3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как включается в цепь амперметр и вольтметр

Подключение амперметра и вольтметра в сети постоянного и переменного тока

Постоянный ток не меняет направления во времени. Примером может служить батарейка в фонарике или радиоприемнике, аккумулятор в автомобиле. Мы всегда знаем, где положительная клейма источника питания, а где отрицательная.

Переменный ток — это ток, который с определенной периодичностью меняет направление движения. Такой ток протекает в нашей розетке, когда мы к ней подключаем нагрузку. Тут нет положительного и отрицательного полюса, а есть только фаза и ноль. Напряжение на нуле близко по потенциалу с потенциалом земли. Потенциал же на фазовом выводе меняется с положительного до отрицательного с частотой 50 Гц, го есть ток под нагрузкой будет менять свое направление 50 раз в секунду.

В течение одного периода колебания величина тока повышается от нуля до максимума, затем уменьшается и проходит через ноль, а потом совершается обратный процесс, но уже с другим знаком.

Получение и передача переменного тока намного проще, чем постоянного: меньше потерь энергии, С помощью трансформаторов мы можем легко менять напряжение переменного тока.

При передаче большого напряжения требуется меньший ток для той же мощности. Это позволяет использовать более тонкие довода. В сварочных трансформаторах используется обратный процесс — понижают напряжение для повышения сварочного тока.

Измерение постоянного тока

Чтобы в электрической цепи измерить ток, необходимо последовательно с приемником электроэнергии включить амперметр или миллиамперметр. При этом, чтобы исключить влияние измерительного прибора на работу потребителя, амперметр должен обладать очень малым внутренним сопротивлением, чтобы практически его можно было бы принять равным нулю, чтобы падением напряжения на приборе можно было бы просто пренебречь.

Включение амперметра в цепь — всегда последовательно с нагрузкой. Если подключить амперметр параллельно нагрузке, параллельно источнику питания, то амперметр просто сгорит или сгорит источник, поскольку весь ток потечет через мизерное сопротивление измерительного прибора.

Шунт

Пределы измерения амперметров, предназначенных для проведения измерений в цепях постоянного тока, расширяемы, путем подключения амперметра не напрямую измерительной катушкой последовательно нагрузке, а путем подключения измерительной катушки амперметра параллельно шунту.

Так через катушку прибора пройдет всегда лишь малая часть измеряемого тока, основная часть которого потечет через шунт, включенный в цепь последовательно. То есть прибор фактически измерит падение напряжения на шунте известного сопротивления, и ток будет прямо пропорционален этому напряжению.

Практически амперметр сработает в роли милливольтметра. Тем не менее, поскольку шкала прибора градуирована в амперах, пользователь получит информацию о величине измеряемого тока. Коэффициент шунтирования выбирают обычно кратным 10.

Шунты, рассчитанные на токи до 50 ампер монтируют непосредственно в корпуса приборов, а шунты для измерения больших токов делают выносными, и тогда прибор соединяют с шунтом щупами. У приборов, предназначенных для постоянной работы с шунтом, шкалы сразу градуированы в конкретных значениях тока с учетом коэффициента шунтирования, и пользователю уже не нужно ничего вычислять.

Если шунт наружный, то в случае с калиброванным шунтом — на нем указывается номинальный ток и номинальное напряжение: 45 мВ, 75 мВ, 100 мВ, 150 мВ. Для текущих измерений выбирают такой шунт, чтобы стрелка отклонялась бы максимум — на всю шкалу, то есть номинальные напряжения шунта и измерительного прибора должны быть одинаковыми.

Если речь идет об индивидуальном шунте для конкретного прибора, то все, конечно, проще. По классам точности шунты делятся на: 0,02, 0,05, 0,1, 0,2 и 0,5 — это допустимая погрешность в долях процента.

Шунты изготавливают из металлов с малым температурным коэффициентом сопротивления, и обладающих значительным удельным сопротивлением: константан, никелин, манганин, — чтобы когда протекающий через шунт ток нагревает его, это не отражалось бы на показаниях прибора. Еще для снижения температурного фактора при измерениях, последовательно с катушкой амперметра включают добавочный резистор из материла такого же рода.

Измерение постоянного напряжения

Чтобы измерить постоянное напряжение между двумя точками цепи, параллельно цепи, между этими двумя точками, подключают вольтметр. Вольтметр включается всегда параллельно приемнику или источнику. А чтобы подключенный вольтметр не оказывал влияния на работу цепи, не вызывал бы снижения напряжения, не вызывал потерь, — он должен обладать достаточно высоким внутренним сопротивлением, чтобы током через вольтметр можно было бы пренебречь.

Добавочный резистор

И чтобы расширить пределы измерения вольтметра, последовательно с его рабочей обмоткой включается добавочный резистор, чтобы только часть измеряемого напряжения приходилась бы непосредственно на измерительную обмотку прибора, пропорционально ее сопротивлению. А при известном значении сопротивления добавочного резистора, по зафиксированному на нем напряжению легко определяется полное измеряемое напряжение, действующее в данной цепи. Так работают все классические вольтметры.

Коэффициент, появляющийся в результате добавления добавочного резистора, покажет, во сколько раз измеряемое напряжение больше напряжения, приходящегося на измерительную катушку прибора. То есть пределы измерения прибора зависят от величины добавочного резистора.

Добавочный резистор встраивается в прибор. Для снижения влияния температуры окружающей среды на измерения, добавочный резистор изготавливают из материала обладающего малым температурным коэффициентом сопротивления. Поскольку сопротивление добавочного резистора во много раз больше сопротивления прибора, то и сопротивление измерительного механизма прибора в итоге не зависит от температуры. Классы точности добавочных резисторов выражаются аналогично классам точности шунтов — в долях процентов обозначают величину погрешности.

Чтобы еще больше расширить пределы измерения вольтметров, применяют делители напряжения. Это делается для того, чтобы при измерении на прибор приходилось напряжение, соответствующее номиналу прибора, то есть не превышало бы предел на его шкале. Коэффициентом деления делителя напряжения называется отношение входного напряжения делителя к выходному, измеряемому напряжению. Коэффициент деления берут равным 10, 100, 500 и более, в зависимости от возможностей применяемого вольтметра. Делитель не вносит большой погрешности, если сопротивление вольтметра также высоко, а внутреннее сопротивление источника мало.

Измерение переменного тока

Чтобы точно измерить прибором параметры переменного тока, необходим измерительный трансформатор. Измерительный трансформатор, применяемый в целях измерений, к тому же дает персоналу безопасность, поскольку благодаря трансформатору достигается гальваническая развязка от цепи высокого напряжения. Вообще, техника безопасности запрещает подключать электроизмерительные приборы без таких трансформаторов.

Применение измерительных трансформаторов позволяет расширить пределы измерения приборов, то есть появляется возможность измерять большие напряжения и токи при помощи низковольтных и слаботочных приборов. Так, измерительные трансформаторы бывают двух типов: трансформаторы напряжения и трансформаторы тока.

Измерительный трансформатор напряжения

Чтобы измерить переменное напряжение применяют трансформатор напряжения. Это понижающий трансформатор с двумя обмотками, первичная обмотка которого присоединяется к двум точкам цепи, между которыми нужно измерить напряжение, а вторичная — непосредственно к вольтметру. Измерительные трансформаторы на схемах изображают как обычные трансформаторы.

Трансформатор без нагруженной вторичной обмотки работает в режиме холостого хода, и при подключенном вольтметре, сопротивление которого велико, трансформатор остается практически в этом режиме, и поэтому можно считать измеренное напряжение пропорциональным напряжению, приложенному к первичной обмотке, с учетом коэффициента трансформации, равного соотношению количеств витков во вторичной и первичной его обмотках.

Таким образом можно измерять высокое напряжение, при этом на прибор будет подаваться небольшое безопасное напряжение. Останется умножить измеренное напряжение на коэффициент трансформации измерительного трансформатора напряжения.

Те вольтметры, которые изначально предназначены для работы с трансформаторами напряжения, имеют градуировку шкалы с учетом коэффициента трансформации, тогда по шкале без дополнительных вычислений сразу видно значение измененного напряжения.

В целях повышения безопасности при работе с прибором, на случай повреждения изоляции измерительного трансформатора, один из выводов вторичной обмотки трансформатора и его каркас сначала заземляются.

Измерительные трансформаторы тока

Для подключения амперметров к цепям переменного тока служат измерительные трансформаторы тока. Это двухобмоточные повышающие трансформаторы. Первичная обмотка включается последовательно в измеряемую цепь, а вторичная — к амперметру. Сопротивление в цепи амперметра мало, и получается, что трансформатор тока работает практически в режиме короткого замыкания, при этом можно считать, что токи в первичной и вторичной обмотках относятся друг к другу как количества витков во вторичной и первичной обмотках.

Подобрав подходящее соотношение витков, можно измерять значительные токи, при этом через прибор всегда будут протекать токи достаточно малые. Останется умножить измеренный во вторичной обмотке ток на коэффициент трансформации. Те амперметры, которые предназначены для постоянной работы совместно с трансформаторами тока, имеют градуировку шкал с учетом коэффициента трансформации, и по шкале прибора без вычислений можно легко считать значение измеряемого тока. С целью повышения безопасности персонала, один из выводов вторичной обмотки измерительного трансформатора тока и его каркас сначала заземляются.

Читать еще:  Как подцепить датчик движения к фонарю

Во многих применениях удобны проходные измерительные трансформаторы тока, у которых магнитопровод и вторичная обмотка изолированы и расположены внутри проходного корпуса, через окно которого проходит медная шина с измеряемым током.

Вторичная обмотка такого трансформатора никогда не оставляется разомкнутой, ибо сильное увеличение магнитного потока в магнитопроводе может не только привести к его разрушению, но и навести на вторичной обмотке опасную для персонала ЭДС. Чтобы провести безопасное измерение, вторичную обмотку шунтируют резистором известного номинала, напряжение на котором будет пропорционально измеряемому току.

Для измерительных трансформаторов характерны погрешности двух видов: угловая и коэффициента трансформации. Первая связана с отклонением угла сдвига фаз первичной и вторичной обмоток от 180°, что приводит к неточным показаниям ваттметров. Что касается погрешности связанной с коэффициентом трансформации, то это отклонение показывает класс точности: 0,2, 0,5, 1 и т. д. — в процентах от номинального значения.

Измерение тока и напряжения. Вольтметр и амперметр.

Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Электроника для начинающих” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр, амперметр и др.

Измерение тока.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутсвует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи

Важным параметром этого прибора является его внутреннее сопротивление . Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

В данной задаче нам необходимо измерить ток . Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

Выразим ток шунта через ток амперметра:

Измеряемый ток равен:

Подставим в это уравнение предыдущее выражение для тока шунта:

Но сопротивление шунта нам также известно (). В итоге мы получаем:

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Измерение напряжения.

Прибор, предназначенный для измерения напряжения называется вольтметр, и, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:

Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:

Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с . Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток и, в связи с этим напряжение на резисторе уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.

Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:

Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример

Здесь мы добавили в цепь добавочное сопротивление . Перед нами стоит задача измерить напряжение на резисторе : . Давайте определим, что при таком включении будет на экране вольтметра:

Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:

Таким образом: . То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно увеличить пределы измерения вольтметра

В завершении статьи пару слов об измерении сопротивления и мощности.

Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи – омметр – и мощности – ваттметр.

В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями и заходите к нам на сайт! До скорых встреч!

Измерение тока и напряжения. Вольтметр и амперметр.

Приветствую всех читателей на нашем сайте и сегодня в рамках курса “Электроника для начинающих” мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр, амперметр и др.

Измерение тока.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Читать еще:  Как выбрать кабель канал под сечение провода

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутсвует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи

Важным параметром этого прибора является его внутреннее сопротивление . Почему это так важно? Смотрите сами – при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

В этой формуле n – это коэффициент шунтирования – число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

В данной задаче нам необходимо измерить ток . Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

Выразим ток шунта через ток амперметра:

Измеряемый ток равен:

Подставим в это уравнение предыдущее выражение для тока шунта:

Но сопротивление шунта нам также известно (). В итоге мы получаем:

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить ?

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Измерение напряжения.

Прибор, предназначенный для измерения напряжения называется вольтметр, и, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:

Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:

Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с . Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток и, в связи с этим напряжение на резисторе уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.

Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:

Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример ?

Здесь мы добавили в цепь добавочное сопротивление . Перед нами стоит задача измерить напряжение на резисторе : . Давайте определим, что при таком включении будет на экране вольтметра:

Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:

Таким образом: . То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно увеличить пределы измерения вольтметра ?

В завершении статьи пару слов об измерении сопротивления и мощности.

Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи – омметр – и мощности – ваттметр.

В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями и заходите к нам на сайт! До скорых встреч!

Разбираемся с электроизмерительными приборами

Электроизмерительные приборы (ЭИП) – тип приспособлений, необходимых для измерения различного рода физических величин.

Разновидности электроизмерительных приборов

Классификация электроизмерительных приборов:

  1. переменного;
  2. постоянного;
  3. комбинированные устройства.

По уровню точности:

Каждая цифровое обозначение указывает на процентный показатель допустимой погрешности.

По сущности работы:

  1. электромагнитные;
  2. индукционные;
  3. магнитоэлектрические;
  4. ферромагнитные.

При проведении измерительных испытаний необходимо правильно выбрать соответствующее измерительное устройство.

  1. Амперметры – устройства для измерения величин тока. Единица измерения – Ампер (А).
  2. Вольтметр – измеряет напряжение электрической сети. Единица измерения – Вольт (В).
  3. Омметр – вспомогательное приспособление, измеряющее сопротивление в электроцепи. Измеряется в Оммах (Ом).
  4. Ваттметр – элемент, измеряющий мощность сети. Измеряемая единица – Ватт (Вт).
  5. Частотомер – измеритель частоты значений переменного импульса. Измеряется в Герцах (Гц).

Устройство, принцип действия

Работу электрических приспособлений рассмотрим на примере базовых устройств, таких как:

Амперметры

Такие устройства измеряют величину электрического тока. Поскольку показания напрямую зависят от поступаемого электросигнала, сопротивление амперметра должно быть меньше, чем резистивность нагрузки. Это необходимо для неизменной силы заряда при подключении нагрузки. По своим конструктивным особенностям такие электроизмерительные приборы подразделяются на:

  1. амперметр переменного тока;
  2. амперметр постоянного тока;
  3. магнитоэлектрические;
  4. электромагнитные.

Как амперметр работает? Идеальный амперметр, является прибором для измерения электрозаряда. Представляет собой проводящий контур, закрепленный на оси между полюсами постоянного магнита.

При отсутствии сигнала контура, благодаря давлению пружины, стрелка находится в нулевом положении. При включении устройства, на подвижный элемент поступает токовый импульс – происходит отклонение стрелки на угол, соответствующей величине тока. Таким образом индикаторная шкала показывает значение, измеренное устройством.

Различают модификации: с аналоговой шкалой, с цифровой шкалой. Кроме того, устройства отличаются ценой деления и пределами измерений.

Аналоговый вольтметр переменного тока и цифровые вольтметры.

Идеальный вольтметр электроизмерительный, как правило, подключается в цепь параллельно. Сопротивление вольтметра пропорционально поданному на него сигнала. Для того чтобы на показания не влияли искажения электроимпульсов, его резистивность рекомендуется делать как можно больше.

Существуют также цифровые вольтметры, имеющие цифровые индикаторные показания. Принцип работы измерителя напряжения аналогичен токовому измерителю, отличие только в градуировках шкал, пределах измерений и модификациях.

Читать еще:  Способы соединения витой пары

Омметр

Устройство, позволяющее измерить как сопротивление амперметра, так и сопротивление вольтметра. Диапазон измерения:

Подключается такой показывающий элемент в цепь последовательно. Измеряет косвенно величину сопротивления, учитывая значение входящего электрического тока и постоянную величину напряжения.

Приборная шкала каждого электроустрйоства имеет нанесенные условные знаки, обозначающие характеристики прибора, класс точности (например, амперметра), виды рабочих токов, номинальное напряжение и т.п.

Пример современного измерителя сопротивления – омметр Виток, имеющий комбинированное питание.

Как подключать

Электрические измерительные приборы подключаются:

Амперметр подключается в цепь последовательно, рядом с резистором, возле которого будет проведен замер величины тока.

Как пользоваться амперметром? Данная схема достаточно проста, для того чтобы разобрать, как правильно пользоваться амперметром.

На рисунке 5 указаны:

  1. R – резистор;
  2. А – элемент измерения тока;
  3. I – направление электрического заряда.

Как пользоваться вольтметром? Электроприбор имеет параллельные соединения, в тех местах, где будет измеряться напряжение.

На рисунке 6 указаны:

  1. R – элемент сопротивления;
  2. V – измеритель напряжения.

Как пользоваться авометром? Эта разновидность (вольтметр амперметр) – комбинированное устройство. В случае измерения токового сигнала – подключается как измеритель электрозаряда. Если измеряется напряжение – как измеритель напряжения.

Более удобным в работе считается цифровой вольтметр амперметр. При использовании электрических приборов, необходимо соблюдать все правила пожарной безопасности и для правильно работы – учитывать все их конструктивные характеристики.

Видео о принципах работы электроизмерительных приборов

Амперметр — измеряем ток: назначение, схемы подключения, типы

Амперметр – это электроизмерительный прибор, предназначенный для фиксации силы постоянного либо переменного тока, протекающего в цепи — то есть устройство для измерения тока. Амперметр подключается последовательно, с тем участком электроцепи, где предполагается измерять ток. Так как ток, который он измеряет зависит от сопротивления элементов цепи, то сопротивление амперметра должно быть максимально низким (очень маленьким). Это позволяет уменьшить влияние устройства для измерения тока на измеряемую цепь и повысить их точность.

Шкалу прибора градуируют в мкА, мА, А и кА, и в зависимости от требуемой точности и пределов измерения выбирают подходящий прибор. Увеличение измеряемой силы тока добиваются путем включения в цепь шунтов, трансформаторов тока, магнитных усилителей. Это позволяет увеличить предел измеряемой величины тока.

Схемы подключения амперметра

Рисунок — Схема прямого включения амперметра

Рисунок — Схема косвенного включения амперметра через шунт и трансформатор тока

Сфера применения амперметров

Приборы для измерения тока нашли применение в различных сферах. Их активно используют на крупных предприятиях, связанных с генерацией и распределением электрической, тепловой энергии. Также их используют в:

Но не только средние и крупные предприятия используют этот прибор: они востребованы и среди обычных людей. Практически любой опытный автоэлектрик имеет в арсенале подобное устройство, позволяющее проводить замеры показателей электропотребления приборов, узлов автомобилей и пр.

Типы амперметров

Исходя из вида отсчетного устройства амперметры делятся на приборы с:

— со стрелочным указателем;

— со световым указателем;

— с пишущим устройством;

По принципу действия амперметры разделяются на:

1. Электромагнитные – предназначены для использования в цепях постоянного, переменного тока. Обычно используются в привычных электроустановках переменного тока с частотой 50 Гц.

2. Магнитоэлектрические — предназначены для фиксации силы тока малых значений постоянного тока. Они имеют магнитоэлектрическое измерительное устройство и шкалу с проградуированными делениями.

3. Термоэлектрические приборы предназначены для измерения силы тока в цепях высоких частот. В состав таких приборов входят магнитоэлектрический механизм, выполненный в виде проводника, к которому приваривается термопара. Протекающий по проводку ток вызывает его нагрев, который фиксируется термопарой. Формирующееся излучение своим влиянием вызывает отклонение рамки на угол, который пропорционален силе тока.

4. Ферродинамические приборы — состоят из замкнутого магнитопровода, выполненного из ферромагнитного материала, сердечника и неподвижной катушки. Характеризуются высокой точностью измерения, надёжностью конструкции и низкой чувствительностью к воздействию электромагнитных полей.

5. Электродинамические устройства предназначены для замеров величины силы тока в цепях постоянного / переменного токов повышенных частот (до 200 Гц). Они чувствительны к перегрузкам и внешним электромагнитным полям. Но из-за высокой точности замеров их используют в роли контрольных приборов для поверки действующих амперметров.

6. Цифровые амперметры – современная модель приборов, сочетающая преимущества аналоговых приборов. На сегодня такие устройства завоевывали лидирующие позиции. Это объясняется удобством в работе, легкостью использования, небольшими размерами и высокой точностью получаемых результатов измерений. Кроме того, цифровые приборы можно использовать в разнообразных условиях: он не боится тряски, вибрации и пр. воздействий.

Рассмотрим несколько амперметров разных производителей и разных типов:

1. Амперметры Ам-2 DigiTOP

— Количество входов 1

— Измеряемый переменный ток 1 …50 А

— Погрешность измерения 1%

— Дискретность индикации 0,1 А

— напряжение питания -100…-400 В, 50 (+1) Гц Габаритные размеры 90x51x64 мм

Работоспособность и долговечность бытовой электротехники зависят от качества получаемой электроэнергии. Как правило, к выходу из строя электронной техники, будь то холодильники, телевизоры или стиральные машины, приводит повышение напряжения выше допустимых пределов. Наиболее опасно длительное повышение напряжения выше допустимой отметки. При этом выходят из строя блоки питания электронной техники, перегреваются обмотки электродвигателей, нередко происходит возгорание.

2. Амперметр лабораторный Э537

Данный прибор (амперметр Э537) предназначается для точного измерения силы тока в цепях переменного и постоянного тока.

Класс точности 0,5.

Диапазоны измерения 0,5 / 1 A;

Технические характеристики амперметра Э537:

Конечное значение диапазона измерений 0,5 А/1 А

Класс точности 0,5

Область нормальных частот (Гц) 45 — 100 Гц

Область рабочих частот (Гц) 100 — 1500 Гц

Габаритные размеры 140 х 195 х 105 мм

3. Амперметр СА3020

Цифровое устройство амперметр базовой модели выпускается в нескольких типовых модификациях в зависимости от базового значения параметров замеряемого тока. При заказе данной модели цифрового амперметра, требуется заявить, с каким базовым параметром силы тока Вам придётся работать: 1 А, 2 А или 5 А.

Базовые параметры замеряемого тока, Iн-1 Ампер (СА3020-1), 2 Ампер (СА3020-2) или 5 Ампер (СА3020-5);

Границы замеряемых токов от 0,01 Iн до 1,5 Iн;

Диапазон частот по замеряемым токам от 45 до 850 Герц;

Границы базовой допускаемой существующей погрешности ±0,2% к оптимальному значению параметров замеряемой силы тока;

напряжение по питанию — сеть переменного тока напряжением (85-260) Вольт и частотой (47-65) Герц или постоянное напряжение (120 — 300) Вольт;

Потребляемая устройством мощность не больше чем 4 ВА;

Размерные габариты 144x72x190 мм;

Масса не больше чем 0,55 кг;

Мощность, потребляемая измерительной цепью амперметров серии 3020, не превышает: для СА3020-1 – 0,12 ВA; для СА3020-2 – 0,25 ВA; для СА3020-5 – 0,6 ВA.

Как включается в цепь амперметр и вольтметр

Азбука физики

Научные игрушки

Простые опыты

Этюды об ученых

Решение задач

Презентации

Книги по физике
Умные книжки

Есть вопросик?

Его величество.

Музеи науки.

Достижения.

Викторина по физике

Физика в кадре

Учителю

Читатели пишут

Физика 8 класс. ИЗМЕРЕНИЕ СИЛЫ ТОКА В УЧАСТКЕ ЦЕПИ

Для измерения силы тока существует измерительный прибор — амперметр.


Условное обозначение амперметра на электрической схеме:

При включении амперметра в электрическую цепь необходимо знать :

1. Амперметр включается в электрическую цепь последовательно с тем элементом цепи,
силу тока в котором необходимо измерить.

2. При подключении надо соблюдать полярность: «+» амперметра подключается к «+» источника тока,
а «минус» амперметра — к «минусу» источника тока.

ИЗМЕРЕНИЕ НАПРЯЖЕНИЯ
НА УЧАСТКЕ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Для измерения напряжения существуют специальный измерительный прибор — вольтметр.


Условное обозначение вольтметра на электрической схеме:

При включении вольтметра в электрическую цепь необходимо соблюдать два правила:

1. Вольтметр подключается параллельно участку цепи, на котором будет измеряться напряжение;


2. Соблюдаем полярность : «+» вольтметра подключается к «+» источника тока,
а «минус» вольтметра — к «минусу» источника тока.

Для измерения напряжения источника питания вольтметр присоединяют непосредственно к его зажимам.

ИЗМЕРЕНИЕ РАБОТЫ И МОЩНОСТИ
ЭЛЕКТРИЧЕСКОГО ТОКА

Для определения работы или мощности тока можно использовать специальный измерительный прибор — ваттметр.
При отсутствии ваттметра пользуются одновременным подключением двух измерительных приборов к нужному участку цепи: амперметра и вольтметра.

Далее проводится расчет работы и мощности тока по формулам.

P = UI . и . A = UIt

1. Что изменилось на участке цепи, если включенный параллельно вольтметр
показывает уменьшение напряжения?

2. Какими способами можно определить напряжение в городской сети,
имея в своем распоряжении любые приборы, кроме вольтметра?

Ссылка на основную публикацию
Adblock
detector