Классы точности средств измерений гост
Класс точности
Во время лабораторных измерений требуется знать точность измерительных средств, которые в свою очередь обладают определенными характеристиками и различаются по устройству. Каждое из средств измерения (СИ) имеют определенные неточности, которые делится на основные и дополнительные. Зачастую возникают ситуации, когда нет возможности или просто не требуется производить подробный расчет. Каждому средству измерения присвоен определенный класс точности, зная который, можно выяснить его диапазон отклонений.
Вовремя выяснить ошибки измерительного средства помогут нормированные величины погрешностей. Под этим определением стоит понимать предельные, для измерительного средства показатели. Они могут быть разными по величине и зависеть от разных условий, но пренебрегать ими не стоит ни в коем случае, ведь это может привести к серьезной ошибке в дальнейшем. Нормированные значения должны быть меньше чем покажет прибор. Границы допустимых величин ошибок и необходимые коэффициенты вносятся в паспорт каждого замеряющего размеры устройства. Узнать подробные значения нормирования для любого прибора можно воспользовавшись соответствующим ГОСТом.
Класс точности измерительного прибора
Обобщающая характеристика, которая определяется пределами погрешностей (как основных, так и дополнительных), а также другими влияющими на точные замеры свойствами и показатели которых стандартизированы, называется класс точности измерительного аппарата. Класс точности средств измерений дает информацию о возможной ошибке, но одновременно с этим не является показателем точности данного СИ.
Средство измерения – это такое устройство, которое имеет нормированные метрологические характеристики и позволяет делать замеры определенных величин. По своему назначению они бывают примерные и рабочие. Первые используются для контроля вторых или примерных, имеющих меньший ранг квалификации. Рабочие используются в различных отраслях. К ним относятся измерительные:
- приборы;
- преобразователи;
- установки;
- системы;
- принадлежности;
- меры.
На каждом средстве для измерений имеется шкала, на которой указываются классы точности этих средств измерений. Они указываются в виде чисел и обозначают процент погрешности. Для тех, кто не знает, как определить класс точности, следует знать, что они давно стандартизованы и есть определенный ряд значений. Например, на устройстве может быть одна из следующих цифр: 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001. Если это число находится в круге, то это погрешность чувствительности. Обычно ее указывают для масштабных преобразователей, таких как:
- делители напряжения;
- трансформаторы тока и напряжения;
- шунты.
Обозначение класса точности
Обязательно указывается граница диапазона работы этого прибора, в пределах которой значение класса точности будет верно.
Те измерительные устройства, которые имеют рядом со шкалой цифры: 0,05; 0,1; 0,2; 0,5, именуются как прецизионные. Сфера их применения – это точные и особо точные замеры в лабораторных условиях. Приборы с маркировкой 1,0; 1,5; 2,5 или 4,0 называются технические и исходя из названия применяются в технических устройствах, станках, установках.
Возможен вариант, что на шкале такого аппарата не будет маркировки. В такой ситуации погрешность приведенную принято считать более 4%.
Если значение класса точности устройства не подчеркнуто снизу прямой линией, то это говорит о том, что такой прибор нормируется приведенной погрешностью нуля.
Грузопоршневой манометр, класс точности 0,05
Если шкала отображает положительные и отрицательные величины и отметка нуля находится посередине такой шкалы, то не стоит думать, что погрешность во всем диапазоне будет неизменной. Она будет меняться в зависимости от величины, которую измеряет устройство.
Если замеряющий агрегат имеет шкалу, на которой деления отображены неравномерно, то класс точности для такого устройства указывают в долях от длины шкалы.
Возможны варианты измерительных аппаратов со значениями шкалы в виде дробей. Числитель такой дроби укажет величину в конце шкалы, а число в знаменателе при нуле.
Нормирование
Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й
Нормирование осуществляется по:
Формулы расчета абсолютной погрешности по ГОСТ 8.401
Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.
Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.
Виды маркирования
Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.
Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.
Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.
Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.
Пределы
Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.
Базовый способ определения погрешности
При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.
Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.
Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.
Класс точности 2,5
Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.
Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.
Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.
Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.
Пример расчета погрешности
Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.
Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.
Классы точности болтов
Болты и другие крепежные изделия изготавливают нескольких классов:
Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.
Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.
Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.
Гайки шестигранные класса точности В
Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.
Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство. Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Классы точности средств измерений гост
Государственная система обеспечения единства измерений
КЛАССЫ ТОЧНОСТИ СРЕДСТВ ИЗМЕРЕНИЙ
State system for ensuring the uniformity of measurements. Accuracy classes of measuring instruments. General requirements
Дата введения 1981-07-01
Постановлением Государственного комитета СССР по стандартам от 12 ноября 1980 г. N 5320 дата введения установлена 01.07.81
ВЗАМЕН ГОСТ 13600-68
ПЕРЕИЗДАНИЕ. Октябрь 2010 г.
Настоящий стандарт устанавливает общие положения деления средств измерений на классы точности, способы нормирования метрологических характеристик, комплекс требований к которым зависит от класса точности средств измерений, и обозначения классов точности.
Стандарт не устанавливает классы точности средств измерений, для которых в стандартах предусмотрены нормы отдельно для систематической и случайной составляющих погрешности, а также нормирование номинальных функций влияния, если средства измерений предназначены для применения без введения поправок с целью исключения дополнительных погрешностей с учетом номинальных функций влияния. Стандарт не устанавливает также классы точности средств измерений, при применении которых в соответствии с их назначением необходимо для оценки погрешности измерений учитывать динамические характеристики.
Пояснение терминов, используемых в настоящем стандарте, приведено в приложении 4.
Стандарт полностью соответствует международной рекомендации МОЗМ N 34*.
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.
1. Общие положения
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Классы точности следует устанавливать в стандартах или технических условиях, содержащих технические требования к средствам измерений, подразделяемым по точности. Необходимость подразделения средств измерений по точности определяют при разработке этой документации.
1.1.1. Классы точности средств измерений конкретного вида следует устанавливать в стандартах общих технических требований (технических требований) или общих технических условий (технических условий).
1.1.2. Классы точности средств измерений конкретного типа следует выбирать из ряда классов точности для средств измерений конкретного вида, регламентированного в стандартах, и устанавливать в стандартах технических требований (условий) или в технической документации, утвержденной в установленном порядке.
1.1.3. В стандартах или технических условиях, устанавливающих класс точности средств измерений конкретного типа, следует давать ссылку на стандарт, которым установлен ряд классов точности на средства измерений данного вида.
1.2. Для каждого класса точности в стандартах на средства измерений конкретного вида устанавливают конкретные требования к метрологическим характеристикам, в совокупности отражающие уровень точности средств измерений этого класса. Для малоизменяющихся метрологических характеристик допускается устанавливать требования, единые для двух и более классов точности.
Независимо от классов точности нормируют метрологические характеристики, требования к которым целесообразно устанавливать едиными для средств измерений всех классов точности, например входные или выходные сопротивления.
Совокупности нормируемых метрологических характеристик должны быть составлены из характеристик, предусмотренных ГОСТ 8.009-84. Допускается включать дополнительные характеристики.
Примеры составления совокупности нормируемых метрологических характеристик, требования к которым устанавливают в зависимости от классов точности средств измерений, приведены в приложении 1.
1.3. Средствам измерений с двумя или более диапазонами измерений одной и той же физической величины допускается присваивать два или более класса точности (см. приложение 2, п.1).
1.4. Средствам измерений, предназначенным для измерений двух или более физических величин, допускается присваивать различные классы точности для каждой измеряемой величины (см. приложение 2, п.2).
1.5. С целью ограничения номенклатуры средств измерений по точности для средств измерений конкретного вида следует устанавливать ограниченное число классов точности, определяемое технико-экономическими обоснованиями.
1.6. Средства измерений должны удовлетворять требованиям к метрологическим характеристикам, установленным для присвоенного им класса точности, как при выпуске их из производства, так и в процессе эксплуатации.
1.7. Классы точности цифровых измерительных приборов со встроенными вычислительными устройствами для дополнительной обработки результатов измерений следует устанавливать без учета режима обработки.
1.8. Классы точности следует присваивать средствам измерений при их разработке с учетом результатов государственных приемочных испытаний. Если в стандарте или технических условиях, регламентирующих технические требования к средствам измерений конкретного типа, установлено несколько классов точности, то допускается присваивать класс точности при выпуске из производства, а также понижать класс точности по результатам поверки в порядке, предусмотренном документацией, регламентирующей поверку средств измерений. При этом класс точности набора мер определяется классом точности меры с наибольшей погрешностью (см. приложение 2, п.3).
2. Способы нормирования и формы выражения метрологических характеристик
2.1. Требования следует устанавливать к каждой нормируемой характеристике отдельно.
2.2. Пределы допускаемых основной и дополнительных погрешностей следует выражать в форме приведенных, относительных или абсолютных погрешностей в зависимости от характера изменения погрешностей в пределах диапазона измерений, а также от условий применения и назначения средств измерений конкретного вида (см. приложение 3). Пределы допускаемой дополнительной погрешности допускается выражать в форме, отличной от формы выражения пределов допускаемой основной погрешности.
Примечание. Выражение пределов допускаемой погрешности в форме приведенных и относительных погрешностей является предпочтительным, так как они позволяют выражать пределы допускаемой погрешности числом, которое остается одним и тем же (числами, которые остаются одними и теми же) для средств измерений одного уровня точности, но с различными верхними пределами измерений.
2.3. Пределы допускаемой основной погрешности устанавливают в последовательности, приведенной ниже.
2.3.1. Пределы допускаемой абсолютной основной погрешности устанавливают по формуле
где — пределы допускаемой абсолютной основной погрешности, выраженной в единицах измеряемой величины на входе (выходе) или условно в делениях шкалы;
— значение измеряемой величины на входе (выходе) средств измерений или число делений, отсчитанных по шкале;
, — положительные числа, не зависящие от .
В обоснованных случаях пределы допускаемой абсолютной погрешности устанавливают по более сложной формуле или в виде графика либо таблицы.
Примечание. При применении формулы (1) или (2) для средств измерений, используемых с отсчитыванием интервалов между произвольно выбираемыми отметками шкалы, допускается указывать, что погрешность каждого отдельного средства измерений не должна превышать установленной нормы, оставаясь только положительной или только отрицательной.
2.3.2. Пределы допускаемой приведенной основной погрешности следует устанавливать по формуле
где — пределы допускаемой приведенной основной погрешности, %;
— пределы допускаемой абсолютной основной погрешности, устанавливаемые по формуле (1);
— нормирующее значение, выраженное в тех же единицах, что и ;
— отвлеченное положительное число, выбираемое из ряда 1·10 ; 1,5·10 ; (1,6·10 ); 2·10 ; 2,5·10 ; (3·10 ); 4·10 ; 5·10 ; 6·10 ( =1, 0, -1, -2 и т. д.).
Значения, указанные в скобках, не устанавливают для вновь разрабатываемых средств измерений.
При одном и том же показателе степени допускается устанавливать не более пяти различных пределов допускаемой основной погрешности для средств измерений конкретного вида.
2.3.3. Нормирующее значение для средств измерений с равномерной, практически равномерной или степенной шкалой (см. приложение 4), а также для измерительных преобразователей, если нулевое значение входного (выходного) сигнала находится на краю или вне диапазона измерений, следует устанавливать равным большему из пределов измерений или равным большему из модулей пределов измерений, если нулевое значение находится внутри диапазона измерений.
Для электроизмерительных приборов с равномерной, практически равномерной или степенной шкалой и нулевой отметкой внутри диапазона измерений нормирующее значение допускается устанавливать равным сумме модулей пределов измерений.
2.3.4. Для средств измерений физической величины, для которых принята шкала с условным нулем, нормирующее значение устанавливают равным модулю разности пределов измерений (см. приложение 2, п.4).
2.3.5. Для средств измерений с установленным номинальным значением нормирующее значение устанавливают равным этому номинальному значению (см. приложение 2, п.5).
2.3.6. Для измерительных приборов с существенно неравномерной шкалой нормирующее значение устанавливают равным всей длине шкалы или ее части, соответствующей диапазону измерений. В этом случае пределы абсолютной погрешности выражают, как и длину шкалы, в единицах длины.
2.3.7. В случаях, не предусмотренных в пп.2.3.3-2.3.6, указания по выбору нормирующего значения должны быть приведены в стандартах на средства измерений конкретного вида.
2.3.8. Пределы допускаемой относительной основной погрешности устанавливают по формуле
если установлено по формуле (1),
или по формуле
где — пределы допускаемой относительной основной погрешности, %;
, — см. п.2.3.1;
— отвлеченное положительное число, выбираемое из ряда, приведенного в п.2.3.2;
— больший (по модулю) из пределов измерений;
, — положительные числа, выбираемые из ряда, приведенного в п.2.3.2.
2.4. Пределы допускаемых дополнительных погрешностей устанавливают:
в виде постоянного значения для всей рабочей области влияющей величины или в виде постоянных значений по интервалам рабочей области влияющей величины;
путем указания отношения предела допускаемой дополнительной погрешности, соответствующего регламентированному интервалу влияющей величины, к этому интервалу;
путем указания зависимости предела допускаемой дополнительной погрешности от влияющей величины (предельной функции влияния);
путем указания функциональной зависимости пределов допускаемых отклонений от номинальной функции влияния.
Пределы допускаемой дополнительной погрешности, как правило, устанавливают в виде дольного (кратного) значения предела допускаемой основной погрешности.
2.5. Для различных условий эксплуатации средств измерений в рамках одного и того же класса точности допускается устанавливать различные рабочие области влияющих величин.
2.6. Предел допускаемой вариации выходного сигнала следует устанавливать в виде дольного (кратного) значения предела допускаемой основной погрешности или в делениях шкалы. Пределы допускаемой нестабильности, как правило, устанавливают в виде доли предела допускаемой основной погрешности.
2.7. Способы выражения метрологических характеристик, не указанных в пп.2.3-2.6, должны быть приведены в стандартах, устанавливающих классы точности средств измерений конкретного вида.
2.8. Пределы допускаемых погрешностей должны быть выражены не более чем двумя значащими цифрами, причем погрешность округления при вычислении пределов должна быть не более 5%.
3. Обозначение классов точности
3.1. Обозначение классов точности средств измерений в документации
3.1.1. Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме абсолютных погрешностей (п.2.3.1) или относительных погрешностей, причем последние установлены в виде графика, таблицы или формулы, не приведенной в п.2.3.8, классы точности следует обозначать в документации прописными буквами латинского алфавита или римскими цифрами.
В необходимых случаях к обозначению класса точности буквами латинского алфавита допускается добавлять индексы в виде арабской цифры. Классам точности, которым соответствуют меньшие пределы допускаемых погрешностей, должны соответствовать буквы, находящиеся ближе к началу алфавита, или цифры, означающие меньшие числа.
3.1.2. Для средств измерений, пределы допускаемой основной погрешности которых принято выражать в форме приведенной погрешности или относительной погрешности в соответствии с формулой (4), классы точности в документации следует обозначать числами, которые равны этим пределам, выраженным в процентах.
Примечание. Обозначение класса точности в соответствии с этим пунктом дает непосредственное указание на предел допускаемой основной погрешности.
3.1.4. Для средств измерений, определяющей характеристикой классов точности которых является нестабильность, обозначения классов точности в документации следует устанавливать по аналогии с пп.3.1.1 и 3.1.2 (см. приложение 2, п.6).
3.1.5. В документации на средства измерений допускается обозначать классы точности в соответствии с п.3.2.
3.1.6. В эксплуатационной документации на средство измерений конкретного вида, содержащей обозначение класса точности, должна быть ссылка на стандарт или технические условия, в которых установлен класс точности этого средства измерений.
3.2. Обозначение классов точности на средствах измерений
3.2.1. На циферблаты, щитки и корпуса средств измерений должны быть нанесены условные обозначения классов точности, включающие числа, прописные буквы латинского алфавита или римские цифры, установленные в пп.3.1.1-3.1.3 с добавлением знаков, указанных в таблице.
3.2.3. Обозначение класса точности допускается не наносить на высокоточные меры, а также на средства измерений, для которых действующими стандартами установлены особые внешние признаки, зависящие от класса точности, например параллелепипедная и шестигранная форма гирь общего назначения.
3.2.4. За исключением технически обоснованных случаев вместе с условным обозначением класса точности на циферблат, щиток или корпус средств измерений должно быть нанесено обозначение стандарта или технических условий, устанавливающих технические требования к этим средствам измерений.
3.2.5. На средства измерений, для одного и того же класса точности которых в зависимости от условий эксплуатации установлены различные рабочие области влияющих величин, следует наносить обозначения условий их эксплуатации, предусмотренные в стандартах или технических условиях на эти средства измерений.
3.2.6. Правила построения и примеры обозначения классов точности в документации и на средствах измерений приведены в таблице.
Пределы допускаемой основной погрешности
Пределы допускаемой основной погрешности, %
Погрешность. Классы точности средств измерений.
Позволю себе вначале небольшое отступление. Такие понятия как погрешность, класс точности довольно подробно описываются в нормативной документации ГОСТ 8.009-84 «Нормируемые метрологические характеристики средств измерений», ГОСТ 8.401-80 «Классы точности средств измерений. Общие требования» и им подобных. Но открывая эти документы сразу возникает чувство тоски… Настолько сухо и непонятно простому начинающему «киповцу», объяснены эти понятия. Давайте же пока откинем такие вычурные и непонятные нам определения, как «среднее квадратическое отклонение случайной составляющей погрешности» или «нормализованная автокорреляционная функция» или «характеристика случайной составляющей погрешности от гистерезиса — вариация Н выходного сигнала (показания) средства измерений» и т. п. Попробуем разобраться, а затем свести в одну небольшую, но понятную табличку, что же такое «погрешность» и какая она бывает.
Погрешности измерений – отклонения результатов измерения от истинного значения измеряемой величины. Погрешности неизбежны, выявить истинное значение невозможно.
По числовой форме представления подразделяются:
- Абсолютная погрешность: Δ = Xд — Xизм, выражается в единицах измеряемой величины, например в килограммах (кг), при измерении массы.
где Xд – действительное значение измеряемой величины, принимаются обычно показания эталона, образцового средства измерений;
Xизм – измеренное значение. - Относительная погрешность: δ = (Δ ⁄ Xд) · 100, выражается в % от действительного значения измеренной величины.
- Приведённая погрешность: γ = (Δ ⁄ Xн) · 100, выражается в % от нормирующего значения.
где Xн – нормирующее значение, выраженное в тех же единицах, что и Δ, обычно принимается диапазон измерения СИ (шкала).
По характеру проявления:
- систематические (могут быть исключены из результатов);
- случайные;
- грубые или промахи (как правило не включаются в результаты измерений).
В зависимости от эксплуатации приборов:
- основная – это погрешность средства измерения при нормальных условиях; (ГОСТ 8.395-80)
- дополнительная погрешность – это составляющая погрешности средства измерения, дополнительно возникающая из-за отклонения какой-либо из влияющих величин от нормативного значения или выход за пределы нормальной области значений. Например: измерение избыточного давления в рабочих условиях цеха, при температуре окружающего воздуха 40 ºС, относительной влажности воздуха 18% и атмосферном давлении 735 мм рт. ст., что не соответствует номинальным значениям влияющих величин при проведении поверки.
Наимено вание погреш ности | Формула | Форма выражения, записи | Обозначение класса точности | |
В докумен тации | На сред стве изме рений | |||
Абсолют ная | Δ = Xд — Xизм | Δ = ±50 мг Примеры: Номинальная масса гири 1 кг ±50 мг Диапазон измерения весов среднего III класса точности от 20 г до 15 кг ±10 г | Класс точности: М1 Класс точности: средний III Примечание: на многие виды измерений есть свои НД по выражению погрешностей, здесь для примера взято для гирь и весов. | М1![]() |
Относи тельная | δ = (Δ ⁄ Xд) · 100 | δ = ±0,5 Пример: Измеренное значение изб. давления с отн. погр. 1 бар ±0,5% т.е. 1 бар ±5 мбар (абс. погр.) | Класс точности 0,5 | ![]() |
Приве дённая: при равно мерной шкале | γ = (Δ ⁄ Xн) · 100 | γ = ±0,5 Пример: Измеренное значение на датчике изб. давления, при шкале от 0 до 10 бар 1 бар (= 0,5 % от 10 бар) т.е. 1 бар ±50 мбар (абс. погр.) | Класс точности весов 0,5 | 0,5 |
с сущес твенно неравно мерной шкалой | γ = ±0,5 Прописывается в норм .док-ии на СИ для каждого диапазона измерения (шкалы) своё нормирующее значение | Класс точности 0,5 | ![]() |
Как определить погрешность комплекта приборов, в который входит первичный преобразователь, вторичный преобразователь (усилитель) и вторичный прибор. У каждого из элементов этого комплекта есть своя абсолютная, относительная или приведённая погрешность. И чтобы оценить, общую погрешность измерения, необходимо все погрешности привести к одному виду, а дальше посчитать по формуле:
Дальше будет интересно, наверное, только метрологам и то, только начинающим. Теперь совсем немного вспомним о средних квадратических отклонениях (СКО). Зачем они нужны? Так как истинное значение выявить невозможно, то необходимо хотя бы наиболее точно приблизиться к нему или определить доверительный интервал, в котором истинное значение находится с большой долей вероятности. Для этого применяют различные статистические методы, приведём формулы наиболее распространённого. Например, Вы провели n количество измерений чего угодно и Вам необходимо определить доверительный интервал:
- Определяем среднее арифметическое отклонение:
где n – количество отклонений - Определяем среднее квадратическое отклонение (СКО) среднего арифметического:
- Рассчитываем случайную составляющую погрешности:
где t – коэффициент Стьюдента, зависящий от числа степеней свободы
Таблица 1.α =0,68 α =0,95 α =0,99 n tα,n n tα,n n tα,n 2 2,0 2 12,7 2 63,7 3 1,3 3 4,3 3 9,9 4 1,3 4 3,2 4 5,8 5 1,2 5 2,8 5 4,6 6 1,2 6 2,6 6 4,0 7 1,1 7 2,4 7 3,7 8 1,1 8 2,4 8 3,5 9 1,1 9 2,3 9 3,4 10 1,1 10 2,3 10 3,3 15 1,1 15 2,1 15 3,0 20 1,1 20 2,1 20 2,9 30 1,1 30 2,0 30 2,8 100 1,0 100 2,0 100 2,6 - Определяем СКО систематической составляющей погрешности:
- Рассчитываем суммарное СКО:
- Определяем коэффициент, зависящий от соотношения случайной и систематической составляющей погрешности:
- Проводим оценку доверительных границ погрешности:
В последнее время всё чаще на слуху термин «неопределённость». Медленно, но верно и настойчиво его внедряют в отечественную метрологию. Это дань интеграции нашей экономики во всемирную, естественно необходимо адаптировать нормативную документацию к международным стандартам. Не буду тут «переливать из пустого в порожнее», это хорошо сделано в различных нормативных документах. Чисто моё мнение, «расширенная неопределённость измерений» = основная погрешность + дополнительная, которая учитывает все влияющие факторы.
Классы точности
Класс точности средства измерений — это обобщенная характеристика средства измерений, выражаемая пределами его допускаемых основной и дополнительных погрешностей, а также другими характеристиками, влияющими на точность.
Класс точности дает возможность судить о том, в каких пределах находится погрешность средств измерений этого класса, но не является непосредственным показателем погрешности измерений, выполняемых с помощью этих средств.
Класс точности может выражаться в форме абсолютных Д, приведенных у или относительных б погрешностей в зависимости от характера изменения погрешностей в пределах диапазона измерений, а также от условий применения и назначения средств измерений определенного вида (см. ГОСТ 8.401—80 [15]):
где х — значение измеряемой величины; а, b — положительные числа, не зависящие от х; хк — верхний предел шкалы; xN— нормирующее значение, выраженное в тех же единицах, что и Д (обычно xN=xk); p,c,d— отвлеченные положительные числа, выбираемые из ряда 1 • 10″; 1,5 ? 10″; (1,6 • 10 л ); 2 10″; 2,5 10”; (3 10″); 4 10″; 5 10″; 6 10″; (л= 1; 0; -1; -2; -Зит.д.).
Значения, указанные в скобках, не используют для вновь разрабатываемых средств измерений.
В обоснованных случаях (см. ГОСТ 8.401—80 [15]) пределы допускаемой относительной основной погрешности устанавливают по более сложной формуле или в виде графика либо таблицы.
Допускаемые основные и дополнительные погрешности приводятся в технических описаниях и формулярах средств измерений.
Кроме того, на циферблаты, шкалы, щитки и корпуса средств измерений наносятся условные обозначения классов точности.
Например, могут быть нанесены обозначения в виде 1,5; (13) или 0,02/0,01, что означает следующее:
- 1,5 — предел допускаемой приведенной основной погрешности определяется по формуле (3.18) и не превосходит ±1,5% от верхнего предела измерения для рассматриваемого прибора (или диапазона измерения);
- О)— предел допускаемой относительной основной погрешности определяется по формуле (3.19) и не превосходит ±1,5% от значения измеряемой величины;
- 0,02/0,01 — предел допускаемой относительной основной погрешности определяется по формуле (3.20) и не превосходит
от значения измеряемой величины.
Правила построения и примеры обозначения классов точности приведены в табл. 3.1. В ней приняты следующие обозначения:
х — значение измеряемой величины или число делений, отсчитанных по шкале;
хК — верхний предел шкалы.
Тот или иной класс точности присваивается средству измерений по результатам оценки статической погрешности, полученной в ходе специального метрологического исследования искомого средства измерения. Порядок оценки статических погрешностей СИ рассмотрен далее в подразделе 4.
Отметим еще раз, что класс точности устанавливает пределы допускаемой основной погрешности средства измерения. Основная погрешность СИ — это погрешность средства измерения в нормальных условиях эксплуатации. Дополнительная погрешность СИ — это погрешность средства измерения в условиях эксплуатации отличных от нормальных (в пределах рабочих условий эксплуатации). Нормальные и рабочие условия эксплуатации оговариваются в технической документации на каждый тип средства измерения.
Примеры построения и обозначения классов точности
Форма выражения погрешности
Пример обозначения класса точности
Пределы допускаемой основной погрешности
Значение основной погрешности















Например, для универсального вольтметра В7-34 предусмотрены следующие нормальные и рабочие условия эксплуатации (табл. 3.2).
Условия эксплуатации универсального вольтметра В7-34
ГОСТ 8.401-80 «Государственная система обеспечения единства измерений. Классы точности средств измерений. Общие требования»
Тел.: +7 (727) 222-21-01, e-mail: info@prg.kz, Региональные представительства
Для покупки документа sms доступом необходимо ознакомиться с условиями обслуживания
![]() | ВНИМАНИЕ! Услуга для абонентов NEO, Tele2 временно недоступна |
![]() | ВНИМАНИЕ! Услуга для абонентов Beeline, NEO, Tele2 временно недоступна |
Стоимость услуги — тенге с учетом комиссии.
ГОСТ 8.401-80
Государственная система обеспечения единства измерений
КЛАССЫ ТОЧНОСТИ СРЕДСТВ ИЗМЕРЕНИЙ
Общие требования
State system for ensuring the uniformity of measurements
Accuracy classes of measuring instruments
General requirements
ПРИЛОЖЕНИЕ 1 Справочное Примеры составления совокупности нормируемых метрологических характеристик, требования к которым устанавливают в зависимости от классов точности средств измерений
ПРИЛОЖЕНИЕ 2 Справочное Примеры, поясняющие требования отдельных пунктов стандарта
ПРИЛОЖЕНИЕ 3 Справочное Формы выражения и способы установления пределов допускаемых погрешностей средств измерений
ПРИЛОЖЕНИЕ 4 Справочное Пояснение терминов, используемых в настоящем стандарте
Настоящий стандарт устанавливает общие положения деления средств измерений на классы точности, способы нормирования метрологических характеристик, комплекс требований к которым зависит от класса точности средств измерений, и обозначения классов точности.
Стандарт не устанавливает классы точности средств измерений, для которых в стандартах предусмотрены нормы отдельно для систематической и случайной составляющих погрешности, а также нормирование номинальных функций влияния, если средства измерений предназначены для применения без введения поправок с целью исключения дополнительных погрешностей с учетом номинальных функций влияния. Стандарт не устанавливает также классы точности средств измерений, при применении которых в соответствии с их назначением необходимо для оценки погрешности измерений учитывать динамические характеристики.
Пояснение терминов, используемых в настоящем стандарте, приведены в справочном приложении 4 .
Стандарт полностью — соответствует международной рекомендации МОЗМ № 34.
- Корреспонденты на фрагмент
- Поставить закладку
- Посмотреть закладки
- Добавить комментарий
- Показать изменения
- Судебные решения
1. ОБЩИЕ ПОЛОЖЕНИЯ
- Корреспонденты на фрагмент
- Поставить закладку
- Посмотреть закладки
- Добавить комментарий
- Показать изменения
- Судебные решения
1.1. Классы точности следует устанавливать в стандартах или технических условиях, содержащих технические требования к средствам измерений, подразделяемым по точности. Необходимость подразделения средств измерений по точности определяют при разработке этой документации.
- Корреспонденты на фрагмент
- Поставить закладку
- Посмотреть закладки
- Добавить комментарий
- Показать изменения
- Судебные решения
1.1.1. Классы точности средств измерений конкретного вида следует устанавливать в стандартах общих технических требований (технических требований) или общих технических условий (технических условий).
- Корреспонденты на фрагмент
- Поставить закладку
- Посмотреть закладки
- Добавить комментарий
- Показать изменения
- Судебные решения
1.1.2. Классы точности средств измерений конкретного типа следует выбирать из ряда классов точности для средств измерений конкретного вида, регламентированного в стандартах, и устанавливать в стандартах технических требований (условий) или в технической документации, утвержденной в установленном порядке.
Что означает класс точности измерительного прибора
Класс точности измерительного прибора — это обобщенная характеристика, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых установлены в стандартах на отдельные виды средств измерений. Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых при помощи этих средств.
Для того чтобы заранее оценить погрешность, которую внесет данное средство измерений в результат, пользуются нормированными значениями погрешности . Под ними понимают предельные для данного типа средства измерений погрешности.
Погрешности отдельных измерительных приборов данного типа могут быть различными, иметь отличающиеся друг от друга систематические и случайные составляющие, но в целом погрешность данного измерительного прибора не должна превосходить нормированного значения. Границы основной погрешности и коэффициентов влияния заносят в паспорт каждого измерительного прибора.
Основные способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ.
На шкале измерительного прибора маркируют значение класса точности измерительного прибора в виде числа, указывающего нормированное значение погрешности. Выраженное в процентах, оно может иметь значения 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001 и т. д.
Если обозначаемое на шкале значение класса точности обведено кружком, например 1,5, это означает, что погрешность чувствительности δ s =1,5%. Так нормируют погрешности масштабных преобразователей (делителей напряжения, измерительных шунтов, измерительных трансформаторов тока и напряжения и т. п.).
Это означает, что для данного измерительного прибора погрешность чувствительности δ s= d x/x — постоянная величина при любом значении х. Граница относительной погрешности δ (х) постоянна и при любом значении х просто равна значению δ s, а абсолютная погрешность результата измерений определяется как d x= δ sx
Для таких измерительных приборов всегда указывают границы рабочего диапазона, в которых такая оценка справедлива.
Если на шкале измерительного прибора цифра класса точности не подчеркнута, например 0,5, это означает, что прибор нормируется приведенной погрешностью нуля δ о=0,5 %. У таких приборов для любых значений х граница абсолютной погрешности нуля d x= d о=const, а δ о= d о/хн.
При равномерной или степенной шкале измерительного прибора и нулевой отметке на краю шкалы или вне ее за хн принимают верхний предел диапазона измерений. Если нулевая отметка находится посредине шкалы, то хн равно протяженности диапазона измерений, например для миллиамперметра со шкалой от -3 до +3 мА, хн= 3 — (-3)=6 А.
Однако будет грубейшей ошибкой полагать, что амперметр класса точности 0,5 обеспечивает во всем диапазоне измерений погрешность результатов измерений ±0,5 %. Значение погрешности δ о увеличивается обратно пропорционально х, то есть относительная погрешность δ (х) равна классу точности измерительного прибора лишь на последней отметке шкалы (при х = хк). При х = 0,1хк она в 10 раз больше класса точности. При приближении х к нулю δ (х) стремится к бесконечности, то есть такими приборами делать измерения в начальной части шкалы недопустимо.
На измерительных приборах с резко неравномерной шкалой (например на омметрах) класс точности указывают в долях от длины шкалы и обозначают как 1,5 с обозначением ниже цифр знака «угол».
Если обозначение класса точности на шкале измерительного прибора дано в виде дроби (например 0,02/0,01), это указывает на то, что приведенная погрешность в конце диапазона измерений δ прк = ±0,02 %, а в нуле диапазона δ прк = -0,01 %. К таким измерительным приборам относятся высокоточные цифровые вольтметры, потенциометры постоянного тока и другие высокоточные приборы. В этом случае
δ (х) = δ к + δ н (хк/х — 1),
где хк — верхний предел измерений (конечное значение шкалы прибора), х — измеряемое значение.
Adblockdetector