20 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как создать плазменный тороид

Сообщества › Военно-Техническое Общество › Блог › Плазма в военном деле. Проекты и перспективы.

Не так давно стало известно, что один из уникальных образцов специальной аппаратуры отечественной разработки в ближайшем будущем начнет использоваться в качестве учебного пособия. По данным отечественной прессы, в следующем году военно-промышленная корпорация «Научно-производственное объединение машиностроения» (г. Реутов) передаст нескольким вузам системы радиоэлектронной борьбы на основе плазмогенератора. Эта аппаратура в свое время была разработана для крылатых ракет «Метеорит», так и не пошедших в серию. В исходном проекте аппаратура оригинального типа не дала ожидаемых результатов, но в обозримом будущем она сможет поспособствовать дальнейшему развитию технологий, оборудования и вооружений.
Напомним, проект «Метеорит» стартовал в середине семидесятых годов прошлого века и разрабатывался несколькими организациями во главе с ОКБ-52 (ныне НПО Машиностроения). Также к работам был привлечен НИИ тепловых процессов (ныне Исследовательский центр им. М.В. Келдыша), который должен был разработать электронную аппаратуру радиоэлектронного противодействия. В состав комплекса РЭБ для перспективной ракеты вошел плазмогенератор, при помощи которого в передней полусфере создавалось облако ионизированного газа. Такая «оболочка» носовой части ракеты позволяла снизить вероятность ее обнаружения радиолокационными станциями.
Ожидается, что передача уникальных образцов радиоэлектронного оборудования, которым предстоит стать учебными пособиями, в определенной мере поспособствует подготовке молодых специалистов. Вполне возможно, что в будущем ученые и конструкторы, в свое время изучившие плазмогенераторы ракеты «Метеорит», используют подобные технологии в своих новых проектах. Необходимо отметить, что применение плазмы и аппаратуры, образующей ее, имеет некоторые перспективы и может найти применение в новых образцах военной техники или вооружения.

В контексте практического применения «плазменных» технологий сначала следует вспомнить проект крылатой ракеты «Метеорит», в ходе которого был создан первый отечественный генератор плазмы, пригодный к практической эксплуатации. Вместе с другими средствами РЭБ ракета должна была использовать т.н. плазменную пушку. При необходимости противодействия РЛС противника ракета автоматически должна была включать соответствующий генератор, создающий облако плазмы в передней полусфере.
За счет своих характерных свойств ионизированный газ мешал нормальной работе радиолокационных средств. В зависимости от различных факторов, «плазменная пушка» могла скрыть ракету или помешать захвату либо сопровождению ракеты вражеской станцией. Помимо снижения уровня отраженного сигнала плазма позволяла «замаскировать» компрессор турбореактивного двигателя. Этот элемент летательного аппарата имеет характерную форму и отражает радиосигнал, но при этом принципиально не может быть переработан с целью снижения заметности. В проекте «Метеорит» проблема скрытия компрессора была решена самым интересным образом.
«Плазменная пушка» для новой крылатой ракеты дошла до стадии испытаний. Эту аппаратуру устанавливали на опытные ракеты «Метеорит», вместе с которыми проверяли на полигонах. Комплекс радиоэлектронной борьбы, включающий плазменную аппаратуру, показал весьма высокие характеристики. При наблюдении за полетом ракеты при помощи существующих РЛС наблюдалось, как минимум, нарушение слежения и сопровождения цели. Также имело место пропадание отметки с экрана.
На протяжении последних лет как в нашей стране, так и за рубежом ходят упорные слухи о возможном создании перспективных образцов авиационной техники, оснащенных генераторами плазмы. Ожидается, что применение подобной аппаратуры позволит резко сократить заметность летательного аппарата для противовоздушной обороны противника. Такие технологии представляют интерес в контексте ударной авиации и ракетной техники. Так, в области крылатых ракет маскировка при помощи облака плазмы уже была проверена в ходе испытаний, проведенных советскими специалистами в восьмидесятых годах прошлого века.
Имеются сведения о еще одном способе применения плазмогенераторов в составе авиационной или ракетной техники. Интересной особенностью ионизированного газа является изменение его физических свойств. В частности, он отличается уменьшенной плотностью, что может быть использовано для повышения характеристик ракет или самолетов. По слухам, в настоящее время российские и китайские авиастроители проводят эксперименты, в ходе которых авиационная техника комплектуется специальными плазменными генераторами. Задачей этой аппаратуры является создание плазменной «оболочки» вокруг внешней поверхности самолета. Результатом этого должно становиться сокращение заметности и определенное улучшение летных характеристик.
В другой сфере «применения» образование плазмы является побочным эффектом, который может быть использован в тех или иных целях. Известно, что при движении летательного аппарата с гиперзвуковыми скоростями вокруг него образуется оболочка из ионизированного газа. Нагрев атмосферного воздуха при этом производится за счет трения и преобразования кинетической энергии в тепловую. Любопытным следствием такой особенности гиперзвуковой техники является возможность отказа от специализированных генераторов: в их роли может выступать корпус с требуемой стойкостью к тепловым и механическим нагрузкам.
Применение плазмогенераторов в целях снижения заметности или повышения летных характеристик уже в определенной мере изучено, но все еще остается делом отдаленного будущего. Для полноценного использования этих технологий требуются новые исследования, по результатам которых будут создаваться перспективные проекты. Тем не менее, некоторые способы применения плазмы уже используются в существующей технике, однако эффект от них может быть не столь заметным и привлекающим внимание.

В новейших отечественных проектах турбореактивных двигателей, предназначенных для перспективных самолетов, используется т.н. плазменное зажигание. Применение подобной системы воспламенения топливовоздушной смеси позволяет повысить эксплуатационные характеристики техники, а также упростить ее конструкцию и сделать менее сложным обслуживание. Все эти плюсы достигаются при помощи нескольких идей, в первую очередь применения плазменной дуги, инициирующей горение топлива.
Ранее для повышения высотности или для запуска на больших высотах турбореактивные двигатели комплектовались системой кислородной подпитки, подающей в камеру сгорания необходимый газ. Применение кислородной системы в определенной мере усложняет конструкцию самолета, а также требует соответствующей аэродромной инфраструктуры. В требованиях к проекту «Перспективный авиационный комплекс фронтовой авиации» (ПАК ФА) была поставлена задача избавления от необходимости кислородной подпитки. В составе форсунок камеры сгорания и форсажной камеры новых двигателей имеются собственные плазменные системы. При подаче топлива образуется дуга, при помощи которой осуществляется его воспламенение. Вследствие этого отпадает необходимость в дополнительной подаче кислорода.
В теории плазма может использоваться не только на вспомогательных ролях. Несколько десятилетий назад в нашей стране были проведены исследования и эксперименты, темой которых было использование облака ионизированного газа в качестве поражающего элемента. Подобные принципы можно было использовать в противоракетной обороне с целью уничтожения боевых блоков вражеских ракет. Тем не менее, оригинальный способ противоракетной обороны так и не был доведен до практического использования, а его перспективы на данный момент вызывают большие сомнения.
Оригинальная концепция противоракетной обороны подразумевала использование стандартных радиолокационных средств обнаружения в сочетании с необычными поражающими комплексами. В состав комплекса боевой аппаратуры предлагалось включить несколько т.н. плазмоидных пушек, состоящих из генераторов плазмы и проводников-шин. Задачей последних являлся разгон сгустка ионизированного газа. В зависимости от поставленной боевой задачи и параметров работы аппаратуры, комплекс мог отправлять к цели струю, расходящийся поток или тороидальные сгустки плазмы. Последние получили название «плазмоиды».
По расчетам авторов идеи, комплекс боевой аппаратуры мог бы посылать тороиды с максимально высокой скоростью на высоту до 50 км. Задачей систем управления и боевого комплекса была отправка сгустков плазмы в точку упреждения летящей боеголовки ракеты противника. Предполагалось, что при контакте плазмоида и боевого блока последний будет сталкиваться с серьезными нарушениями обтекания. Попадание в облако с иными физическими параметрами должно было приводить к схождению боевого блока с заданной траектории. Кроме того, блок должен был подвергаться перегрузкам, в том числе запредельным, разрушающим его.
В прошлом предлагалось построить опытный образец плазменного комплекса ПРО и испытать его с применением имитаторов боевых частей. Тем не менее, из-за сложности, дороговизны и наличия разнообразных проблем оригинальное предложение так и не было опробовано на практике.
Все предложения использования плазмы и создающих ее установок в области вооружений и военной техники представляют большой интерес в контексте дальнейшего их развития. Тем не менее, использование всех идей и предложений на практике может быть связано с рядом характерных проблем. Все эти недостатки связаны как с особенностями технологического характера, так и с проблемами в области практического применения. Таким образом, для освоения перспективной аппаратуры требуется решить ряд сложных конструкторских задач, а также сформировать способы применения техники, позволяющие получить максимально высокую эффективность.

Сообщества › Военно-Техническое Общество › Блог › Плазма в военном деле. Проекты и перспективы.

Не так давно стало известно, что один из уникальных образцов специальной аппаратуры отечественной разработки в ближайшем будущем начнет использоваться в качестве учебного пособия. По данным отечественной прессы, в следующем году военно-промышленная корпорация «Научно-производственное объединение машиностроения» (г. Реутов) передаст нескольким вузам системы радиоэлектронной борьбы на основе плазмогенератора. Эта аппаратура в свое время была разработана для крылатых ракет «Метеорит», так и не пошедших в серию. В исходном проекте аппаратура оригинального типа не дала ожидаемых результатов, но в обозримом будущем она сможет поспособствовать дальнейшему развитию технологий, оборудования и вооружений.
Напомним, проект «Метеорит» стартовал в середине семидесятых годов прошлого века и разрабатывался несколькими организациями во главе с ОКБ-52 (ныне НПО Машиностроения). Также к работам был привлечен НИИ тепловых процессов (ныне Исследовательский центр им. М.В. Келдыша), который должен был разработать электронную аппаратуру радиоэлектронного противодействия. В состав комплекса РЭБ для перспективной ракеты вошел плазмогенератор, при помощи которого в передней полусфере создавалось облако ионизированного газа. Такая «оболочка» носовой части ракеты позволяла снизить вероятность ее обнаружения радиолокационными станциями.
Ожидается, что передача уникальных образцов радиоэлектронного оборудования, которым предстоит стать учебными пособиями, в определенной мере поспособствует подготовке молодых специалистов. Вполне возможно, что в будущем ученые и конструкторы, в свое время изучившие плазмогенераторы ракеты «Метеорит», используют подобные технологии в своих новых проектах. Необходимо отметить, что применение плазмы и аппаратуры, образующей ее, имеет некоторые перспективы и может найти применение в новых образцах военной техники или вооружения.

В контексте практического применения «плазменных» технологий сначала следует вспомнить проект крылатой ракеты «Метеорит», в ходе которого был создан первый отечественный генератор плазмы, пригодный к практической эксплуатации. Вместе с другими средствами РЭБ ракета должна была использовать т.н. плазменную пушку. При необходимости противодействия РЛС противника ракета автоматически должна была включать соответствующий генератор, создающий облако плазмы в передней полусфере.
За счет своих характерных свойств ионизированный газ мешал нормальной работе радиолокационных средств. В зависимости от различных факторов, «плазменная пушка» могла скрыть ракету или помешать захвату либо сопровождению ракеты вражеской станцией. Помимо снижения уровня отраженного сигнала плазма позволяла «замаскировать» компрессор турбореактивного двигателя. Этот элемент летательного аппарата имеет характерную форму и отражает радиосигнал, но при этом принципиально не может быть переработан с целью снижения заметности. В проекте «Метеорит» проблема скрытия компрессора была решена самым интересным образом.
«Плазменная пушка» для новой крылатой ракеты дошла до стадии испытаний. Эту аппаратуру устанавливали на опытные ракеты «Метеорит», вместе с которыми проверяли на полигонах. Комплекс радиоэлектронной борьбы, включающий плазменную аппаратуру, показал весьма высокие характеристики. При наблюдении за полетом ракеты при помощи существующих РЛС наблюдалось, как минимум, нарушение слежения и сопровождения цели. Также имело место пропадание отметки с экрана.
На протяжении последних лет как в нашей стране, так и за рубежом ходят упорные слухи о возможном создании перспективных образцов авиационной техники, оснащенных генераторами плазмы. Ожидается, что применение подобной аппаратуры позволит резко сократить заметность летательного аппарата для противовоздушной обороны противника. Такие технологии представляют интерес в контексте ударной авиации и ракетной техники. Так, в области крылатых ракет маскировка при помощи облака плазмы уже была проверена в ходе испытаний, проведенных советскими специалистами в восьмидесятых годах прошлого века.
Имеются сведения о еще одном способе применения плазмогенераторов в составе авиационной или ракетной техники. Интересной особенностью ионизированного газа является изменение его физических свойств. В частности, он отличается уменьшенной плотностью, что может быть использовано для повышения характеристик ракет или самолетов. По слухам, в настоящее время российские и китайские авиастроители проводят эксперименты, в ходе которых авиационная техника комплектуется специальными плазменными генераторами. Задачей этой аппаратуры является создание плазменной «оболочки» вокруг внешней поверхности самолета. Результатом этого должно становиться сокращение заметности и определенное улучшение летных характеристик.
В другой сфере «применения» образование плазмы является побочным эффектом, который может быть использован в тех или иных целях. Известно, что при движении летательного аппарата с гиперзвуковыми скоростями вокруг него образуется оболочка из ионизированного газа. Нагрев атмосферного воздуха при этом производится за счет трения и преобразования кинетической энергии в тепловую. Любопытным следствием такой особенности гиперзвуковой техники является возможность отказа от специализированных генераторов: в их роли может выступать корпус с требуемой стойкостью к тепловым и механическим нагрузкам.
Применение плазмогенераторов в целях снижения заметности или повышения летных характеристик уже в определенной мере изучено, но все еще остается делом отдаленного будущего. Для полноценного использования этих технологий требуются новые исследования, по результатам которых будут создаваться перспективные проекты. Тем не менее, некоторые способы применения плазмы уже используются в существующей технике, однако эффект от них может быть не столь заметным и привлекающим внимание.

Читать еще:  Гост 9941 81 трубы из нержавеющей стали

В новейших отечественных проектах турбореактивных двигателей, предназначенных для перспективных самолетов, используется т.н. плазменное зажигание. Применение подобной системы воспламенения топливовоздушной смеси позволяет повысить эксплуатационные характеристики техники, а также упростить ее конструкцию и сделать менее сложным обслуживание. Все эти плюсы достигаются при помощи нескольких идей, в первую очередь применения плазменной дуги, инициирующей горение топлива.
Ранее для повышения высотности или для запуска на больших высотах турбореактивные двигатели комплектовались системой кислородной подпитки, подающей в камеру сгорания необходимый газ. Применение кислородной системы в определенной мере усложняет конструкцию самолета, а также требует соответствующей аэродромной инфраструктуры. В требованиях к проекту «Перспективный авиационный комплекс фронтовой авиации» (ПАК ФА) была поставлена задача избавления от необходимости кислородной подпитки. В составе форсунок камеры сгорания и форсажной камеры новых двигателей имеются собственные плазменные системы. При подаче топлива образуется дуга, при помощи которой осуществляется его воспламенение. Вследствие этого отпадает необходимость в дополнительной подаче кислорода.
В теории плазма может использоваться не только на вспомогательных ролях. Несколько десятилетий назад в нашей стране были проведены исследования и эксперименты, темой которых было использование облака ионизированного газа в качестве поражающего элемента. Подобные принципы можно было использовать в противоракетной обороне с целью уничтожения боевых блоков вражеских ракет. Тем не менее, оригинальный способ противоракетной обороны так и не был доведен до практического использования, а его перспективы на данный момент вызывают большие сомнения.
Оригинальная концепция противоракетной обороны подразумевала использование стандартных радиолокационных средств обнаружения в сочетании с необычными поражающими комплексами. В состав комплекса боевой аппаратуры предлагалось включить несколько т.н. плазмоидных пушек, состоящих из генераторов плазмы и проводников-шин. Задачей последних являлся разгон сгустка ионизированного газа. В зависимости от поставленной боевой задачи и параметров работы аппаратуры, комплекс мог отправлять к цели струю, расходящийся поток или тороидальные сгустки плазмы. Последние получили название «плазмоиды».
По расчетам авторов идеи, комплекс боевой аппаратуры мог бы посылать тороиды с максимально высокой скоростью на высоту до 50 км. Задачей систем управления и боевого комплекса была отправка сгустков плазмы в точку упреждения летящей боеголовки ракеты противника. Предполагалось, что при контакте плазмоида и боевого блока последний будет сталкиваться с серьезными нарушениями обтекания. Попадание в облако с иными физическими параметрами должно было приводить к схождению боевого блока с заданной траектории. Кроме того, блок должен был подвергаться перегрузкам, в том числе запредельным, разрушающим его.
В прошлом предлагалось построить опытный образец плазменного комплекса ПРО и испытать его с применением имитаторов боевых частей. Тем не менее, из-за сложности, дороговизны и наличия разнообразных проблем оригинальное предложение так и не было опробовано на практике.
Все предложения использования плазмы и создающих ее установок в области вооружений и военной техники представляют большой интерес в контексте дальнейшего их развития. Тем не менее, использование всех идей и предложений на практике может быть связано с рядом характерных проблем. Все эти недостатки связаны как с особенностями технологического характера, так и с проблемами в области практического применения. Таким образом, для освоения перспективной аппаратуры требуется решить ряд сложных конструкторских задач, а также сформировать способы применения техники, позволяющие получить максимально высокую эффективность.

Как создать плазменный тороид

При современном росте потребления энергии человечеству ненадолго хватит запасов угля, нефти, газа, урана — всего лишь на 100—200 лет. Вот почему ученые с таким энтузиазмом работают над новыми источниками энергии — управляемыми реакциями ядерного синтеза .

В одном литре воды содержится столько же энергии, сколько выделится при сжигании 400 л нефти. Но как добыть из воды это море энергии? Ученые отвечают: «c помощью реакции термоядерного синтеза».

В отличие от процесса ядерного деления, где энергия освобождается в результате расщепления тяжелых ядер на легкие осколки, при термоядерном синтезе происходит слияние легких ядер в более тяжелые. При этом выделяется огромное количество тепла. Реакции синтеза являются источником энергии в солнце и звездах.

Для практических целей наибольший интерес представляют реакции синтеза, которые могут быть осуществлены в смеси дейтерия с тритием или в чистом дейтерии, встречающемся непосредственно в природе в виде тяжелой воды в морях и океанах.

В генераторе, работающем на принципе термоядерного синтеза, необходимо нагреть дейтерий до температуры 300—400 млн. градусов, а смесь трития с дейтерием — до температуры 40—50 млн. градусов. Только при такой высокой температуре и достаточной плотности (10 15 частиц в 1 см 3 ) слияние ядер изотопов водорода будет происходить с интенсивностью, при которой выделившаяся энергия будет больше затраченной.

При высокой температуре дейтерий полностью разделен на положительно заряженные ионы и электроны, как говорят, ионизирован. Такое состояние вещества получило название высокотемпературной плазмы. Отдельные частицы плазмы движутся с огромными скоростями, превышающими 1 000 км/сек, оказывая большое давление на стенки сосуда. Только магнитное поле, силовые линии которого подобны упругим резиновым шнурам, способно противостоять давлению плазмы. Поэтому подбор конфигурации магнитного поля, изолирующего плазму от стенок, стал другой важной задачей при создании термоядерного генератора.

Раньше других были начаты исследования метода, основанного на так называемом пинч-эффекте, то есть сжатии газа под действием протекающего по нему тока. Такой метод казался наиболее простым и перспективным (см. «ЮТ» № 11 за 1958 г.).

Представим себе цилиндрическую камеру, в которую с торцов введены электроды. Если газ немного откачать из камеры, а на электроды подать высокое напряжение, то произойдет пробой, в газе потечет сильный ток. Газ ионизируется, образуя плазму, которая под действием собственного магнитного поля тока начнет стягиваться к оси камеры. Однако плазма, созданная в таком устройстве, каждый раз соприкасалась с электродами и охлаждалась. Тогда прямую трубку свернули в тор (см. вкладку II — III). Разреженный газ тора превратился во вторичную обмотку трансформатора. Когда в первичной обмотке пропускается ток большой силы, во вторичной обмотке возникает электродвижущая сила, вызывающая ток в газе. Плазма греется подобно металлу в индукционной печи, а магнитное поле тока плазмы стягивает ее в кольцо и изолирует от стенок.

Казалось, принципиальных осложнений нет: плазму можно создать, нагреть и термоизолировать. Но в первых же экспериментах плазма показала свой неспокойный характер. Из-за быстро развивающихся процессов неустойчивостей, получивших название «перетяжек» и «змей» (см. вкладку), она уходила с оси тора и касалась стенок камеры.

Именно неустойчивость плазмы стала камнем преткновения на пути к океану термоядерной энергии.

Причину ее возникновения можно объяснить следующим образом. Силовые линии магнитного поля тока можно представить как набор растянутых эластичных колечек, которые, во-первых, стремятся сократиться в диаметре и, во-вторых, расталкивают друг друга в продольном направлении. Сокращение колечек приводит к образованию перетяжек, а их взаимное расталкивание действует на шнур с током, как изгиб на сжатую пружину, которая, как известно, становится неустойчивой к изгибу.

Читать еще:  Как соединить два алюминиевых провода между собой

Из рисунка на вкладке следует, что если в шнуре случайно возникает изгиб, то плотность силовых линий с внутренней стороны становится больше, чем снаружи. Изображенные стрелками магнитные силы стремятся увеличить изгиб еще больше.

Плазма дома.
Каждый раз, когда говорят о плазме, поражает космический масштаб затронутой темы. Космические корабли с плазменными двигателями, океан плазменной энергии — вот области применения четвертого состояния вещества.

Ее получение и использование связывают обычно со сложными. хитроумными устройствами. Все это может создать впечатление, что само плазменное состояние есть нечто уникальное. стоящее на грани возможного

А между тем плазма присутствует в наших квартирах и приспособление, в котором она образуется, можно приобрести в любом универмаге. Речь идет о газосветных и люминесцентных лампах — как их называют, лампах дневного света.

свечение газосветной лампы вызывается электрическим разрядом, постоянно пробивающим ее сильно разреженную газовую атмосферу. Атомы газа, возбужденные разрядом, теряют часть своих электронов — так внутри трубки возникает смесь ионов и электронов, — другими словами, плазма.

Итак, чтобы получить плазму в домашних условиях, достаточно щелкнуть выключателем вашей лампы дневного света.

Исследования показали, что эти неустойчивости можно в значительной степени устранить, если стенки тора сделать из металла. Еще лучше действует ток, пропускаемый по обмоткам, навитым на камеру тора. Создаваемое при этом дополнительное магнитное поле, силовые линии которого параллельны стенкам тора, препятствуют возникновению нестабильностей. Если происходит перетяжка или изгиб шнура, то силовые линии дополнительного магнитного поля, подобно натянутым струнам, стремятся вернуться в прежнее положение и выпрямить шнур.

Свойство стабилизации плазменного шнура металлическим кожухом и дополнительным магнитным полем использовано в установке «Токомак», построенной в Институте атомной энергии имени И. В. Курчатова.

Сейчас исследуется возможность получения горячей плазмы в установках, называемых магнитными ловушками — ловушками с «магнитными пробками».

Такая ловушка обычно представляет собой прямую цилиндрическую камеру, из которой откачан воздух. На камеру надвинуты катушки, по которым течет электрический ток, создающий магнитное поле. Токовые обмотки сделаны так, что магнитное поле, слабое в центральной части, значительно возрастает к торцам трубы.

Торцовые участки поля и играют роль отражателей частиц — магнитных «пробок», или, как их еще называют, магнитных «зеркал». Внутри камеры создают плазму, частицы которой, двигаясь вдоль силовой линии из области слабого поля в область торца, испытывают действие силы, стремящейся отбросить их обратно.

На рисунке схематически изображен метод нагрева плазмы нарастающим магнитным полем.

Этот принцип используется в установке «Огра» — гигантской ловушке, построенной в Институте атомной энергии имени И. В. Курчатова. Диаметр камеры «Огры» 1 м 40 см, длина — 20 м. Силовые линии магнитного поля, в центральной области почти параллельные стенкам камеры, образуют магнитные «пробки» на торцах трубы. Внутрь ловушки с помощью инжектора впрыскиваются молекулярные ионы водорода (или дейтерия), предварительно разогнанные в специальном ускорителе. Попав в ловушку, молекулярный ион начинает двигаться по винтовой траектории к магнитной «пробке», отражается от нее, идет к другой магнитной «пробке», снова отражается и так долго колеблется в центральной области, пока снова не вернется к инжектору и не погибнет на его оболочке. Но на своем пути молекулярный ион может столкнуться с молекулами газа или с другими ионами. При этом он разваливается на нейтральный атом и атомарный ион. Нейтральный атом не испытывает воздействия магнитного поля и улетает на стенку камеры, а атомарный ион, вращаясь по спирали малого радиуса, захватывается в ловушку. Если инжекцию вести непрерывно, то можно накопить много атомарных ионов и создать высокотемпературную плазму.

Так же как и в тороидальных установках, плазма неспокойна и здесь. Она старается просочитъся сквозь силовые линии магнитного поля и уйти к стенкам вследствие «желобковой», или, как еще ее называют, «языковой» неустойчивости. Возник-

новение языковой неустойчивости плазмы связано с формой самого магнитного поля — ловушки. Напряженность магнитного поля нарастает в продольном направлении в обе стороны от центральной области, а в радиальном направлении поле спадает. Просачивание плазмы сквозь силовые линии магнитного поля происходит значительно легче по направлению ослабления поля. При этом образование «языков» связано с тем, что на поверхности плазмы происходит разделение зарядов. Электроны оказываются смещенными относительно ионов. Возникающее при этом электрическое поле заставляет частицы плазмы двигаться поперек силовых линии магнитного поля. Небольшой «язык» быстро растет, и плазма достигает стенки камеры. Поверхность плазмы может одновременно породить несколько таких «языков».

Но раз известна болезнь, то можно думать и о лекарстве. Вытекание плазмы значительно ослабляется, если и по радиусу поле сделать также нарастающим. Этого можно добиться, если вдоль камеры, на ее поверхности, поместить металлические стержни и пропускать по ним электрический ток. Известно, что магнитное поле тока растет при приближении к проводнику. Благодаря комбинации магнитного поля стержней с полем самой ловушки можно получить нарастание магнитного поля вдоль радиуса. Экспериментально показано, что в ловушке с такой конфигурацией магнитного поля образование «языков» на поверхности плазмы сильно затруднено и плазма удерживается более надежно.

Так, шаг за шагом, создаются все более сложные конфигурации магнитных полей, все труднее и труднее ручейкам плазмы расплескивать свою энергию на пути к человеку.

Н . БРЕВНОВ, научный сотрудник Института атомной энергии имени И . В. Курчатова

Термоядерный реактор в семь раз обошёл центр Солнца по температуре плазмы

Экспериментальный термоядерный реактор нагрел плазму до громадной температуры.

Слева: зависимость температуры электронов от плотности плазмы в реакторе. Справа: изображение облака плазмы в тороидальной камере.

На термоядерном реакторе EAST, прозванном «китайским искусственным солнцем», учёные разогрели плазму до ста миллионов градусов (температура в центре нашей звезды – 15 миллионов °C). Об этом сообщает Академия наук КНР.

Столь замечательный результат был получен благодаря использованию сразу четырёх источников тепла.

Во-первых, плазму нагревали низкие гибридные волны и электронные циклотронные волны (это разные виды продольных колебаний электронов и ионов).

Во-вторых, физики использовали ионный циклотронный резонанс. Суть явления состоит в том, что в однородном и постоянном во времени магнитном поле ионы движутся по кругу с определённой частотой. Если периодически и с той же частотой передавать им дополнительный импульс с помощью электрического поля, можно сильно повысить энергию ионов и тем самым поднять и температуру вещества.

Наконец, свой вклад внесло впрыскивание нейтрального пучка. Поясним, о чём речь. Горячая плазма в реакторе удерживается магнитным полем. Возникающие силы заставляют заряженные частицы изменять траекторию, избегая столкновения со стенками камеры (только благодаря этому последние не обращаются в пар). Однако на электрически нейтральные атомы магнитное поле не действует. Поэтому струя такого вещества может беспрепятственно проникнуть в магнитную ловушку. Там атомы моментально сталкиваются с ионами плазмы, теряют электроны и сами превращаются в ионы. При этом большая часть кинетической энергии пучка расходуется на нагрев плазмы.

Умелое использование всех этих механизмов и позволило учёным получить тепловую мощность более десяти мегаватт и с её помощью нагреть плазму до 100 миллионов °C. Точнее говоря, речь идёт о температуре электронов. Протоны – частицы гораздо более тяжёлые и в том же облаке плазмы могут иметь совсем другую температуру.

Эксперименты с периодическим воспроизведением такого состояния плазмы продолжались четыре месяца. Физики изучали устойчивость плазмы в магнитной ловушке, воздействие её на стенки реактора, движение раскалённого вещества и так далее.

Также испытанию подвергся охлаждаемый водой вольфрамовый дивертор – устройство, мешающее частицам со стенок камеры попадать в плазму.

Напомним, что реактор EAST был запущен в 2006 году. В 2017 году он впервые удержал максимальную температуру плазмы в течение более чем ста секунд.

В последние годы похожий результат был достигнут на нескольких термоядерных реакторах, но результат китайских физиков особенно важен в связи с необычно высокой температурой, которая развивается в EAST.

Поясним, что термоядерным реакциям в центре Солнца способствует мощная гравитация звезды и её огромные размеры. Чтобы получить нужный результат в земных условиях, и требуется такая гигантская температура. При этом её нужно поддерживать достаточно долго, чтобы необходимые реакции успели произойти.

К слову, EAST относится к так называемым токамакам. Слово образовано от аббревиатуры ТОКАМАК – «ТОроидальная КАмера с МАгнитными Катушками». Такой реактор представляет собой полый тор («бублик»), внутри которого магнитные поля удерживают горячую плазму. Первый токамак был построен в 1954 году в СССР.

EAST стал первым в мире токамаком с некруглым поперечным сечением, магнитное поле в котором полностью создаётся сверхпроводящими электромагнитами.

Опыт китайских физиков наверняка будет учтён в проекте ИТЭР. Это крупнейший в мире термоядерный реактор, в строительстве которого участвуют 35 стран, в том числе Россия, Китай и США.

Конечной целью исследователей является промышленный термоядерный реактор. Если человечеству удастся создать эту технологию, оно будет фактически навсегда обеспечено дешёвой и экологически чистой энергией.

Правда, предстоит решить ещё несколько проблем, например, наладить производство тяжёлого изотопа водорода трития, который является стандартным термоядерным топливом.

Генерируем плазму в бутылке

Наверняка многие слышали о таком понятии как плазма. Для некоторых это явление ассоциируется даже с мистическими явлениями. На само деле, плазмой является всего то ионизированный газ. Это явление образуется, когда через газ проходит высокое напряжение, к примеру, как молния.

Сегодня мы рассмотрим, как можно приручить это удивительное явление. Мы попробуем создать плазму у себя дома. Автор для этих целей использует стеклянную бутылка, подойдет также банка, но желательно, чтобы емкость была как можно меньшего объема. Дело в том, что для образования плазмы нужно снизить давление газа, а ручными методами это делать долго.
Для самоделки автор использовал простейшие компоненты и инструменты

Материалы и инструменты, которые использовал автор:

Читать еще:  Основной расчет призматических шпонок производится по напряжениям

Список материалов:
— стеклянная прозрачная бутылка (или другая прозрачная емкость);
— два медных провода;
— горячий клей ;
— холодная сварка;
— небольшие резиновые трубочки;
— шприц большого объема;
— стержень из углерода (есть в батарейках, советских карандашах…);
— трансформатор от микроволновки;
— кусок длинного медного провода (тонкого);
— пневматические клапана для изготовления насосика (откачивает воздух из бутылки).



Процесс изготовления самоделки:

Шаг первый. Сверлим…
Самым сложным этапом будет просверлить отверстие в стекле, оно должно быть такого диаметра, чтобы в него мог зайти провод. То есть, небольшое. Для сверления лучше всего использовать предназначенные для этих целей сверла со специальными наконечниками.
Сверлится отверстие в донышке бутылки.


Далее берем крышку бутылки, в ней нужно просверлить два отверстия. Одно отверстие будет небольшого диаметра (такое же, как в донышке), оно используется для подключения электрода. А второе отверстие должно быть побольше, сюда устанавливается силиконовая трубочка для отсоса воздуха.

Шаг второй. Устанавливаем трубочку
Вставьте трубочку в просверленное отверстие и закрепите при помощи горячего клея, желательно с обеих сторон. Чтобы клей хорошо пристал к металлу, крышку желательно прогреть, к примеру, феном.

Шаг третий. Крепим первый электрод
Вставьте в крышку кусок провода, зачистите на конце от изоляции. Для герметичности провод с обеих сторон нужно приклеить при помощи горячего клея.

Теперь нужно сделать электрод, он изготавливается из графитового стержня. Графит используется в карандашах, но будьте внимательны, в современных карандашах графита можно и не встретить. Проверьте стержень на электропроводность, если он проводит ток, значит, это графит. Примотайте небольшой кусочек к концу провода.




Шаг пятый. Система зажигания
Для зажигания дуги нужен скачок высокого напряжения. В люминесцентных лампах, к примеру, это делают специальные пусковые конденсаторы, модуль повышения мощности и так далее. Но автор все это не использовал, вместо этого ему понадобился длинный кусок тонкого провода. Этот кусок крепим внутри банки между электродами. Один конец просто приматываем к одному из электродов, а другой конец располагаем недалеко от второго электрода.

Теперь, когда вы встряхнете бутылкой, конец провода коснется контакта и закоротит его. Вследствие чего провод раскалиться, начнет гореть и в бутылке зародится плазма.






К электродам прибора подключите провода от трансформатора микроволновой печи, но пока не включайте его в сеть для безопасности.


Убедитесь, что в банке конец центрального провода находится недалеко от электрода. Включите трансформатор и подайте напряжение на электроды. Теперь встряхните банку, центральный провод должен замкнуть цепь и плазма загорится ярким свечением! Берегите глаза, так как свет будет очень ярким.

Если все получилось, поздравляю, вы своими руками смогли создать дома плазму.

Как создать плазменный тороид

Каталог магнитов

Магнитное удержание плазмы

Расскажем сегодня о магнитном удержании плазмы.

ПЛАЗМА – частично или полностью ионизованный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Газ переходит в состояние плазмы, если некоторые из составляющих его атомов (молекул) по какой-либо причине лишились одного или нескольких электронов, т.е. превратились в положительные ионы. В некоторых случаях в плазме в результате «прилипания» электронов к нейтральным атомам могут возникать и отрицательные ионы. Если в газе не остается нейтральных частиц, плазма называется полностью ионизованной.

Одна из важных особенностей плазмы в том, что отрицательный заряд электронов в ней почти точно нейтрализует положительный заряд ионов. При любых воздействиях на нее плазма стремится сохранить свою квазинейтральность. Если в каком-то месте происходит случайное смещение (например, за счет флуктуации плотности) части электронов, создающее избыток электронов в одном месте и недостаток в другом, в плазме возникает сильное электрическое поле, которое препятствует разделению зарядов и быстро восстанавливает квазинейтральность.

Плазма – четвертое состояние вещества, она подчиняется газовым законам и во многих отношениях ведет себя как газ. Вместе с тем, поведение плазмы в ряде случаев, особенно при воздействии на нее электрических и магнитных полей, оказывается столь необычным, что о ней часто говорят как о новом четвертом состоянии вещества. В 1879 английский физик В.Крукс, изучавший электрический разряд в трубках с разреженным воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвертом состоянии». Древние философы считали, что основу мироздания составляют четыре стихии: земля, вода, воздух и огонь. В известном смысле это отвечает принятому ныне делению на агрегатные состояния вещества, причем четвертой стихии – огню и соответствует, очевидно, плазма.

Магнитное удержание плазмы

Как известно, в магнитном поле заряженные частицы движутся по спиралям, «навиваясь» своими траекториями на силовые линии магнитного поля. Поэтому однородное поле сильно уменьшает диффузию и теплопроводность плазмы в направлении поперек силовых линий. Однородное поле, однако, никак не влияет на движение заряженных частиц вдоль силовых линий.

Естественный путь устранения потерь плазмы вдоль силовых линий — сворачивание плазменного шнура в тор. Но при этом магнитное поле становится неоднородным и характер движения заряженных частиц в нем усложняется возникает дрейф (медленное смещение) частиц поперек силовых линий поля. Для устранения дрейфа, а также обеспечения равновесия и устойчивости плазменного кольца используют различные комбинации внешних полей и полей, возникающих при протекании токов в самой плазме. В зависимости от структуры этих полей возможны различные виды тороидальных (или замкнутых) ловушек для плазмы: токамаки, стеллараторы и т.д.

Однако, несмотря на это, «ловушки» не являются единственной исследуемой системой магнитного удержания плазмы. Дело в том, что если рассматривать их не как устройство для удержания горячей плазмы, а как часть термоядерного реактора, то, с чисто инженерной точки зрения, он имеет весьма серьезные недостатки. Импульсный характер работы токамака порождает проблемы, связанные с «усталостью» материалов из-за циклических термических напряжений, возникающих в элементах конструкции. Кроме того, его тороидальная геометрия сама по себе обусловливает неоднородность тепловых и нейтронных нагрузок на эти элементы. Поскольку силовые линии магнитного поля в тороидальной ловушке представляют собой окружности, можно ожидать центробежный дрейф частиц к стенкам ловушки. Кроме того, в силу принятой геометрии установки, витки с током располагаются на внутренней окружности тора ближе друг к другу, чем на внешней, поэтому индукция магнитного поля увеличивается по направлению от внешней стенки тора к внутренней, что очевидным образом приводит к градиентному дрейфу частиц к стенкам ловушки. Оба вида дрейфа частиц вызывают движение зарядов противоположного знака в разные стороны, в результате вверху образуется избыток отрицательных зарядов, а внизу – положительных.

С тороидальной геометрией связаны головоломные проблемы, которые придется решать при дистанционной разборке и других ремонтных работах на радиоактивной установке, активированной нейтронами.

Наконец, для экономики реакторных систем очень важно, чтобы удержание плазмы осуществлялось как можно более слабым магнитным полем. Коэффициент использования магнитного поля в каждой данной системе удержания можно характеризовать величиной, равной отношению давления плазмы к давлению внешнего магнитного поля, определяемому как В2/8я, где В — магнитная индукция. Другой способ, также позволяющий компенсировать дрейф плазмы в тороидальной ловушке, состоит в возбуждении вдоль тора электрического тока прямо по плазме. Систему с кольцевым током назвали токамак (от слов «токовая камера», «магнитные катушки»).

Существуют и другие идеи магнитного удержания плазмы. Одна из них заключается, например, в создании ловушек с магнитными «пробками» или так называемых «пробкотронов». В таких устройствах силовые линии продольного магнитного поля, сгущаются по направлению к торцам цилиндрической камеры, в которой находится плазма, напоминая своей формой горлышко бутылки . Уходу заряженных частиц на стенки поперек продольного магнитного поля препятствует их закручивание вокруг силовых линий. Нарастание магнитного поля к торцам обеспечивает выталкивание циклотронных кружков в область более слабого поля, что и создает эффект магнитных «пробок». Магнитные «пробки» называют иногда магнитными зеркалами, от них, как от зеркала, отражаются заряженные частицы.

Диффузия плазмы поперек магнитного поля. Предыдущий анализ поведения заряженных частиц в магнитном поле основывался на предположении об отсутствии столкновений частиц между собой. В действительности же частицы, конечно, взаимодействуют между собой, их столкновения приводят к тому, что они перескакивают с одной линии индукции на другую, т.е. перемещаются поперек силовых линии магнитного поля. Такое явление называют поперечной диффузией плазмы в магнитном поле. Анализ показывает, что скорость поперечной диффузии частиц уменьшается с увеличением магнитного поля (обратно пропорционально квадрату величины магнитной индукции B), а также с возрастанием температуры плазмы. Однако, на самом деле процесс диффузии в плазме оказывается более сложным.

Основную роль в поперечной диффузии плазмы играют столкновения электронов с ионами, при этом ионы, которые движутся вокруг силовых линий по окружностям большего радиуса, чем электроны, в результате столкновений «легче» переходят на другие силовые линии, т.е диффундируют поперек силовых линий быстрее, чем электроны. Из-за различной скорости диффузии частиц противоположного знака происходит разделение зарядов, которому препятствуют возникающие сильные электрические поля. Эти поля практически устраняют возникшую разницу в скоростях движения электронов и ионов, в результате чего наблюдается совместная диффузия разноименно заряженных частиц, которая называется амбиполярной диффузией. Такая диффузия поперек магнитного поля является также одной из важных причин ухода частиц на стенки в устройствах магнитного удержания плазмы.

Заметим, что если первый из указанных недостатков может быть, по-видимому, в будущем устранен, то два других представляют собой, так сказать, врожденные. Поэтому никогда не прекращался поиск систем магнитного удержания, свободных от этих недостатков, т.е. обеспечивающих непрерывную работу, имеющих линейную геометрию и устойчиво удерживающих плотную плазму в относительно слабых магнитных полях . В настоящее время основным соперником токамаков среди систем с магнитным удержанием вновь становятся открытые магнитные ловушки, изучение которых началось еще на заре термоядерных исследований.

Ссылка на основную публикацию
Adblock
detector