Область применения биполярных транзисторов - Строительство домов и бань
352 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Область применения биполярных транзисторов

БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Биполярным транзистором называют полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и предназначеный для усиления сигнала.

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

Биполярные транзисторы можно классифицировать по материалу: германиевые и кремниевые; по виду проводимости: типа р- n -р и n — p — n ; по мощности: малая (Р мах 0,3Вт), средняя (Р мах = 1,5Вт) и большая (Р мах > 1,5Вт); по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В таких транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок. Отсюда пошло их название: биполярные.

Биполярный транзистор представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n -р- n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р- n -р имеют среднюю область с электронной, а крайние — с дырочной проводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, вторая – коллектором. Таким образом в транзисторе имеются два р- n — перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором.

Эмиттером — это область транзистора для инжекции носителей заряда в базу. Коллектором — область, назначением которой является извлечение носителей заряда из базы. Базой называется область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера гораздо выше проводимости базы, а проводимость коллектора меньше проводимости эмиттера.

В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Принцип действия транзистора на примере транзистора р- n -р –типа, включенного по схеме с общей базой (ОБ).

Внешние напряжения двух источников питания ЕЭ и Е к подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении, а коллекторного перехода П2 – в обратном направлении.

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток I ко . Он возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Е к , база-коллектор, −Е к .

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Е к . Дырки, рекомбинировавшие с электронами в базе, создают ток базы I Б.

Под воздействием обратного напряжения Е к, потенциальный барьер коллекторного перехода повышается, а толщина перехода П2 увеличивается. Вошедшие в область коллекторного перехода дырки попадают в ускоряющее поле, созданное на переходе коллекторным напряжением, и втягиваются коллектором, создавая коллекторный ток I к . Коллекторный ток протекает по цепи: +Е к , база-коллектор, -Е к .

Таким образом, в б иполярном транзисторе протекает три вида тока: эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Ток базы равен разности токов эмиттера и коллектора: I Б = I Э − I К.

Физические процессы в транзисторе типа n -р- n протекают аналогично процессам в транзисторе типа р- n -р.

Полный ток эмиттера I Э определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток I к . Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы I Б. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. I Э = I Б + I к .

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Е к значительно больше, чем эмиттерного Е э , то и мощность, потребляемая в цепи коллектора Р к , будет значительно больше мощности в цепи эмиттера Р э . Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

Схемы включения биполярных транзисторов

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК . Для транзистора n -р- n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме ОБ

Входной характеристикой является зависимость:

I Э = f ( U ЭБ) при U КБ = const (а).

Выходной характеристикой является зависимость:

I К = f ( U КБ) при I Э = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость I к от U КБ; 2 – слабая зависимость I к от U КБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения U КБ.

Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

I Б = f ( U БЭ) при U КЭ = const (б).

Выходной характеристикой является зависимость:

I К = f ( U КЭ) при I Б = const (а).

Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р- n — перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р- n — перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы — усиление, генерирация.

усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Е к , управляемый элемент – транзистор VT и резистор R к . Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор С р является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Е к .

Резистор R Б, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя I Б = Е к / R Б. С помощью резистора R к создается выходное напряжение. R к выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Е к = U кэ + I к R к ,

сумма падения напряжения на резисторе R к и напряжения коллектор-эмиттер U кэ транзистора всегда равна постоянной величине – ЭДС источника питания Е к .

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Е к в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

Биполярный транзистор. Принцип работы. Применение. Типы, виды, категории, классификация.

Все о биполярном транзисторе. Принцип работы. Применение в схемах. Свойства. Классификация. (10+)

Биполярный транзистор. Принцип работы. Применение. Типы, виды, категории, классификация

Биполярный транзистор (БТ) — электронный прибор, который используется практически во всех современных электронных схемах, или как отдельный элемент, или в составе интегральных микросхем. Что такое биполярный транзистор?

Настоящая статья является заглавной для цикла, посвященного схемотехнике биполярных транзисторов. Планируется выход еще ряда статей. Подпишитесь, чтобы узнавать о выходе новых статей, если Вам это интересно.

Математическая модель биполярного транзистора. Обозначение.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Биполярный транзистор имеет три вывода. Выводы называются: Эмиттер, Коллектор, База. Биполярный транзистор обладает следующим свойством, обуславливающим его применение. [ток цепи коллектор — эмиттер] = h * [ток цепи база — эмиттер]. h — коэффициент передачи тока. С точки зрения инженера — схемотехника любой прибор, обладающий таким свойством, может называться транзистором вне зависимости от его внутреннего устройства.

Биполярный транзистор позволяет силой одного тока регулировать силу другого.

Биполярный транзистор может быть устроен так, что ток втекает через базу или коллектор и вытекает через эмиттер, то есть на базу и коллектор подается положительное напряжение относительно эмиттера. Про такой транзистор говорят, что он имеет структуру NPN. У других биполярных транзисторов ток вытекает через базу или коллектор и втекает через эмиттер, то есть на базу и коллектор подается отрицательное напряжение относительно эмиттера. Про такой транзистор говорят, что он имеет структуру PNP.

На схемах биполярный транзистор обозначается, как показано на рисунке.

Идеальный биполярный транзистор

Идеальный БТ имеет фиксированный, постоянный, не зависящий от тока и внешних условий, например, температуры, коэффициент передачи тока. Он не имеет внутреннего сопротивления, индуктивности, емкости. Регулирование тока происходит мгновенно, без задержки во времени.

Читать еще:  Как называются скрепки для степлера

Ток базы не зависит от напряжения, входное сопротивление стремится к нулю, то есть изменение тока базы не приводит к изменению напряжения на базе относительно эмиттера.

Идеальный биполярный транзистор никогда не нагревается, так как имеет совершенное охлаждение. Идеальный БТ имеет нулевые размеры, не занимает место на плате. Он не шумит. Его выходной ток строго зависит от входного, без посторонних помех.

Идеальный биполярный транзистор выдерживает любое напряжение и любой ток. У идеального БТ ток коллектора не зависит от напряжения коллектор — эмиттер, которое может изменяться от нуля до бесконечности.

Реальные биполярные транзисторы. Классификация, виды, типы.

Если бы БТ на самом деле был идеальным, то нужен был бы всего один тип транзистора — ПИБТ (просто идеальный биполярный транзистор). Его можно было бы применять во всех схемах. В реальности все не так хорошо. Причем улучшение одних параметров транзистора, обычно приводит к ухудшению других. Именно этим обусловлено наличие большого разнообразия типов и видов транзисторов, так как для различных схем важны некоторые определенные параметры, но не важны другие, ими можно пожертвовать.

Реальный биполярный транзистор обладает коэффициентом передачи тока, зависящим от самого тока, температуры, частоты и еще ряда внешних параметров. Значения коэффициента передачи тока могут быть от 8 до 1000 и более.

Реальный БТ обладает индуктивностью выводов (как будто последовательно с выводами подключили маленькие катушки индуктивности) и емкостью между коллектором и эмиттером, коллектором и базой, базой и эмиттером. Эти параметры влияют на применимость БТ в высокочастотных схемах. В зависимости от них различают низкочастотные, среднечастотные, высокочастотные и сверхвысокочастотные биполярные транзисторы

Реальный БТ обладает внутренним сопротивлением (как будто последовательно с выводами подключили маленькие резисторы), ограниченными возможностями по рассеиванию тепла, которое неизбежно выделяется при работе прибора, некоторым конечным напряжением насыщения коллектор — эмиттер (если напряжение на коллекторе меньше, то ток через коллектор не пойдет, даже если в цепи базы ток есть). Напряжение насыщения коллектор — эмиттер — очень важный параметр, так как он влияет на потери и нагрев, когда транзистор работает в ключевом режиме, ведь потери мощности в ключевом режиме, когда транзистор открыт, как раз равны току коллектора умножить на напряжение насыщения коллектор — эмиттер. Таким образом, биполярные транзисторы подразделяются на маломощные, средней мощности и мощные. Кроме того, выделяют биполярные транзисторы — ключи, специально предназначенные для работы в режиме ключа.

Реальный БТ имеет ограничения сверху по напряжению коллектор — эмиттер. Превышение этого напряжения чревато пробоем и разрушением элемента. В зависимости от максимального напряжения коллектор — эмиттер биполярные транзисторы разделяют на низковольтные и высоковольтные.

Еще выделяют малошумящие и термостабильные биполярные транзисторы.

Особенности применения биполярных транзисторов в схемах

Главной бедой транзисторной схемотехники является то, что ей предшествовала ламповая. Большинство схематических решений, которые сейчас применяются, заимствованы из того периода и адаптированы под особенности транзисторов. Однако при всей своей кажущейся схожести, на самом деле электронная лампа и транзистор — приборы совершенно разные. У электронной лампы ток выходной цепи регулируется напряжением во входной, а у транзистора — током во входной цепи. Это отличие — принципиальное для схемотехники.

Попытка адаптировать решения для электронных ламп под транзисторы обычно сводит на нет все их преимущества. Получается на корове седло. Пересмотр многих схемных решений, создание именно транзисторных схем во многих областях еще ждет своего часа.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Проверка биполярного, полевого транзисторов, МОП, FET, MOSFET. Провери.
Как проверить исправность биполярного и полевого транзисторов. Методика испытани.

Практика проектирования электронных схем. Самоучитель электроники.
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Транзисторы КТ503, 2Т503. Справочник, справочные данные, параметры, цо.
Характеристики и применение биполярных транзисторов КТ503 (КТ503А, КТ503Б, КТ503.

Инвертирующий импульсный преобразователь напряжения, источник питания.
Как работает инвертирующий стабилизатор напряжения. Где он применяется. Описание.

Дифференциальный усилитель, усилительный каскад — схемы. Усиление разн.
Схемы и характеристики дифференциальных усилителей на дискретных элементах и на .

Виды транзисторов и их применение

Слово «транзистор» образованно из двух слов: transfer и resistor. Первое слово переводится с английского как «передача», второе — «сопротивление». Таким образом, транзистор — это особого рода сопротивление, которое регулируется напряжением между базой и эмиттером (током базы) у биполярных транзисторов, и напряжением между затвором и истоком у полевых транзисторов.

Изначально названий для этого полупроводникового прибора предлагалось несколько: полупроводниковый триод, кристаллический триод, лотатрон, но в результате остановились именно на названии «транзистор», предложенном Джоном Пирсом, — американским инженером и писателем-фантастом, другом Уильяма Шокли.

Для начала окунемся немного в историю, затем рассмотрим некоторые виды транзисторов из распространенных сегодня на рынке электронных компонентов.

Уильям Шокли, Уолтер Браттейн и Джон Бардин, работая командой в лабораториях Bell Labs, 16 декабря 1947 года создали первый работоспособный биполярный транзистор, который был продемонстрирован учеными официально и публично 23 декабря того же года. Это был точечный транзистор.

Спустя почти два с половиной года, появился первый германиевый плоскостной транзистор, затем сплавной, электрохимический, диффузионный меза-транзистор, и наконец, в 1958 году Texas Instruments выпустила первый кремниевый транзистор, затем, в 1959 году Жаном Эрни был создан первый планарный кремниевый транзистор, в итоге германий был вытеснен кремнием, а планарная технология заняла почетное место главной технологии производства транзисторов.

Справедливости ради отметим, что в 1956 году Уильям Шокли, Джон Бардин и Уолтер Браттейн получили Нобелевскую премию по физике «за исследования полупроводников и открытие транзисторного эффекта».

Что касается полевых транзисторов, то первые патентные заявки подавались с середины 20-х годов 20 века, например в Германии физик Юлий Эдгар Лилиенфельд в 1928 году запатентовал принцип работы полевых транзисторов. Однако, непосредственно полевой транзистор был запатентован впервые в 1934 году немецким физиком Оскаром Хайлом.

Работа полевого транзистора в основе своей использует электростатический эффект поля, физически это проще, потому и сама идея полевых транзисторов появилась раньше, чем идея биполярных транзисторов. Изготовлен же первый полевой транзистор был впервые в 1960 году. В итоге, ближе к 90-м годам 20 века, МОП-технология (технология полевых транзисторов «металл-оксид-полупроводник») стала доминировать во многих отраслях, включая IT-сферу.

В большинстве применений транзисторы заменили собой вакуумные лампы, свершилась настоящая кремниевая революция в создании интегральных микросхем. Так, сегодня в аналоговой технике чаще используют биполярные транзисторы, а в цифровой технике — преимущественно полевые.

Устройство и принцип действия полевых и биполярных транзисторов — это темы отдельных статей, поэтому останавливаться на данных тонкостях не будем, а рассмотрим предмет с чисто практической точки зрения на конкретных примерах.

Как вы уже знаете, по технологии изготовления транзисторы подразделяются на два типа: полевые и биполярные. Биполярные в свою очередь делятся по проводимости на n-p-n – транзисторы обратной проводимости, и p-n-p – транзисторы прямой проводимости. Полевые транзисторы бывают, соответственно, с каналом n-типа и p-типа. Затвор полевого транзистора может быть изолированным (IGBT-транзисторы) или в виде p-n-перехода. IGBT-транзисторы бывают со встроенным каналом или с индуцированным каналом.

Области применения транзисторов определяются их характеристиками, а работать транзисторы могут в двух режимах: в ключевом или в усилительном. В первом случае транзистор в процессе работы или полностью открыт или полностью закрыт, что позволяет управлять питанием значительных нагрузок, используя малый ток для управления. А в усилительном, или по-другому — в динамическом режиме, используется свойство транзистора изменять выходной сигнал при малом изменении входного, управляющего сигнала. Далее рассмотрим примеры различных транзисторов.

2N3055 – биполярный n-p-n-транзистор в корпусе ТО-3. Популярен в качестве элемента выходных каскадов высококачественных звуковых усилителей, где он работает в динамическом режиме. Как правило, используется совместно с комплементарным p-n-p собратом MJ2955. Данный транзистор может работать и в ключевом режиме, например в трансформаторных НЧ инверторах 12 на 220 вольт 50 Гц, пара 2n3055 управляет двухтактным преобразователем.

Примечательно, что напряжение коллектор-эмиттер для данного транзистора в процессе работы может достигать 70 вольт, а ток 15 ампер. Корпус ТО-3 позволяет удобно закрепить его на радиатор в случае необходимости. Статический коэффициент передачи тока — от 15 до 70, этого достаточно для эффективного управления даже мощными нагрузками, при том, что база транзистора выдерживает ток до 7 ампер. Данный транзистор может работать на частотах до 3 МГц.

КТ315 — легенда среди отечественных биполярных транзисторов малой мощности. Данный транзистор n-p-n – типа впервые увидел свет 1967 году, и по сей день пользуется популярностью в радиолюбительской среде. Комплементарной парой к нему является КТ361. Идеален для динамических и ключевых режимов в схемах малой мощности.

При максимально допустимом напряжении коллектор-эмиттер 60 вольт, этот высокочастотный транзистор способен пропускать через себя ток до 100 мА, а граничная частота у него не менее 250 МГц. Коэффициент передачи тока достигает 350, при том, что ток базы ограничен 50 мА.

Изначально транзистор выпускался только в пластмассовом корпусе KT-13, 7 мм в ширину и 6 мм высотой, но в последнее время можно его встретить и в корпусе ТО-92, например производства ОАО «Интеграл».

КП501 — полевой n-канальный транзистор малой мощности с изолированным затвором. Имеет обогащенный n-канал, сопротивление которого составляет от 10 до 15 Ом, в зависимости от модификации (А,Б,В). Предназначен данный транзистор, как его позиционирует производитель, для использования в аппаратуре связи, в телефонных аппаратах и другой радиоэлектронной аппаратуре.

Этот транзистор можно назвать сигнальным. Небольшой корпус ТО-92, максимальное напряжение сток-исток — до 240 вольт, максимальный ток стока — до 180 мА. Емкость затвора менее 100 пф. Особенно примечательно то, что пороговое напряжение затвора составляет от 1 до 3 вольт, что позволяет реализовать управление с очень-очень малыми затратами. Идеален в качестве преобразователя уровней сигналов.

irf3205 – n-канальный полевой транзистор, изготовленный по технологии HEXFET. Популярен в качестве силового ключа для повышающих высокочастотных инверторов, например автомобильных. Посредством параллельного включения нескольких корпусов представляется возможность построения преобразователей, рассчитанных на значительные токи.

Максимальный ток для одного такого транзистора достигает 75А (ограничение вносит конструкция корпуса ТО-220), а максимальное напряжение сток-исток составляет 55 вольт. Сопротивление канала при этом всего 8 мОм. Емкость затвора в 3250 пф требует применения мощного драйвера для управления на высоких частотах, но сегодня это не является проблемой.

FGA25N120ANTD мощный биполярный транзистор с изолированным затвором (IGBT-транзистор) в корпусе TO-3P. Способен выдержать напряжение сток-исток 1200 вольт, максимальный ток стока составляет 50 ампер. Особенность изготовления современных IGBT-транзисторов такого уровня позволяет отнести их к классу высоковольтных.

Читать еще:  Чем можно паять пластмассу

Область применения — силовые преобразователи инверторного типа, такие как индукционные нагреватели, сварочные аппараты и другие высокочастотные преобразователи, рассчитанные на питание высоким напряжением. Идеален для мощных мостовых и полумостовых резонансных преобразователей, а также для работы в условиях жесткого переключения, имеется встроенный высокоскоростной диод.

Мы рассмотрели здесь только несколько видов транзисторов, и это лишь мизерная часть из обилия моделей электронных компонентов, представленных на рынке сегодня.

Так или иначе, вы с легкостью сможете подобрать подходящий транзистор для своих целей, благо, документация на них доступна сегодня в сети в виде даташитов, в которых исчерпывающе представлены все характеристики. Типы корпусов современных транзисторов различны, и для одной и той же модели зачастую доступны как SMD исполнение, так и выводное.

Биполярный транзистор. Принцип работы. Применение. Типы, виды, категории, классификация.

Все о биполярном транзисторе. Принцип работы. Применение в схемах. Свойства. Классификация. (10+)

Биполярный транзистор. Принцип работы. Применение. Типы, виды, категории, классификация

Биполярный транзистор (БТ) — электронный прибор, который используется практически во всех современных электронных схемах, или как отдельный элемент, или в составе интегральных микросхем. Что такое биполярный транзистор?

Настоящая статья является заглавной для цикла, посвященного схемотехнике биполярных транзисторов. Планируется выход еще ряда статей. Подпишитесь, чтобы узнавать о выходе новых статей, если Вам это интересно.

Математическая модель биполярного транзистора. Обозначение.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Биполярный транзистор имеет три вывода. Выводы называются: Эмиттер, Коллектор, База. Биполярный транзистор обладает следующим свойством, обуславливающим его применение. [ток цепи коллектор — эмиттер] = h * [ток цепи база — эмиттер]. h — коэффициент передачи тока. С точки зрения инженера — схемотехника любой прибор, обладающий таким свойством, может называться транзистором вне зависимости от его внутреннего устройства.

Биполярный транзистор позволяет силой одного тока регулировать силу другого.

Биполярный транзистор может быть устроен так, что ток втекает через базу или коллектор и вытекает через эмиттер, то есть на базу и коллектор подается положительное напряжение относительно эмиттера. Про такой транзистор говорят, что он имеет структуру NPN. У других биполярных транзисторов ток вытекает через базу или коллектор и втекает через эмиттер, то есть на базу и коллектор подается отрицательное напряжение относительно эмиттера. Про такой транзистор говорят, что он имеет структуру PNP.

На схемах биполярный транзистор обозначается, как показано на рисунке.

Идеальный биполярный транзистор

Идеальный БТ имеет фиксированный, постоянный, не зависящий от тока и внешних условий, например, температуры, коэффициент передачи тока. Он не имеет внутреннего сопротивления, индуктивности, емкости. Регулирование тока происходит мгновенно, без задержки во времени.

Ток базы не зависит от напряжения, входное сопротивление стремится к нулю, то есть изменение тока базы не приводит к изменению напряжения на базе относительно эмиттера.

Идеальный биполярный транзистор никогда не нагревается, так как имеет совершенное охлаждение. Идеальный БТ имеет нулевые размеры, не занимает место на плате. Он не шумит. Его выходной ток строго зависит от входного, без посторонних помех.

Идеальный биполярный транзистор выдерживает любое напряжение и любой ток. У идеального БТ ток коллектора не зависит от напряжения коллектор — эмиттер, которое может изменяться от нуля до бесконечности.

Реальные биполярные транзисторы. Классификация, виды, типы.

Если бы БТ на самом деле был идеальным, то нужен был бы всего один тип транзистора — ПИБТ (просто идеальный биполярный транзистор). Его можно было бы применять во всех схемах. В реальности все не так хорошо. Причем улучшение одних параметров транзистора, обычно приводит к ухудшению других. Именно этим обусловлено наличие большого разнообразия типов и видов транзисторов, так как для различных схем важны некоторые определенные параметры, но не важны другие, ими можно пожертвовать.

Реальный биполярный транзистор обладает коэффициентом передачи тока, зависящим от самого тока, температуры, частоты и еще ряда внешних параметров. Значения коэффициента передачи тока могут быть от 8 до 1000 и более.

Реальный БТ обладает индуктивностью выводов (как будто последовательно с выводами подключили маленькие катушки индуктивности) и емкостью между коллектором и эмиттером, коллектором и базой, базой и эмиттером. Эти параметры влияют на применимость БТ в высокочастотных схемах. В зависимости от них различают низкочастотные, среднечастотные, высокочастотные и сверхвысокочастотные биполярные транзисторы

Реальный БТ обладает внутренним сопротивлением (как будто последовательно с выводами подключили маленькие резисторы), ограниченными возможностями по рассеиванию тепла, которое неизбежно выделяется при работе прибора, некоторым конечным напряжением насыщения коллектор — эмиттер (если напряжение на коллекторе меньше, то ток через коллектор не пойдет, даже если в цепи базы ток есть). Напряжение насыщения коллектор — эмиттер — очень важный параметр, так как он влияет на потери и нагрев, когда транзистор работает в ключевом режиме, ведь потери мощности в ключевом режиме, когда транзистор открыт, как раз равны току коллектора умножить на напряжение насыщения коллектор — эмиттер. Таким образом, биполярные транзисторы подразделяются на маломощные, средней мощности и мощные. Кроме того, выделяют биполярные транзисторы — ключи, специально предназначенные для работы в режиме ключа.

Реальный БТ имеет ограничения сверху по напряжению коллектор — эмиттер. Превышение этого напряжения чревато пробоем и разрушением элемента. В зависимости от максимального напряжения коллектор — эмиттер биполярные транзисторы разделяют на низковольтные и высоковольтные.

Еще выделяют малошумящие и термостабильные биполярные транзисторы.

Особенности применения биполярных транзисторов в схемах

Главной бедой транзисторной схемотехники является то, что ей предшествовала ламповая. Большинство схематических решений, которые сейчас применяются, заимствованы из того периода и адаптированы под особенности транзисторов. Однако при всей своей кажущейся схожести, на самом деле электронная лампа и транзистор — приборы совершенно разные. У электронной лампы ток выходной цепи регулируется напряжением во входной, а у транзистора — током во входной цепи. Это отличие — принципиальное для схемотехники.

Попытка адаптировать решения для электронных ламп под транзисторы обычно сводит на нет все их преимущества. Получается на корове седло. Пересмотр многих схемных решений, создание именно транзисторных схем во многих областях еще ждет своего часа.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Проверка биполярного, полевого транзисторов, МОП, FET, MOSFET. Провери.
Как проверить исправность биполярного и полевого транзисторов. Методика испытани.

Практика проектирования электронных схем. Самоучитель электроники.
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Транзисторы КТ503, 2Т503. Справочник, справочные данные, параметры, цо.
Характеристики и применение биполярных транзисторов КТ503 (КТ503А, КТ503Б, КТ503.

Инвертирующий импульсный преобразователь напряжения, источник питания.
Как работает инвертирующий стабилизатор напряжения. Где он применяется. Описание.

Дифференциальный усилитель, усилительный каскад — схемы. Усиление разн.
Схемы и характеристики дифференциальных усилителей на дискретных элементах и на .

Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры

Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры

Основной функцией биполярного транзистора (БТ) является увеличение мощности входного электрического сигнала. Эти полупроводниковые радиокомпоненты появились, как альтернатива электровакуумных триодов, и со временем практически вытеснили их из отрасли. Справедливости ради заметим, что лампы применяются и до сих пор, но в очень и очень узком сегменте аппаратуры специального назначения. В массовой же радиотехнике используются, в основном, транзисторы – биполярные и их ближайшие «родственники» полевые.

Ключевое преимущество этих элементов состоит в миниатюрности. Электровакуумный усилитель со схожими характеристиками оказывается в несколько раз крупнее биполярного транзистора. Вследствие этого применение БТ в радиоэлектронике приводит к существенному уменьшению габаритных размеров конечной радиотехнической продукции.

Биполярным данный транзистор называется из-за того, что в физических процессах, протекающих во время его функционирования, участвуют оба типа носителей заряда – и электроны, и дырки. Это оказывает влияние на принцип управления выходным сигналом. В биполярных транзисторах выходными параметрами управляет ток, а не электрическое поле, как в полевых (униполярных).

Устройство биполярного транзистора.

Этот полупроводниковый триод состоит из 3 частей – эмиттера, коллектора и базы. Таким образом, ключевыми элементами биполярного транзистора являются два p-n-перехода, а не один, как в полевых. Эмиттер исполняет функцию генератора носителей заряда, которые формируют рабочий ток, стекающий в приёмник – коллектор. База необходима для подачи управляющего напряжения.

Если рассматривать плоскую модель БТ, то радиокомпонент представляет собой две области с p- или n-проводимостью (эмиттер и коллектор), разделённые тонким слоем полупроводника с проводимостью обратного знака (база). Полупроводниковый кристалл со стороны коллектора физически крупнее. Такое соотношение обеспечивает правильную работу биполярного транзистора.

В зависимости от типа проводимости эмиттера, коллектора и базы различают PNP- и NPN-транзисторы. В принципе, они функционируют одинаково с той лишь разницей, что к ним прикладываются напряжения разной полярности. Выбор того или иного вида БТ определяется особенностями конкретных радиотехнических устройств.

Принцип работы биполярного транзистора.

При подключении эмиттера и коллектора к источнику питания создаются почти все условия для протекания тока. Однако свободному перемещению носителей заряда препятствует база, и для устранения этой помехи на неё подаётся напряжение смещения. В базовом слое полупроводника возникают физико-химические процессы электронно-дырочной рекомбинации, в результате которой через базу начинает течь небольшой ток. В результате p-n-переходы открывают путь потоку носителей заряда от эмиттера к коллектору.

Если ток, протекающий через базу, меняется по какому-то закону, то точно так же изменяется и мощный ток между эмиттером и коллектором. Следовательно, мы получаем на выходе биполярного транзистора такой же сигнал, как и на базе, но с более высокой мощностью. В этом и состоит усилительная функция биполярного транзистора.

Режимы работы.

Существует 4 режима, в одном из которых может работать биполярный транзистор. В этот список входят следующие:

  1. отсечка;
  2. активный режим;
  3. насыщение;
  4. барьерный режим.

Существует ещё так называемый инверсный режим, но он на практике не используется и интересен только при теоретических исследованиях поведения полупроводников. Поэтому опишем подробнее только четыре первых.

1. Отсечка.

В том случае, если разность потенциалов между эмиттером и базой ниже некоторого значения (примерно 0.6 Вольт), то база-эмиттерный p-n-переход оказывается закрытым, поскольку ток базы не возникает. В связи с этим коллекторный ток не протекает по той причине, что в базовом слое отсутствуют свободные электроны. Таким образом, транзистор переходит в состояние отсечки и сигнал не усиливает. Этот режим используется в цифровых схемах, когда БТ работает как ключ в положении «разомкнуто».

Читать еще:  Как поменять варочную панель на плите

2. Активный режим.

В этом режиме радиокомпонент усиливает сигнал, то есть исполняет свою основную функцию. На базу подаётся разность потенциалов, которая открывает база-эмиттерный p-n-переход. Как следствие, в транзисторе начинают протекать токи коллектора и базы. Значение коллекторного тока вычисляется как арифметическое произведение величины тока базы и коэффициента усиления.

3. Насыщение.

В этот режим биполярный транзистор входит при увеличении тока базы до некоего предельного значения, при котором p-n-переходы полностью открываются. Значение тока, протекающего через БТ при его насыщении, зависит лишь от питающего напряжения и величины нагрузки в коллекторной цепи. В данном режиме входной сигнал не усиливается, ведь коллекторный ток не воспринимает изменений тока базы. Способность транзистора к переходу в насыщение используется в цифровой технике, когда БТ играет роль ключа в замкнутом положении.

4. Барьерный режим.

Здесь транзистор работает как диод с последовательно включённым резистором. Для этого базу напрямую или через малоомное сопротивление соединяют с коллектором. В данном режиме триоды хорошо показывают себя в высокочастотных устройствах. Кроме того, использование транзистора в барьерном режиме целесообразно на реальном производстве для снижения общего количества комплектующих.

Схемы включения биполярных транзисторов.

Полупроводниковый триод может включаться в электрическую цепь по одной из трёх схем – с общим эмиттером, с общим коллектором и с общей базой. В зависимости от способа подключения различаются электрические параметры транзистора, что определяет выбор схемы в каждом конкретном случае.

При включении биполярного транзистора с общим эмиттером достигается максимальное усиление входного сигнала. Благодаря этому данная схема в усилительных каскадах применяется чаще всего.

Схема с общим коллектором по-другому называется эмиттерным повторителем. Это связано с тем, что разность потенциалов на коллекторе и эмиттере оказываются практически равными. При таком включении наблюдаются большое усиление по току, высокое входное сопротивление и совпадение фаз входного и выходного сигналов. Вследствие этого эмиттерные повторители используются в согласующих и буферных усилителях.

При включении БТ по схеме с общей базой отсутствует усиление по току, но значительным оказывается усиление по напряжению. Особенностью данного способа является малое влияние транзистора на сигналы высокой частоты. Это делает схему с общей базой предпочтительной для использования в устройствах СВЧ.

Основные параметры биполярных транзисторов:

  1. Максимально допустимый постоянный ток коллектора;
  2. Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и сопротивлении в цепи база-эмиттер;
  3. Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и токе базы, равным нулю;
  4. Максимальное напряжение коллектор-база при заданном токе коллектора и токе эмиттера, равным нулю;
  5. Максимально допустимое постоянное напряжение эмиттер-база при токе коллектора, равном нулю;
  6. Максимально допустимая постоянная мощность, рассеивающаяся на коллекторе;
  7. Статический коэффициент передачи тока;
  8. Напряжение насыщения между коллектором и эмиттером;
  9. Обратный ток коллектора. Ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера;
  10. Обратный ток эмиттера. Ток через эмиттерный переход при заданном обратном напряжении эмиттер-база и разомкнутом выводе коллектора;
  11. Граничная частота коэффициента передачи тока;
  12. Коэффициент шума;
  13. Емкость коллекторного перехода;
  14. Максимально допустимая температура перехода.

Транзистор: виды, применение и принципы работы

Что такое транзистор? Наверняка каждый человек хотя бы раз в жизни слышал это слово. Однако далеко не каждый знаком с его значением, а тем более с устройством и назначением транзистора. Это понятие подробно изучают студенты технических ВУЗов. При этом довольно часто технические знания пригождаются в жизни людям, не имеющим ничего общего с инженерной деятельностью. В этой статье мы рассмотрим в каких областях они применяются.

Принцип работы прибора

Транзистор — полупроводниковый прибор, предназначенный для усиления электрического сигнала. Благодаря особому строению кристаллических решёток и полупроводниковым свойствам, этот прибор способен увеличивать амплитуду протекающего тока.

Полупроводники — вещества, которые способны проводить ток, а также препятствовать его прохождению. Самыми яркими их представителями являются кремний и германий. Существует два вида полупроводников:

В полупроводниках электрический ток возникает из-за недостатка или переизбытка свободных электронов. Например, кристаллическая решётка атома состоит из трёх электронов. Однако если ввести в это вещество атом, состоящий из четырёх электронов, один будет лишним. Он является свободным электроном. Соответственно, чем больше таких электронов, тем ближе это вещество по своим свойствам к металлу. А значит, и проводимость тока больше. Такие полупроводники называются электронными.

Теперь поговорим о дырочных. Для их создания в вещество вводятся атомы другого вещества, кристаллическая решётка которого содержит больше атомов. Соответственно, в нашем полупроводнике становится меньше электронов. Образуются вакантные места для электронов. Валентные связи будут разрушаться, так как электроны будут стремиться занять эти вакантные места. Далее, мы будем называть их дырками.

Электроны постоянно стремятся занять дырку и, начиная движение, образуют новую дырку. Таким поведением обладают абсолютно все электроны. В полупроводнике происходит их движение, а значит, начинает проводиться ток. Такие полупроводники называются дырочными.

Таким образом, вводя недостаток или избыток электронов в кремний или германий, мы способствуем их движению. Получается ток. Транзисторы состоят из соединений этих полупроводников по определённому принципу. С их помощью можно управлять протекающими токами и другими параметрами электрических сигналов.

Виды транзисторов

Существует несколько видов транзисторов. Их около четырёх. Однако основные из них это:

Остальные виды собираются из полевых и биполярных. Рассмотрим более подробно каждый вид.

Полевые

Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:

  1. Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
  2. Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
  3. Исток — вывод, через который в канал приходят электроны и дырки.

Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.

Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.

Существует два вида приборов с изолированным затвором:

  • Со встроенным каналом.
  • С индуцированным каналом.

Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.

Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.

Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:

  1. Входное сопротивление.
  2. Амплитуда напряжения, которое необходимо подать на затвор.
  3. Полярность.

Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.

Биполярные

Слово «биполярные» означает две полярности. То есть, такие приборы имеют две полярности, благодаря особенностям своего строения. Особенность их строения заключается в том, что они состоят из трёх полупроводниковых областей. Типы проводимости бывают следующими:

  1. Электронная, далее n.
  2. Дырочная, далее p.

Соответственно, можно сделать вывод, что существует два вида биполярных транзисторов:

Разница между ними заключается в том, что для корректной работы необходимо подавать напряжение разной полярности. К каждой из трёх полупроводниковых областей подключено по одному выводу. Всего их три:

  1. База — центральный слой. Он является самым тонким. На выводе базы находится управляющий ток с небольшой амплитудой.
  2. Коллектор — один из крайних слоёв. Он является самым широким. На него подаётся ток с большой амплитудой.
  3. Эмиттер — вывод, на который подаётся ток с коллектора. На его выходе амплитуда тока немного больше, чем на входе.

Существует три схемы подключения биполярных транзисторов:

  1. С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
  2. С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
  3. С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.

Благодаря нескольким электронно-дырочным переходам, образующимся в биполярном транзисторе, можно управлять параметрами электрического сигнала. Полярность и амплитуда подаваемого напряжения зависят от типа биполярного транзистора.

Применение транзисторов в жизни

Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:

  1. Усилительные схемы.
  2. Генераторы сигналов.
  3. Электронные ключи.

Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства. Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы.

Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора.

Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем. На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.

Литература по электронике

Наука, которая изучает транзисторы и другие приборы, называется электроника. Целый ее раздел посвящён полупроводниковым приборам. Если вам интересно получить больше информации о работе транзисторов, можно почитать следующие книги по этой тематике:

  1. Цифровая схемотехника и архитектура компьютера — Дэвид М.
  2. Операционные системы. Разработка и реализация — Эндрю Т.
  3. Силовая электроника для любителей и профессионалов — Б. Ю. Семенов .

В этих книгах описываются различные средства программируемой электроники. Конечно же, в основе всех программируемых схем, лежат транзисторы. Благодаря этим книгам вы не только получите новые знания о транзисторах, но и навыки, которые, возможно, принесут вам доход.

Теперь вы знаете, как работают транзисторы, и где они применяются в жизни. Если вам интересна эта тема, продолжайте её изучать, ведь прогресс не стоит на месте, и все технические устройства постоянно совершенствуются. В этом деле очень важно идти в ногу со временем. Успехов вам!

Ссылка на основную публикацию
Adblock
detector