изго­тавливаются из материалов с малым коэффициентом линейного расширения, детали автоматически действующих механизмов, которые, удлиняясь, должны замыкать электрическую цепь, делают из мате­риалов с большим коэффициентом линейного расширения.

Электропроводностью называется способность металлов про­водить электрический ток.

Высокой электропроводностью обладают те металлы, которые хорошо, т. е. без потерь на тепло, проводят электрический ток.

Магнитные свойства. Некоторые металлы намагничиваются под действием магнитного поля. После удаления магнитного поля они обладают остаточным магнетизмом. Это явление впервые обнаружено на железе и получило название ферромагнетизма. Сильно выраженными магнитными свойствами обладают желе­зо, никель, кобальт и их сплавы. Перечисленные выше металличе­ские материалы называют ферромагнитными. У остальных металлов и сплавов магнитные свойства выражены крайне слабо, поэтому практически они считаются немагнитными.

Магнитные превращения не связаны с изменением кристаллической решетки или микроструктуры, они обусловлены изменениями в характере межэлектронного взаимодействия.

Магнитной проницаемостью называют способность металлов намагничиваться под действием магнитного поля.

При нагреве ферромагнитные свойства металла уменьшаются постепенно: вначале слабо, затем резко, и при определённой температуре (точка Кюри) исчезают (точка Кюри для железа — 768°С, у никеля — 360° С, у кобальта — 1130° С.). Выше этой температуры металлы становятся парамагнетиками (слабомагнитными материалами).

К химическим свойствам металлов следует отнести их спо­собность сопротивляться химическому или электрохимическому воздействию различных сред (коррозии) при нормальных и высо­ких температурах.

Рассмотренные выше физические свойства металлов обна­руживаются в явлениях, не сопровождающихся изменением вещест­ва. Так, например, нагрев металлов или прохождение через метал­лы электрического тока не сопровождается химическими измене­ниями их. При химических же явлениях происходит превращение металлов в другие вещества с иными свойствами.

Читать еще:  Что такое притирка и доводка

Многие металлы подвергаются химическому изменению под воз­действием внешней среды, т. е. разрушаются от коррозии. Мерой коррозионной стойкости служит скорость распростране­ния коррозии металлов в данной среде и в данных условиях: чем эта скорость меньше, тем металл более коррозионностоек.

Высокой коррозионной стойкостью в атмосфере и в агрессивных средах обладают никель, титан и их сплавы. Титан и его сплавы по коррозионной стойкости приближаются к благородным ме­таллам.

Прочность — это способность материала сопротивляться дейст­вию внешних сил без разрушения.

Упругость — это способность материала восстанавливать свою первоначальную форму и размеры после прекращения действия внешних сил, вызвавших деформацию.

Пластичность — это способность материала изменять свою форму и размеры под действием внешних сил, не разрушаясь, и сохра­нять полученные деформации после прекращения действия внеш­них сил.

Механическими свойствами металлов называется совокуп­ность свойств, характеризующих способность металлических мате­риалов сопротивляться воздействию внешних усилий (нагрузок).

К механическим свойствам металлических материалов относят­ся: прочность, твердость, пластичность, упругость, вязкость, хруп­кость, усталость, ползучесть и износостойкость.

Твердость — способность металла оказывать сопротивление проникновению в него другого, более твердого тела.

Прочность — способность металла сопротивляться разрушению под действием внешних сил.

Для определения прочности образец металла установленной формы и размера испытывают на наибольшее разрушающее напряжение при растяжении, которое называют пределом прочности (временное сопротивление).

Пластичность — способность металла, не разрушаясь, изменять форму под нагрузкой и сохранять ее после прекращения действия нагрузки.

Вязкость – способность металла оказывать сопротивление быстровозрастающим (ударным) нагрузкам.

Технологические свойства металлов и сплавов характеризу­ют их способность поддаваться различным методам горячей и хо­лодной обработки. К технологическим свойствам металлов и спла­вов относятся литейные свойства, ковкость, свариваемость, обраба­тываемость режущими инструментами, прокаливаемость.

Обрабатываемость металлов характеризуется их механическими свойствами: твердостью, прочностью, пластичностью.

Эксплуатационные свойства характеризуют способность материала работать в конкретных условиях.

Износостойкость – способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

Коррозионная стойкость – способность материала сопротивляться действию агрессивных кислотных, щелочных сред.

Жаростойкость – это способность материала сопротивляться окислению в газовой среде при высокой температуре.

Жаропрочность – это способность материала сохранять свои свойства при высоких температурах.

Хладостойкость – способность материала сохранять пластические свойства при отрицательных температурах. Хладоломкостью называется склонность металла к переходу в хрупкое состояние с понижением температуры. Хладоломкими являются железо, вольфрам, цинк и другие металлы, имеющие объемноцентрированную кубическую и гексагональную плотноупакованную кристаллическую решетку.

Красноломкасть — склонность металла к переходу в хрупкое состояние с повышением температуры.

При выборе материала для создания конструкции необходимо полностью учитывать механические, технологические и эксплуатационные свойства.

Дата добавления: 2018-02-28 ; просмотров: 2104 ; ЗАКАЗАТЬ РАБОТУ

ОСНОВНЫЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

К основным свойствам металлов и сплавов относятся механические, физические, технологические и эксплуатационные.

Механические и физические свойства материалов

К физическим свойствам материала относятся: плотность, температура плавления, теплопроводность, температурные коэффициенты линейного и объемного расширения, электросопротивление и т.п.

К механическим свойствам материала относятся: прочность, пластичность, твердость, ударная вязкость.

Прочность — способность твердого тела сопротивляться деформации или разрушению под действием статических или динамических нагрузок.

Прочность определяют с помощью специальных механических испытаний стандартных образцов из исследуемого материала.

Для определения прочности при статических нагрузках образцы испытывают на растяжение, сжатие, изгиб и кручение.

Прочность при динамических нагрузках определяют по данным испытаний на ударную вязкость, на предел выносливости и ползучесть.

Пластичность — способность материала получать остаточное изменение формы и размера без разрушения. Пластичность определяется относительным удлинением 5 образца при разрыве:

где / — длина образца после разрыва, мм; / — первоначальная длина образца, мм.

Твердость — это способность материала сопротивляться проникновению в него другого тела. Твердость и ее размерность для одного и того же материала обусловливаются применяемым методом измерения.

Для определения механических свойств металлов и сплавов испытывают стандартные образцы.

Механические испытания в зависимости от характера действия нагрузки могут быть статическими, при которых нагружение производится медленно и нагрузка возрастает плавно или остается постоянной длительное время; динамическими, при которых нагрузка на образец возрастает мгновенно, и переменными, при которых изменяются величина и направление действия нагрузки.

К статическим испытаниям относят испытания на растяжение, сжатие и твердость.

При испытании на растяжение определяют следующие характеристики прочности:

  • • предел пропорциональности опц;
  • • предел упругости оуп;
  • • предел текучести от;
  • • временное сопротивление ов.

Для испытаний на растяжение используют стандартные образцы (ГОСТ 1497—73). Машины для испытаний снабжены прибором, записывающим диаграмму растяжения. Диаграмма растяжения показывает зависимость между растягивающей нагрузкой, действующей на образец, и вызываемой деформацией.

По оси ординат откладывается нагрузка Р, по оси абсцисс — абсолютное удлинение образца AL (рис. 1.7).

Участок а на диаграмме растяжения свидетельствует о том, что удлинение пропорционально нагрузке. Следовательно, на этом участке диаграммы сохраняет силу закон прямой пропорциональности (закон Гука). Если нагрузку снять, то деформация растяжения исчезает, т.е. это область упругой деформации.

При достижении нагрузки РПЦ появятся первые признаки отклонения линейной пропорциональной зависимости между нагрузкой и деформацией. Напряжение, соответствующее точке а, называют пределом пропорциональности, оно представляет напряжение, при котором нарушается пропорциональность между усилием и удлинением:

где F сечение образца.

Рис. 1.7. Диаграмма растяжения малоуглеродистой стали (а) и схема определения условного предела текучести (б)

Дальнейшее увеличение нагрузки приводит к появлению остаточного удлинения, не исчезающего после снятия нагрузки, т.е. это область пластической деформации.

Предел текучести — это минимальное напряжение, при котором образец получает остаточное удлинение без заметного увеличения нагрузки:

Большинство металлов не имеют ясно выраженной площадки текучести, поэтому за предел текучести принимают условное напряжение, при котором образец получит остаточную деформацию 0,2% первоначальной длины образца, т.е. предел текучести условный:

При дальнейшем увеличении нагрузки металл пластически деформируется и несколько упрочняется. Нагрузка возрастает до точки е, которой соответствует временное сопротивление ов, т.е. напряжение, отвечающее наибольшей нагрузке Рв, предшествующей разрушению образца:

Временное сопротивление для пластичных металлов получается меньше истинного сопротивления разрыву, так как у образца к концу растяжения фактическая площадь сечения FK, меньше начальной площади FQ.

Для построения диаграммы истинных напряжений по оси ординат откладывают истинное напряжение ак, которое получают делением нагрузки Рк на фактическую площадь сечения образца FK.

По диаграмме растяжения можно судить и о пластичности металла, которая характеризуется относительным удлинением после разрыва 5 и относительным сужением площади сечения j/ образца.

Испытания на сжатие обычно применяют для определения механических свойств хрупких материалов.

где hnhx высота образца до и после осадки.

Рис. 1.8. Схема определения твердости по Бринеллю (а), по Виккерсу (б), по Роквеллу (в)

При испытании на твердость применяют различные методы вдавливания, царапание и т.д.

Наибольшее применение получил метод вдавливания (рис. 1.8).

При этом твердость определяют:

  • 1) по диаметру отпечатка стального закаленного шарика (метод Бринелля)’,
  • 2) по глубине вдавливания алмазного конуса или стального шарика (метод Роквелла);
  • 3) по величине поверхности отпечатка четырехгранной алмазной пирамиды (метод Виккерса)’,
  • 4) вдавливанием четырехгранной алмазной пирамиды под небольшими нагрузками (определение твердости металла в микрообъемах).

Метод Бринелля не рекомендуется применять для металлов с твердостью более 450 НВ, так как шарик может деформироваться, что исказит результаты испытания.

Метод Виккерса используют для определения твердости деталей малой толщины и тонких поверхностных слоев.

Для определения микротвердости размеров и отдельных структурных составляющих сплавов пользуются прибором, состоящим из механизма для вдавливания алмазной пирамиды под небольшой нагрузкой и металлографического микроскопа.

Микротвердость Н определяют по той же формуле, что и твердость по Виккерсу:

где d — диагональ отпечатка.

При динамических испытаниях определяют ударную вязкость ан,

которая определяется работой Ан, необходимой для излома образца, отнесенной к рабочей площади поперечного сечения F в месте надреза:

Испытания на ударную вязкость производят на маятниковых копрах.

Испытания при переменных (циклических) нагрузках, т.е. длительное действие на металлические изделия повторно переменных (циклических) напряжений, которое может вызвать образование трещин и разрушение, даже при напряжениях ниже ат. Постепенное накопление повреждений в металле под действием циклических нагрузок, приводящее к образованию трещин и разрушению, называется усталостью, а свойство металла сопротивляться усталости называется выносливостью.

Предел выносливости — наибольшее значение максимального напряжения цикла, при действии которого не происходит усталостного разрушения образца после заданного числа циклов нагружения. Цикл напряжения — это совокупность переменных значений напряжений за один период их изменения (рис. 1.9, а). Для определения предела выносливости по результатам испытаний строят кривую усталости (рис. 1.9, б). Горизонтальный участок на кривой усталости соответствует пределу выносливости. Наклонная часть кривой усталости характеризует ограниченную выносливость.

Многие цветные металлы не имеют горизонтального участка на кривой усталости. В этом случае определяют ограниченный предел выносливости — наибольшее напряжение, которое выдерживает металл или сплав в течение заданного числа циклов нагружения.

Рис. 1.9. Испытания на усталость (а), кривая усталости (б), усталостный излом (в]

Свойства металлов (стр. 1 из 2)

1.Основные свойства металлов.

Свойства металлов делятся на физические, химические, механические и технологические.

К физическим свойствам относятся: цвет, удельный вес, плавкость, электропроводность, магнитные свойства, теплопроводность, расширяемость при нагревании.

К химическим – окисляемость, растворимость и коррозионная стойкость.

К механическим – прочность, твердость, упругость, вязкость, пластичность.

К технологическим – прокаливаемость, жидкотекучесть, ковкость, свариемость, обрабатываемость резанием.

1. Физические и химические свойства.

Цвет. Металлы непрозрачны, т.е. не пропускают сквозь себя свет, и в этом отраженном свете каждый металл имеет свой особенный оттенок – цвет.

Из технических металлов окрашенными являются только медь (красная) и ее сплавы. Цвет остальных металлов колеблется от серо- стального до серебристо – белого. Тончайшие пленки окислов на поверхности металлических изделий придают им дополнительные окраски.

Читать еще:  Окалина в глазу что делать в домашних

Удельный вес. Вес одного кубического сантиметра вещества, выраженный в граммах, называется удельным весом.

По величине удельного веса различают легкие металлы и тяжелые металлы. Из технических металлов легчайшим является магний ( удельный вес 1,74), наиболее тяжёлым – вольфрам (удельный вес 19,3). Удельный вес металлов в некоторой степени зависит от способа их производства и обработки.

Плавкость. Способность при нагревании переходить из твердого состояния в жидкое является важнейшим свойством металлов. При нагревании все металлы переходят из твердого состояния в жидкое, а при охлаждении расплавленного металла – из жидкого состояния в твердого. Температура плавления технических сплавов имеет не одну определённую температуру плавления, а интервал температур, иногда весьма значительный.

Электропроводность. Электропроводность заключается в переносе электричества свободными электронами. Электропроводность металлов в тысячи раз выше электропроводности неметаллических тел. При повышении температуры электропроводность металлов падет, и при понижении – возрастает. При приближении к абсолютному нулю (- 273 0 С) электропроводность беспредельно металлов колеблется от +232 0 (олово) до 3370 0 (вольфрам). Большинство увеличивается (сопротивление, падает почти до нуля).

Электропроводность сплавов всегда ниже электропроводности одного из компонентов, составляющих сплавов.

Магнитные свойства. Явно магнитными (ферромагнитьными) являются только три металла: железо, никель, и кобальт, а также некоторые их сплавы. При нагревании до определённых температур эти металлы также теряют магнитные свойства. Некоторые сплавы железа и при комнатной температуре не являются ферромагнитными. Все прочие металлы разделяются на парамагнитные (притягивают магнитами) и диамагнитные (отталкиваются магнитами).

Теплопроводность. Теплопроводность называется переход тепла в теле от более нагретого места к менее нагретому без видимого перемещения частиц этого тела. Высокая теплопроводность металлов позволяет быстро и равномерно нагревать их и охлаждать.

Из технических металлов наибольшей теплопроводностью облает медь. Теплопроводность железа значительно ниже, а теплопроводность стали меняется в зависимости от содержания в ней компонентов. При повышении температуры теплопроводность уменьшается, при понижении – увеличивается.

Теплоёмкость. Теплоёмкость называется количество тепла, необходимое для повышения температуры тела на 1 0 .

Удельной теплоемкостью вещества называется то количество тепла в килограмм – калориях, которое нужно сообщить 1кг вещества, чтобы повысить его температуру на 1 0 .

Удельная теплоёмкость металлов в сравнении с другими веществами невелика, что позволяет относительно легко нагревать их до высоких температур.

Расширяемость при нагревании. Отношение приращения длины тела при его нагревании на 1 0 к первоначальной его длине называется коэффициентом линейного расширения. Для различных металлов коэффициентом линейного расширения колеблется в широких пределах. Так, например, вольфрам имеет коэффициент линейного расширения 4,0·10 -6 , а свинец 29,5 ·10 -6 .

Коррозионная стойкость. Коррозия есть разрушение металла вследствие химического или электрохимического взаимодействия его с внешней средой. Примером коррозии является ржавление железа.

Высокая сопротивляемость коррозии (коррозионная стойкость) является важным природным свойством некоторых металлов: платины, золота и серебра, которые именно поэтому и получили название благородных. Хорошо сопротивляются коррозии также никель и другие цветные металлы. Черные металлы коррозируют сильнее и быстрее, чем цветные.

2. Механические свойства.

Прочность. Прочностью металла называют его способность сопротивляться действию внешних сил, не разрушаясь.

Твердость. Твердостью называется способность тела противостоять проникновению в него другого, более твердого тела.

Упругость. Упругостью металла называется его свойство востонавливать свою форму после прекращения действия внешних сил, вызывавших изменение формы(деформацию.)

Вязкость. Вязкость называется способность металла оказывать сопротивление быстро возрастающим (ударным) внешним силам. Вязкость – свойство, обратное хрупкости.

Пластичность. Пластичностию называется свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия сил. Пластичность – свойство, обратное упругости.

В табл. 1 приведены свойства технических металлов.

Свойства технических металлов.

Название металлаУдельный вес(плотность) г\см 3Температура плавления 0 СТвердость по БринеллюПредел прочности(временное сопротивление) кг\мм 2Относительное удлинение %Относительное сужение поперечного сечения %
АлюминийВольфрамЖелезоКобальтМагнийМарганецМедьНикельОловоСвинецХромЦинк2,719,37,878,91,747,448,848,97,311,347,147,14658337015301490651124210831452232327155041920-3716050125252035605-104-610830-428-1111025-337017-20Хрупкий2240-502-41,8Хрупкий11,3-154021-55315Хрупкий60404050Хрупкий5-208568-5520Хрупкий757074100Хрупкий

3. Значение свойств металлов.

Механические свойства. Первое требование, предъявляемое ко всякому изделию, — это достаточная прочность.

Металлы обладают более высокой прочностью по сравнению с другими материалами, поэтому нагруженные детали машин, механизмов и сооружений обычно изготовляются из металлов.

Многие изделия, кроме общей прочности, должны обладать ещё особыми свойствами, характерными для работы данного изделия. Так, например, режущие инструменты должны обладать высокой твердостью. Для изготовления режущих других инструментов применяются инструментальные стали и сплавы.

Для изготовления рессор и пружин применяются специальные стали и сплавы, обладающие высокой упругостью

Вязкие металлы применяются в тех случаях, когда детали при работе подвергается ударной нагрузке.

Пластичность металлов дает возможность производить их обработку давлением (ковать, прокатывать).

Физические свойства. В авиа-, авто- и вагоностроении вес деталей часто является важнейшей характеристикой, поэтому сплавы алюминия и особенно магния являются здесь незаменимыми. Удельная прочность( отношение предела прочности к удельному весу) для некоторых, например алюминиевых, сплавов выше, чем для мягкой стали.

Плавкость используется для получения отливок путём заливки расплавленного металла в формы. Легкоплавкие металлы(например, свинец) используются в качестве закалочной среды для стали. Некоторые сложные сплавы имеют столь низкую температуру плавления, что расплавляется в горячей воде. Такие сплавы применяются для отливки типографических матриц, в приборах, служащих для предохранения от пожаров.

Металлы с высокой электропроводностью (медь, алюминий) используются в электромашиностроении, для устройства линий электропередач, а сплавы с высоким электросопротивлением – для ламп накаливания, электронагревательных приборов.

Магнитные свойства металлов играют первостепенную роль в электромашиностроении (динамомашины, мотора, трансформаторы),для приборов связи ( телефонные и телеграфные аппараты) и используются во многих других видах машин и приборов.

Теплопроводность металлов дает возможность производить их физические свойства. Теплопроводность используется также при производстве пайки и сварки металлов.

Некоторые сплавы металлов имеют коэффициент линейного расширения, близкий к нулю; такие сплавы применяются для изготовления точных приборов, радиоламп. Расширение металлов должно применяться во внимание при постройке длинных сооружений, например, мостов. Нужно также учитывать,что две детали, изготовленные из металлов с различным коэффициентом расширения и скрепленные между собой, при нагревании могут дать изгиб и даже разрушение.

Химические свойства. Коррозионная стойкость особенно важна для изделий, работающих в сильно окислительных средах (колосниковые решётки, детали химических машин и приборов). Для достижения высокой коррозионной стойкости производят специальные нержавеющие, кислостойкие и жаропрочные стали, а также применяются защитные покрытия.

Основные физические и механические свойства металлов

Чтобы машина работала долго и надежно в различных условиях, необходимо ее детали изготовлять из материалов, имеющих определенные физические, механические, технологические и химические свойства.

Физические свойства. К этим свойствам относятся: цвет, удельный вес, теплопроводность, электропроводность, температура плавления, расширение при нагревании.

Цвет металла или сплава является одним из признаков, позволяющих судить о его свойствах. При нагреве по цвету поверхности металла можно примерно определить, до какой температуры он нагрет, что особо важно для сварщиков. Однако некоторые металлы (алюминий) при нагреве не меняют цвета.

Поверхность окисленного металла имеет иной цвет, чем не окисленного.

Удельный вес — вес одного кубического сантиметра вещества, выраженный в граммах. Например, углеродистая сталь имеет удельный вес, равный 7,8 г/см. В авто- и авиастроении вес деталей является одной из важнейших характеристик, поскольку конструкции должны быть не только прочными, но и легкими. Чем больше удельный вес металла, тем более тяжелым (при равном объеме) получается изделие.

Теплопроводность — способность металла проводить тепло — измеряется количеством тепла, которое проходит по металлическому стержню сечением в 1 см2 за 1 мин. Чем больше теплопроводность, тем труднее нагреть кромки свариваемой детали до нужной температуры.

Температура плавления — температура, при которой металл переходит из твердого состояния в жидкое. Чистые металлы плавятся при одной постоянной температуре, а сплавы — в интервале температур.

Расширение металлов при нагревании является важной характеристикой. Поскольку при сварке происходит местный нагрев (нагрев лишь небольшого участка изделия), то изделие в различных частях нагревается до разных температур, что приводит к деформированию (короблению) изделия. Две детали, изготовленные из разных металлов и нагретые до одинаковой температуры, будут расширяться по-разному. Поэтому, если эти детали будут скреплены между собой, то при нагревании могут изогнуться и даже разрушиться.

Усадка — уменьшение объема расплавленного металла при его охлаждении. В процессе усадки металла сварного шва наблюдается коробление детали, появляются трещины или образуются усадочные раковины. Каждый металл имеет свою величину усадки. Чем она больше, тем труднее получить качественное соединение.

Механические свойства. К механическим свойствам металлов и сплавов относятся прочность, твердость, упругость, пластичность, вязкость.

Эти свойства обычно являются решающими показателями, по которым судят о пригодности металла к различным условиям работы.

Прочность — способность металла сопротивляться разрушению при действии на него нагрузки.

Твердость — способность металла сопротивляться внедрению в его поверхность другого более твердого тела.

Упругость — свойство металла восстанавливать свою форму и размеры после прекращения действия нагрузки. Высокой упругостью должна обладать, например, рессоры и пружины, поэтому они изготовляются из специальных сплавов.

Пластичность — способность металла изменять форму и размеры под действием внешней нагрузки и сохранять новую форму и размеры после прекращения действия сил. Пластичность — свойство, обратное упругости. Чем больше пластичность, тем легче металл куется, штампуется, прокатывается.

Читать еще:  Как подключать датчики движения на свет

Вязкость — способность металла оказывать сопротивление быстро возрастающим (ударным) нагрузкам. Вязкость — свойство, обратное хрупкости. Вязкие металлы применяются в тех случаях, когда детали при работе подвергаются ударной нагрузке (детали вагонов, автомобилей и т. п.).

Механические свойства выявляются при воздействии на металл растягивающих, изгибающих или других сил. Механические свойства металлов характеризуются: 1) пределом прочности в кг/мм2; 2) относительным удлинением в %;3) ударной вязкостью в кгм/см2; 4) твердостью; 5) углом загиба. Перечисленные основные свойства металлов определяются следующими испытаниями: 1) на растяжение; 2) на загиб; 3) на твердость; 4) на удар. Все эти испытания производятся на образцах металла при помощи специальных машин.

Испытание на растяжение. Испытанием на растяжение определяют предел прочности и относительное удлинение металла. Пределом прочности называется усилие, которое надо приложить на единицу площади поперечного сечения образца металла, чтобы разорвать его.

Для испытания на растяжение изготовляют образцы, форма и размеры которых установлены ГОСТ 1497-42. На рисунке представлены размеры и форма цилиндрических образцов для испытания на растяжение на специальных разрывных машинах» Головки образца закрепляют в захваты машины, после чего дают нагрузку, растягивающую образец до разрушения. Если величину разрушающего усилия выраженного в килограммах, разделить на число квадратных миллиметров поперечного сечения образца Fo9 то получим величину предела прочности в килограммах на квадратный миллиметр (предел прочности обозначается ов):

Для испытания листового металла изготовляют плоские образцы. На рисунке, в показаны размеры и форма плоских образцов для испытания сварных соединений. Малоуглеродистые стали имеют предел прочности около 40 кг/мм2 стали повышенной прочности и специальные — 150 кг/мм2. Для вычисления относительного удлинения, обозначаемого Ъ, определяют сначала абсолютное удлинение образца. Для этого разорванные части образца плотно прикладывают друг к другу и замеряют расстояние между метками границ расчетной длины (получают размер /). Затем из полученной длины вычитают первоначальную расчетную длину образца /о, остаток делят на первоначальную расчетную длину и умножают на 100.

Относительное удлинение металла есть выраженное в процентах отношение остающегося после разрыва увеличения длины образца К его первоначальной длине.

Относительное удлинение малоуглеродистой стали примерно равно 20%. Относительное удлинение характеризует пластичность металла, оно снижается с повышением предела прочности.

Испытание на твердость. В нашей промышленности для определения твердости металла чаще всего применяется прибор Бринеля или Роквелла. Твердость по Бринелю определяют следующим образом. Твердый стальной шарик диаметром 10,5 или 2,5 мм вдавливается под прессом в испытуемый металл. Затем при помощи бинокулярной трубки измеряют диаметр отпечатка, который получился под шариком на испытуемом металле. По диаметру отпечатка и по соответствующей таблице определяют твердость по Бринелю.

Твердость некоторых сталей в единицах по Бринелю:

Малоуглеродистая сталь. ИВ 120—130

Сталь повышенной прочности . ИВ 200—300 Твердые закаленные стали. ИВ 500—600

С увеличением твердости пластичность металла снижается. Испытание на удар. Этим испытанием определяют способность металла противостоять ударным нагрузкам. Испытанием на удар определяют ударную вязкость металла.

Ударная вязкость определяется путем испытания образцов на специальных маятниковых копрах. Для испытания применяются специальные квадратные образцы с надрезом (фиг. 11,е). Чем меньше ударная вязкость, тем более хрупок и тем менее надежен в работе такой металл. Чем выше ударная вязкость, тем металл лучше. Хорошая малоуглеродистая сталь имеет ударную вязкость, равную 10—15 кгм/см2.

Во многих случаях для проверки пластичности металлов или сварных соединений применяют технологические испытания образцов, к которым относятся испытания на угол загиба, на сплющивание, продавливание и др.

Испытания на загиб. Для проведения испытания на загиб образец из металла укладывается на шарнирных опорах и нагрузкой, приложенной посредине, изгибается до появления трещин на выпуклой стороне образца. После этого испытание прекращают и измеряют величину внешнего угла а. Чем больше угол загиба, тем пластичнее металл. Качественная малоуглеродистая сталь дает угол загиба 180°.

Для определения пластичности сварного соединения вырезают такой же плоский образец со сварным швом, расположенным посредине, и со снятым усилением.

Испытанием на сплющивание определяют способность металла деформироваться при сплющивании. Этой пробе обычно подвергают отрезки сварных труб диаметром 22—52 мм со стенками толщиной от 2,5 до 10 мм. Проба заключается в сплющивании образца под прессом до получения просвета между внутренними стенками трубы, равного учетверенной толщине стенки трубы. При этом испытании образец не должен давать трещин.

Технологические свойства. В эту группу свойств входят свариваемость, жидкотекучесть, ковкость, обрабатываемость резанием и другие. Технологические свойства имеют весьма важное значение при производстве тех или иных технологических операций и определяют пригодность металла к обработке тем или иным способом.

Свариваемость — свойство металлов давать доброкачественные соединения при сварке, характеризующиеся отсутствием трещин и других пороков металла в швах и прилегающих зонах, причем иногда металл хорошо сваривается одним методом и неудовлетворительно— другим. Например, дюралюминий удовлетворительно сваривается точечной сваркой и плохо — газовой, чугун хорошо сваривается газовой сваркой с подогревом и плохо — дуговой и т. д.

Жидкотекучесть — способность расплавленных металлов и сплавов заполнять литерную форму.

Ковкость — способность металлов и сплавов изменять свою форму при обработке давлением.

Обрабатываемость резанием — способность металла более или менее легко обрабатываться острым режущим инструментом (резцом, фрезой, ножовкой и т. д.) при различных операциях механической обработки (резание, фрезерование и т. д.).

Химические свойства. Под химическими свойствами металлов подразумевается их способность вступать в соединение с различными веществами и в первую очередь с кислородом. Чем легче металл вступает в соединение с вредными для него элементами, тем легче он разрушается. Разрушение металлов под действием окружающей их среды (воздуха, влаги, растворов солей, кислот, щелочей) называется коррозией. Для достижения высокой коррозионной стойкости изготавливаются специальные стали (нержавеющие, кислотостойкие и т. п.).

ЛЕКЦИЯ 4 СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Все свойства металлов и сплавов принято подразделять на группы: физические, химические, технологические, механические и эксплуатационные.

Физические свойства определяют поведение металлических материалов в тепловых, электромагнитных, радиационных полях. К физическим свойствам относятся плотность, температура плавления, теплоемкость, теплопроводность, электропроводность, магнитные характеристики, термическое расширение.

Химические свойства характеризуют способность материалов вступать в химическое взаимодействие с другими веществами и химическими элементами, а также способность металлов и сплавов сопротивляться воздействию агрессивных сред, в том числе окислению.

Технологические свойства характеризуют способность материалов подвергаться холодной и горячей обработке, в том числе при обработке резанием, ковке, сварке, литье. К технологическим свойствам относятся обрабатываемость резанием, свариваемость, ковкость, литейные свойства (жидкотекучесть – способность жидкого металла заполнять литейную форму; усадка – уменьшение объема металла при переходе из жидкого состояния в твердое; ликвация – химическая неоднородность в отливках; склонность к образованию трещин – вероятность образования литейных трещин и пор в процессе затвердевания в литейной форме).

К механическим свойствам относятся твердость, прочность, пластичность, упругость, вязкость.

Эксплуатационные свойства характеризуют поведение материала в заданных рабочих условиях. К эксплуатационным свойствам относятся жаропрочность, жаростойкость, хладноломкость, усталость, износостойкость.

Для выбора материала и оценки его длительной работоспособности и на-

дежности наиболее важными являются механические и эксплуатационные свойства. Поэтому именно эти группы свойств и методы их определения будут рассмотрены подробно.

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Многообразие условий службы и обработки материалов определяет необходимость проведения большого числа механических испытаний с целью получения целого комплекса значений механических свойств.

В зависимости от способа нагружения образца различают статические, динамические и циклические испытания.

Рассмотрим основные механические свойства и их количественные характеристики.

Твердость — свойство материала сопротивляться воздействию внешних нагрузок при непосредственном соприкосновении.

Все методы измерения твердости имеют одинаковый принцип:

вдавливание в поверхность образца инородного тела (индентора) различной формы, размера с различной нагрузкой.

Различают следующие методы определения твердости:

Метод Бринелля (индентор – стальной шарик);

Метод Роквелла (индентор — алмазный конус или стальной шарик);

Метод Виккерса (индентор — алмазная пирамидка).

Схемы этих методов приведены на рис. 4.1.

Рис. 4.1. Схема определения твердости:

а) — по Бринеллю; 6) — по Роквеллу; в) — по Виккерсу

Испытание по методу Бринелля (рис. 4.1, а) состоит из вдавливания в

испытуемое тело стального шарика диаметром D под действием постоянной нагрузки Р ( Р=1000 кг — для цветных металлов; Р—3000 кг — для черных металлов) и измерении диаметра отпечатка d на поверхности образца. Число твердости по Бринеллю НВ определяется величиной нагрузки Р, деленной на сферическую поверхность отпечатка. Чем меньше диаметр отпечатка, тем выше твердость металла. На практике твердость определяют не по формулам, а по специальным таблицам, исходя из диаметра отпечатка d.

Твердость по Бринеллю обозначается НВ, где Н – твердость, В – метод Бринелля. Твердость по Бринеллю измеряется в МПа.

Измерение твердости по этому методу проходит быстрее и удобнее, чем по методу Бринелля, так как значение твердости выводится на шкалу прибора.

При испытании по методу Роквелла (рис. 4.1, б) индентором служит алмазный конус или для более мягких материалов — стальной шарик. Конус и шарик вдавливаются в металл с различной нагрузкой. На приборе имеются три шкалы. При испытании алмазным конусом и нагрузке Р= 150 кг шкала обозначается С, а твердость обозначается HRC, при испытании алмазным конусом, но с нагрузкой Р = 60кг шкала обозначается A, а твердость — HRA, при испытании стальным шариком с нагрузкой 100кг шкала обозначается В, а твердость — HRB (таблица 4.1).

Ссылка на основную публикацию
Adblock
detector