23 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как образуются органические полимерные молекулы

Полимеры. Общие сведения

Что такое полимер?

Полимерами называют высокомолекулярные химические соединения (ВМС) вещества, обладающие молекулярной массой от тысяч до нескольких миллионов атомных единиц. Макромолекулы полимеров образовываются из огромного количества повторяющихся мономерных звеньев. Свойства полимеров зависят от химической природы мономера, молекулярной массы, методом производства полимера, стереоструктурой молекул (расположением в пространстве) и степенью их разветвленности, а также связей между молекулами различной природы.

Большинство полимеров являются по природе диэлектриками, также имеют низкую теплопроводность и достаточно высокие механические характеристики.

Классификация полимеров

Разделение полимеров на четкие классы – достаточно сложное дело. В современной теории существует несколько подразделений полимерных материалов по видам:

  • полимеры могут быть природными или синтетическими, также бывают модифицированные полимеры;
  • по типу реакции образования полимеры делятся на полимеризационные и поликонденсационные;
  • в зависимости от химического состава полимеры подразделяются на неорганические (например, силиконы), органические полимеры (например, полистирол) и элементоорганические полимеры (например, фторопласты). При этом основной вид используемых полимеров – органические;
  • по методу переработки и соответствующему отношению к воздействию на них температуры полимеры делят на термопластичные (термопласты) и термореактивные (реактопласты). Первые способны перерабатываться многократно, вторые – как правило, нет;
  • по составу мономерных звеньев полимеры делят на гомополимеры и сополимеры (гетерополимеры);
  • также полимеры разделяются по строению главной цепи на гомоцепные и гетероцепные, по пространственному расположению мономерных звеньев на стереорегулярные и атактические (нестереорегулярные), по степени разветвления на линейные, разветвленные, лестничные и сшитые и т.д.

Рис. 1 Структура полимеров

Образование полимеров

В природе биологические полимеры или биополимеры получаются естественным путем в процессе жизнедеятельности растительных и животных организмов. Искусственные же полимеры производят как правило нефтехимические и газохимические предприятия путем двух основных видов химических реакций: полимеризации и поликонденсации

Полимеризация – это процесс синтеза полимера путем присоединения повторяющихся цепочек молекул (звеньев) мономера к активному центру роста макромолекулы высокомолекулярного соединения. В упрощенном виде механизм полимеризации можно расписать по следующим стадиям:

  • образование центров полимеризации;
  • рост макромолекул полимера при присоединения очередных звеньев;
  • возникновение новых центров полимеризации на других молекулы и их интенсивный рост;
  • возникновение разветвленных молекул полимеров;
  • прекращение роста макромолекул.

Обычно полимеризация не возникает при нормальных условиях. Для начала химического процесса полимеризации на низкомолекулярное сырье оказывают разнообразные методы воздействия в зависимости от каждого конкретного техпроцесса: воздействие светом или другим типом облучением, повышенным давление, высокими температурами. При этом, наиболее эффективно процесс идет в среде катализатора, подбираемого для каждого конкретного процесса получения определенного полимера персонально. При образовании полимеров при помощи полимеризации не выделяется побочных веществ реакции, химический состав веществ остается неизменным, но меняется структура связей в веществе.

Рис. 2 Завод по производству полиэтилена

Поликонденсация – это процесс синтеза полимеров из низкомолекулярных веществ при помощи перегруппировки атомов выделения побочных продуктов поликонденсации. Это могут быть различные низкомолекулярные соединения, например вода. Методом поликонденсации выпускают такие крупнотоннажные полимеры, как полиуретаны, поликарбонаты, фенолоальдегидные смолы.

Основные свойства полимеров

Строение макромолекул в виде цепи, а также различные типы связей между ними, возникшие при образовании молекул, определяют природу специальных физико-химических характеристик полимеров. Среди них важная особенность к пленко- и волокнообразованию, способности полимеров к вытяжке, прочности в определенных направлениях, эластичности и т.п. Такое строение полимерных молекул определяет тот факт, что вязкость растворов полимеров обычно высока. ВМС могут в высокой степени набухать в жидкостях, при этом образуя несколько видов систем, по свойствам находящихся между твердым жидким агрегатным состояниями.

Количество мономерных звеньев в макромолекулах полимеров и природа звена определяют молекулярную массу всего ВМС. Любой полимер всегда состоит из множества макромолекул, каждая из которых индивидуальна и отличается от других в том числе по длине цепи. Из-за этого факта молекулярная масса полимеров – всегда примерная средняя величина. Также из описанного следует, что важной характеристикой является молекулярно-массовое распределение (ММР), которое показывает в каком диапазоне молекулярных масс молекулы представлены в конкретном образце полимера. Чем меньше молекулярно-массовое распределение, тем стабильнее свойства полимеров и тем проще описать методики их переработки.

Полимеры могут находиться в нескольких агрегатных состояниях, которые отличаются от состояний обычных низкомолекулярных веществ, например в состоянии вязкотекучей жидкости, эластичном состоянии, такие как каучук, силикон, другие эластомеры, твердых пластмасс.

Типы переработки полимеров в изделия

Несмотря на то, что в повседневной жизни термин «переработка пластмасс» используется в значении сбора и вторичного производства изделий из уже использованного пластика, на самом деле у термина несколько другой смысл. Переработкой полимеров называют получение готовых изделий из синтезированных ранее полимеров, в том числе первичных.

Переработка полимеров, как правило происходит при высоких температурах от 150 до 500 градусов Цельсия в зависимости от природы конкретного полимера. Исключение составляют некоторые термореактивные пластики, например двухкомпонентные разновидности эпоксидных смол или пенополиуретана, которые реагируют при комнатной температуре. При переработке в полимер могут вводить разные добавки (в случае, например, не применяющегося в качестве чистого вещества ПВХ, добавки практически обязательны) для лучшей перерабатываемости, придания пластмассе нужных свойств или удешевления продукта. Наиболее употребляемыми аддитивами (добавками для полимеров) являются , например, наполнители, красители, стабилизаторы, пластификаторы, модификаторы, нуклеаторы и т.д.

Классификация полимеров по областям применения

Полимеры, главным образом, термопласты подразделяют по степени роста технических и эксплуатационных характеристик. Основной характеристикой полимера при этом является температура долговременной эксплуатации. В данном случае полимеры с известными допущениями и довольно большими разночтениями у разных авторов разделяют на три категории:

  • General purpose plastics или полимеры общего (общетехнического) назначения;
  • Engineering plastics или конструкционные пластики (полимеры инженерно-технического назначения);
  • Super-engineering plastics или суперконструкционные полимеры.

Также всё более важную роль в современной индустрии полимеров играет класс эластомеров или термоэластопластов (TPE, ТПЭ). По своим свойствам и методам переработки в изделия эти материалы аналогичны термопластам, при этом по внешнему виду и эксплуатационным свойствам близки к резине и каучуку. ТПЭ в быту повсеместно путают с резиной из-за способности этих материалов к значительным обратимым деформациям.

Также полимеры и их марки классифицируют по наиболее подходящему способу переработки — литьевые, экструзионные, пресс-порошки и т.п.

Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий

Что такое Полимер

Полимер (от греч. «πολυ» — много и «μερές» — часть) — это вещество, которое состоит из большого числа молекул. Эти молекулы связаны между собой в звенья и повторяются.

Немецкий химик Герман Штаудингер совместно с группой учёных на опытах доказал, что полимеры состоят из повторяющихся звеньев молекул, которые соединены между собой ковалентными связями. Это такая химическая связь, при которой два атома имеют общую электронную пару. То есть один электрон находится в одном атоме, другой — в другом и при этом они соединены. Учёные назвали такие молекулы «макромолекулами».

Химик также доказал, что пластмасса — это полимер (о пластмассе читайте ниже). За что получил Нобелевскую премию по химии в 1953 году.

Типы полимеров

По химическому составу различают:

  • органические;
  • элементоорганические;
  • неорганические.

Органические полимеры:

  • природные;
  • искусственные (модифицированные);
  • синтетические.

Природные полимеры

Такие полимеры можно найти в природе. Человек не участвует в производстве таких полимеров. В качестве примера можно привести белки, крахмал, натуральный каучук, хлопок, шерсть и др.

Искусственные полимеры

Чтобы получить такие полимеры, человек проводит химические опыты. Например, чтобы получить модифицированный полимер, который затем будет применён при производстве красок, химики добавляют в раствор стирола в толуоле или ксилоле льняное или касторовое масло и нагревают его.

Пример такого полимера — целлюлоза.

Синтетические полимеры

Произвести такие полимеры можно с помощью химического синтеза (т. е. химическим путём). В синтезе участвуют высокомолекулярные органические продукты. Например, чтобы получить синтетический полимер лавсан нужно поликонденсировать (т. е. провести химический опыт) терефталевую кислоту и этиленгликоль.

Пример — капрон, нейлон, полиэтилен, полипропилен, полистирол, фенолформальдегидные смолы.

Элементоорганические полимеры

Содержат атомы других химических элементов, например кремния, алюминия, титана и др. Выделяют:

  • термостойкие полимеры;
  • полимеры с высокой электропроводностью и полупроводниковыми свойствами;
  • вещества с высокой твёрдостью и эластичностью;
  • биологические активные полимеры и др.

Химики получают такие полимеры при взаимодействии определённых органических веществ с солями или заменяя некоторые атомы углерода в молекулах на другие составляющие. Пример — полисилоксаны, полититаноксаны и др.

Неорганические полимеры

Полимеры, молекулы которых построены из неорганических боковых цепей (или неорганических радикалов). Неорганические полимеры можно обнаружить в составе земной коры.

Полимеры могут отличаться составом мономерных звеньев. Мономерное звено — это составная часть макромолекулы полимера. Различают:

  • гомополимеры;
  • гетерополимеры (или сополимеры).
Читать еще:  Как сменить электросчетчик в квартире

Гомополимеры

Это такие полимеры, у которых одинаковые мономерные звенья. Например: полихлорвинил, поливинилацетат и полистирол.

Гетерополимеры

Это полимеры, которые имеют различные мономерные звенья. Например: сополимер хлористого винила с винилацетатом, сополимер стирола с бутадиеном.

Полимеры могут также подразделяются также на карбоцепные (или гомоцепные) и гетероцепные полимеры.

Карбоцепные полимеры

Главные цепи макромолекул таких полимеров включают только атомы углерода. Например: каучук.

Гетероцепные полимеры

Главные цепи макромолекул таких полимеров включают не только атомы углерода, но ещё и атомы кислорода, азота и серы. Например: простые эфиры (например, полиэтиленгликоль), сложные эфиры (глифталевые смолы, полипептиды (белки) и др.).

Полимеры также могут подразделяться в зависимости от расположения мономерных цепей в пространстве. Различают:

  • стереорегулярные (полимеры с линейной структурой);
  • нестереорегулярные (или атактические).

Строение макромолекул полимеров может быть различным. Таким образом, есть полимеры:

  • линейные;
  • разветвлённые;
  • лестничные;
  • трёхмерные сшитые (сетчатые, пространственные).

Полимеры можно получить разными способами:

  • если полимер получают с помощью поликонденсации, то такой полимер называют поликонденсационным (или реактопластами);
  • если с помощью полимеризации — речь идёт о полимеризационном полимере.

В зависимости от реакции полимера на нагревание выделяют:

  • термопластичные (полиэтилен, поливинилхлорид, полистирол);
  • термореактивные полимеры (полиэфиры, эпоксидные, меламиновые и фенольные смолы).

Свойства полимеров

  • предотвращают передачу тепла (являются теплоизоляторами);
  • обладают большой эластичностью;
  • обладают высокой стойкостью в агрессивной химической среде;
  • являются диэлектриками (субстанциями, которые плохо проводят электрический ток, т. е. не пропускают его через себя).

Где используются полимеры?

Благодаря своим свойствам, полимеры используются сейчас во многих отраслях. Их используют для производства множества материалов.

Например, в строительстве — как материал для электротехнических конструкций, кабелей, проводов, труб, изоляционных эмалей и лаков. Полимеры химическим путём добавляют в состав бетона и железобетона, чтобы улучшить их качества. Полимеры используют при производстве плёнок и защитных покрытий, сеток и ограждений.

Полимеры также используют в автомобилестроении. Из них делают детали для машин: резину, решётки радиаторов, колпаки для колёс, чехлы для сидений, вентиляционные решётки, коврики; их добавляют в лаки и краски. Они используются также при производстве клея.

В нефтегазовой промышленности также используются полимеры: при производстве оборудования, например насосов, камер и т. д.

В медицине полимеры применяют для изготовления капсул для лекарств. Полимер поликарбонат используют даже при разработке искусственного сердца. А гиалуроновая кислота, которая также является полимером, используется в процессе наращивания тканей.

Молекулы и атомы

Любое вещество состоит из очень маленьких частиц, которые можно увидеть только через микроскоп. Эти частицы называются атомами. Когда атомы объединяются, получаются молекулы.

Количество молекул бесконечно, потому что различные атомы могут объединяться. Но если убрать одни атомы и заменить их другими, это будет уже другая молекула, а соответственно, другое вещество.

Пластмасса

Пластмасса — это полимер, который не существует в природе. Его производит человек.

Это сокращение слов «пластическая» и «масса». Такое название было дано, потому что, когда пластмассу производят, она может принимать любую форму и потом держать эту форму. Чтобы изготовить пластмассу, нужны кристаллические и аморфные полимеры и органические соединения, которые можно найти в нефти.

В пластмассу в процессе производства могут добавляться красители для изменения её цвета.

Органические полимеры

Органические полимеры играют значительную роль в природе. К тому же их широко используют в промышленности. Далее рассмотрен состав, свойства, применение органических полимеров.

Особенности

Рассматриваемые материалы состоят из мономеров, представленных повторяющимися фрагментами структуры из нескольких атомов. Они соединяются в трехмерные структуры либо цепи разветвленной или линейной формы вследствие поликонденсации либо полимеризации. Нередко в строении они четко проявлены.

Следует сказать, что термин «полимеры» относится в основном к органическим вариантам, хотя существуют и неорганические соединения.

Принцип наименования рассматриваемых материалов состоит в присоединении приставки поли- к названию мономера.

Свойства полимеров определяются строением и размерами макромолекул.

Помимо макромолекул, большинство полимеров включает прочие вещества, служащие для улучшения функциональных характеристик путем модификации свойств. Они представлены:

  • стабилизаторами (предотвращают реакции старения);
  • наполнителями (включения различного фазового состояния, служащие для придания специфических свойств);
  • пластификаторами (повышают морозостойкость, снижают температуру переработки и улучшают эластичность);
  • смазками (позволяют избежать прилипания металлических элементов используемого в переработке оборудования);
  • красителями (служат в декоративных целях и для создания маркировок);
  • антипиренами (уменьшают горючесть некоторых полимеров);
  • фунгицидами, антисептиками, инсектицидами (придают антисептические свойства и устойчивость к воздействию насекомых и грибковой плесени).

В природной среде рассматриваемые материалы формируются в организмах.

Кроме того, существуют близкие к полимерам по строению соединения, называемые олигомерами. Их отличия состоят в меньшем количестве звеньев и изменении исходных свойств при удалении или добавлении одного либо нескольких из них, в то время как параметры полимеров при этом сохраняются. К тому же нет однозначного мнения относительно отношений между данными соединениями. Одни считают олигомеры низкомолекулярными вариантами полимеров, другие — отдельным типом соединений, не относящимся к высокомолекулярным.

Классификация

Полимеры дифференцируют по составу звеньев на:

  • органические;
  • элементоорганические;
  • неорганические.

Первые служат основой большинства пластмасс.

Вещества второго типа включают в звеньях углеводородные (органические) и неорганические фрагменты.

По строению их дифференцируют на:

  • варианты, в которых атомы разных элементов находятся в обрамлении органических групп;
  • вещества, где углеродные атомы чередуются с прочими;
  • материалы с углеродными цепями в обрамлении элементоорганических групп.

Все представленные типы имеют основные цепи.

Наиболее часто встречающимися среди неорганических полимеров являются алюмосиликаты и силикаты. Это основные минеральные вещества коры планеты.

На основе происхождения полимеры классифицируют на:

  • природные;
  • синтетические (синтезируемые);
  • модифицированные (измененные варианты первой группы).

Последние подразделяют по способу получения на:

Классификация органических полимеров

Поликонденсацией называют процесс формирования макромолекул из содержащих более одной функциональной группы молекул мономера с выделением NH3, воды и прочих веществ.

Под полимеризацией понимают процесс формирования из мономера макромолекул с кратными связями.

Классификация по макромолекулярному строению включает:

  • разветвленные;
  • линейные;
  • трехмерные сшитые;
  • лестничные.

По реакции на термическое воздействие полимеры дифференцируют на:

Вещества первого типа представлены пространственными вариантами с жестким каркасом. При нагреве с ними происходит деструкция, некоторые загораются. Это обусловлено равной прочностью внутренних связей и связей цепей. Вследствие этого термическое воздействие ведет к разрыву как цепей, так и структуры, следовательно, происходит необратимое разрушение.

Термопластичные варианты представлены линейными полимерами, обратимо размягчаемыми при нагреве и отверждаемыми при охлаждении. Их свойства после этого сохраняются. Пластичность данных веществ обусловлена разрывом при умеренном нагреве межмолекулярных и водородных связей цепей.

Наконец, по особенностям строения органические полимеры подразделяют на несколько классов.

  1. Слабо- и неполярные термопласты. Представлены вариантами с симметричной молекулярной структурой или со слабополярными связями.
  2. Полярные термопласты. К данному типу относят вещества с несимметричной молекулярной структурой и собственными дипольными моментами. Иногда их называют низкочастотными диэлектриками. Ввиду полярности они хорошо притягивают влагу. Также большинство из них способны смачиваться. Данные вещества отличаются от предыдущего класса также меньшим электросопротивлением. При этом многие из полярных термопластов характеризуются высокими показателями эластичности, химической стойкости, механической прочности. Дополнительная обработка позволяет превратить данные соединения в гибкие резинообразные материалы.
  3. Термореактивные полимеры. Как упоминалось выше, это вещества с пространственной системой ковалентных связей. Они отличаются от термопластичных вариантов твердостью, нагревоустойчивостью и хрупкостью, большим модулем упругости и меньшим коэффициентом линейного расширения. К тому же такие полимеры не подвержены воздействию обычных растворителей. Они служат основой для многих веществ.
  4. Слоистые пластмассы. Представлены слоистыми материалами из пропитанных смолой листов бумаги, стеклоткани, древесного шпона, ткани и др. Такие полимеры характеризуются наибольшей анизотропией характеристик и прочностью. Но они малопригодны для создания предметов сложной конфигурации. Применяются в радио-, электротехнике, приборостроении.
  5. Металлопласты. Это полимеры, включающие металлические наполнители в виде волокон, порошков, тканей. Данные добавки служат для придания специфических свойств: магнитных, улучшения демпфирования, электро- и теплопроводности, поглощения и отражения радиоволн.

Свойства

Многие органические полимеры отличаются хорошими электроизоляционными параметрами в обширном интервале напряжений, частот и температур, при большой влажности. К тому же они имеют хорошие звуко- и теплоизоляционные характеристики. Также обычно органические полимеры характеризуются высокой стойкостью к химическому воздействию, не подвержены гниению и коррозии. Наконец, данные материалы обладают большой прочностью при малой плотности.

Приведенные выше примеры демонстрируют общие для органических полимеров характеристики. Помимо этого, некоторые из них отличаются специфическими особенностями: прозрачностью и малой хрупкостью (органическое стекло, пластмассы), макромолекулярным ориентированием при направленном механическом влиянии (волокна, пленки), большой эластичностью (каучук), быстрым изменением физико-механических параметров под воздействием реагента в малом количестве (каучук, кожа и т. д.), а также большой вязкостью при малой концентрации, радиопрозрачностью, антифрикционными характеристиками, диамагнетизмом, и т. д.

Применение

Благодаря названным выше параметрам, органические полимеры имеют обширную сферу применения. Так, сочетание большой прочности с небольшой плотностью позволяет получить материалы большой удельной прочности (ткани: кожа, шерсть, мех, хлопок и т. д.; пластмассы).

Читать еще:  Как узнать сечение провода по диаметру таблица

Помимо названных, из органических полимеров выпускают прочие материалы: резины, лакокрасочные материалы, клеи, электроизоляционные лаки, волокнистые и пленочные вещества, компаунды, связующие материалы (известь, цемент, глина). Их применяют для промышленных и бытовых нужд.

Крахмал также является органическим полимером

Однако органические полимеры обладают существенным практическим недостатком — старением. Под этим термином понимают изменение их характеристик и размеров в результате физико-химических преобразований, происходящих под воздействием различных факторов: истирания, нагрева, облучения и т. д. Старение происходит путем протекания определенных реакций в зависимости от вида материала и воздействующих факторов. Наиболее распространенной среди них является деструкция, подразумевающая формирование более низкомолекулярных веществ вследствие разрыва химической связи главной цепи. На основе причин деструкцию подразделяют на термическую, химическую, механическую, фотохимическую.

История

Исследование полимеров начало развиваться к 40 гг. XX в. и сформировалось в качестве самостоятельной научной области в середине столетия. Это было связано с развитием знаний о роли данных веществ в органическом мире и выяснением возможностей их применения в промышленности.

При этом цепные полимеры производили еще в начале XX столетия.

К середине века освоили выпуск электроизолирующих полимеров (поливинилхлорида и полистирола), плексигласа.

В начале второй половины столетия расширилось производство полимерных тканей за счет возврата выпускавшихся прежде материалов и появления новых вариантов. Среди них — хлопок, шерсть, шелк, лавсан. В тот же период, благодаря применению катализаторов, начали выпуск полиэтилена и полипропилена при малом давлении и кристаллизующихся стереорегулярных вариантов. Немного позже освоили массовый выпуск самых известных герметиков, пористых и адгезивных материалов, представленных полиуретанами, а также элементоорганических полимеров, отличающихся от органических аналогов большей эластичностью и термостойкостью (полисилоксаны).

В 60 — 70 гг. были созданы уникальные органические полимеры с ароматическими компонентами, характеризующиеся высокой термостойкостью и прочностью.

Производство органических полимеров интенсивно развивается и сейчас. Это обусловлено возможностью использования дешевых материалов, таких как уголь, попутные газы нефтепереработки и добычи и природные газы, в совокупности с водой и воздухом в виде исходного сырья для большинства из них.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Органические молекулы: общий принцип строения. Урок 7

В многоклеточных организмах молекул больше, чем звёзд на небе. Основные функции в них выполняют органические молекулы – химические соединения на основе углерода. Минеральные вещества – оксиды, вода, кислород, соли и др., хотя и составляют 80% массы организма, выполняют в основном роль промежуточных метаболитов и среды для химических реакций.

Одни органические молекулы представляют собой небольшие относительно низкомолекулярные вещества (витамины, аминокислоты, органические кислоты, сахара, спирты и др.), другие – длинные цепи, состоящие из тысяч и миллионов атомов. Простые молекулы могут быть исполнителями некоторых жизненных функций:

  • глюкоза – источник энергии;
  • некоторые аминокислоты выполняют гормональную функцию.

Но большая часть низкомолекулярных веществ направлена на синтез крупных молекул. Высокомолекулярные — обычно многозвеньевые (полимерные) комплексы — называются макромолекулами (греч. macros – большой). Их делят на четыре категории:

  • полисахариды (углеводы),
  • нуклеиновые кислоты,
  • белки,
  • липиды.

Они являются основными химическими строительными блоками, из которых состоит весь организм. Исследованием органических молекул занимается наука биохимия. Начало современной биохимии положила демонстрация процесса ферментации вне клетки.

Органические молекулы и особенности их углеродных цепочек

Биологические системы подчиняются всем законам химии. Каркас органических молекул состоит из атомов углерода, связанных с атомами кислорода, азота, серы, фосфора и водорода. Поскольку атом углерода может образовывать до 4 ковалентных связей, молекулы, содержащие углерод могут образовывать разные цепи:

  • прямые,
  • ветвистые,
  • кольцеобразные,
  • шарообразные,
  • в виде трубок,
  • катушек.

Органические молекулы, состоящие только из углерода и водорода, называются углеводородами. Так как углеводородные ковалентные связи хранят значительное количество энергии, углеводороды являются хорошим топливом. Это, например, газ пропан, состоящий из цепи из трёх атомов углерода, связанных с восьмью атомами водорода: C3H8.

Структурная формула пропана

Теоретически длина углеродных цепочек может быть неограниченной.

Органичесие молекулы и функциональные группы

Атомы углерода и водорода обладают очень похожими электронными свойствами. Поэтому их связи распределены равномерно без разницы во влиянии над молекулярной поверхностью. По этой причине углеводороды неполярны. Многие органические вещества содержат полярные группировки. Поскольку эти группировки существенно более реакционноспособны по сравнению с углеводородными цепями, они носят название функциональных групп.

Функциональные группы имеют определённые химические свойства, которые они сохраняют в любой ситуации. Например, гидроксильная (OH) и кислотная карбоксильная (COOH) группы полярны из-за электроотрицательности атомов кислорода. Другие общие функциональные группы: фосфатная (PO4 –), которая при отщеплении даёт большое количество энергии и основная аминная (NH2). Многие их них могут образовывать водородные связи. Доноров и акцепторов водородной связи можно опознать по деятельности их электронов.

Важные функциональные группы и радикалы

Изомерия органических молекул

Органические молекулы, имеющие одну и ту же молекулярную формулу, могут существовать в разных формах, называемых изомерами.

  1. При различие в структуре их углеродного скелета (порядке соединения атомов) они называются структурными изомерами. Например, глюкоза и фруктоза – структурные изомеры с формулой C6H12O6.

  1. Другая форма изомерии называется стериоизомерией, молекулы имеют тот же углеродный скелет, но отличаются расположением (ориентацией) прикрепления к нему групп в пространстве. Ферменты биологических систем распознают только один специфический стериоизомер.
  2. Молекула, которая имеет зеркальные версии, называется хиральной. Хиральность характеризуется наличием структур, которые нельзя совместить, поскольку они являются зеркальным отображением друг друга. Наиболее частое возникновение зеркальных свойств – наличие асимметричного атома углерода.

Хиральные соединения характеризуются влиянием на поляризованный свет. Поляризованный свет имеет одну плоскость, которую хиральные молекулы поворачивают вправо или влево. В этом случае образуется две формы изомеров с различной конфигурацией (энантиомеры – подкатегрия стериоизомеров). Чаще всего энантиомеры носят названия L и D-форм. Живые системы имеют тенденцию производить только один энантиомер из двух возможных форм; например, в большинстве организмов мы находим в основном D-сахара и L-аминокислоты. Молочная кислота существует в двух формах:

  • правовращающая L-молочная кислота концентрируется в мышцах и крови животных;
  • D-молочная кислота продуцируется микроорганизмами и может быть обнаружена например в молочных продуктах.

Полимеры и мономеры органических молекул

В большинстве случаев органические макромолекулы являются полимерами. Полимер – это длинная молекула, построенная из объединения большого количества небольших похожих субъединиц, называемых мономерами. В упрощённом виде они похожи на железнодорожные вагоны, соединённые в поезд. Характер полимера определяется мономерами, используемыми для его построения. Вот несколько примеров полимеров и их мономеров.

  • Сложные углеводы, такие как крахмал, состоят из простых кольцеобразных сахаров.
  • Мономерами нуклеиновых кислот (ДНК и РНК) являются нуклеотиды.
  • Белки построены из аминокислот.

Липиды тоже макромолекулы, но они не соответствуют соотношению мономер – полимер. Липиды сформированы через реакции дегидратации, которые связывают жирные кислоты с глицерином. Макромолекулы образуются в результате химической реакции дегидратации и разрушаются гидролизом.

Полимеры и мономеры органических молекул

Реакции присоединения (дегидратации)

Несмотря на различия между мономерами основных органических полимеров, химия их синтеза аналогична. При образовании ковалентной связи между двумя мономерами с одной стороны отрывается гидроксильная группа OH, с другой атом водорода, а вместе получается молекула воды Н2О.

Эта реакция характерна для присоединения нуклеотидов в молекуле ДНК и соединения молекул глюкозы, для получения крахмала. Она также используется для связывания жирных кислот и глицерина в молекулах липидов. Этот процесс называется также реакцией дегидрации, катализа или обезвоживания. Катализ осуществляется в клетке при участии ферментов.

Органические молекулы и реакция гидролиза

При разрыве мономеров происходит обратная реакция гидролиза с добавлением молекулы воды. В этой реакции атом водорода присоединяется к одной группе, а гидроксильная группа разрывает ковалентные связи. Когда вы едите картофель, ваш организм разрушает крахмал до глюкозы путём гидролиза.

Макромолекулы

Название макромолекулыИз чего состоитПримерФункции

Полисахариды

1. Крахмал

2. ГликогенГлюкоза1. Запасное вещество растительных клеток.

2. Клетки печени животных, клетки грибов.Хранение энергии.ЦеллюлозаГлюкозаСельдерей, сахарная свёкла и другие растения.Опорная, в клеточной стенке растений.ХитинМодифицированная глюкозаПокровы насекомых, клеточная стенка грибов.Структурная, опорная.

Нуклеиновые кислоты

ДНКНуклеотид.Хромосомы.Кодирует гены.РНКНуклеотид.Матричная РНК (мРНК).Необходим для экспрессии генов.

Протеины (белки)

ФерментыАминокислотыКлеткиКатализКоллагенАминокислотыВолосы, кожа, шёлкСтруктурная

Липиды

Триглицериды (животные жиры, масла)Глицерин и 3 жирные кислотыМасло сливочное, кукурузное масло, мылоХранение энергииФосфолипидыГлицерин, 2 жирные кислоты, фосфат и полярные R-группыФосфатидилхолинКлеточная мембранаПростагландиныПятиуглеродные кольца с двумя неполярными хвостамиРецепторыХимические медиаторыСтероидыЧетыре конденсированных углеродных кольцаЭстроген, холестеринГормональная, структурная – входит в состав мембранТерпеныДлинные углеродные цепиКаротин, каучук, хвойные растенияЧасть пигментов, структурная
Читать еще:  Малка угломер как пользоваться

Вам будет интересно

Для стабильной работы клетки нужно, чтобы в ней постоянно продуцировалось большое количество разнообразных белков. Информация…

В биологии липиды — это несколько свободная группа органических молекул (жиров и жироподобных веществ (липоидов).…

Углеводы – это органические молекулы, которые содержат углерод, водород и кислород в мольном соотношении 1:2:1.…

Белки выполняют ведущую роль в жизни организмов, преобладая в них и количественно. В теле животных…

Подумайте! Когда нужно начинать ориентироваться – до похода или тогда, когда уже заблудился? Какие способы…

Лекция 10 Органические полимеры

Органическими называют обширный класс веществ, содер­жащих в своей основе углерод. Кроме углерода в этих вещест­вах содержится обычно водород, кислород, азот, сера, фосфор. Соединения, в которых содержатся также и другие элементы, называют элементоорганическими. Органические вещества обладают молекулярной структу­рой, т. е. состоят из отдельных молекул, внутри которых атомы связаны преимущественно весьма прочными ковалентными свя­зями. Между собой моле­кулы связаны сравнительно слабыми поляризационными сила­ми.

Большинство органических веществ не содержит свободных электронов и ионов, поэтому они являются диэлектриками. Так как силы поляризационной связи между отдельными молекула­ми невелики, то органические вещества с малой молекулярной массой являются при обычной температуре газами или жидкостями. Вещества с более высокой молекулярной массой являются твердыми уже при обычной температуре.

Ввиду поляризационного характера связи, обусловливающего большие расстояния между молекулами, и малого атомного веса элементов, образующих органические соединения, они отличают­ся невысоким удельным весом. Поляризационный ха­рактер связи определяет также невысокую механическую прочность. Органические вещества сравнительно легкоплавки и за некото­рыми исключениями отличаются низкой нагревостойкостью. Подавляющее большинство из них горючи. Легкое горение органических веществ объясняется тем, что связи атомов углерода между собой и с водородом в молекулах органических веществ значительно менее прочным, чем связи углерода и водорода с кислородом. Поэтому при реакциях окисления выделяется большое коли­чество тепла, которое разлагает органические вещества перед горением, облегчая их реакцию с кислородом. Горению органи­ческих веществ благоприятствует и то, что конечные продукты их окисления — газы легко удаляются от очага горения и не препятствуют его развитию.

Легкая горючесть большинства органических материалов яв­ляется их существенным недостатком. Однако в последнее время получен ряд плохо горючих или негорючих элементоорганических соединений. Так, замена водорода органических веществ фтором практически полностью препятствует их воспламенению или го­рению. Хлор, вводимый в больших количествах в органические веще­ства, также препятствует их горению и гасит пламя, обрывая развитие цепных реакций горения. Существенно затрудняется горючесть и при образовании кремнийорганических соединений. Различия в свойствах отдельных органических веществ объяс­няются различиями в их составе и строении.

Особенно широкое распространение в качестве электроизоля­ционных материалов получили полимеры.

По происхождению полимеры могут быть природными мате­риалами (целлюлоза, натуральный каучук, янтарь и др.) или синтетическими продуктами (бакелит, полистирол, полиэтилен и др.). Они приобретают все возрастающее значение в технике и быту благодаря удачному сочетанию многих важных качеств, особенно у новых синтетических высокополимеров. Часто они отличаются высокими электроизоляционными свойствами в ши­роком диапазоне рабочих напряжений и частот (вплоть до СВЧ), при высокой влажности окружающей среды и в широком интер­вале рабочих температур. Они обладают также хорошими теп­ло- и звукоизоляционными свойствами. Как правило, не подвер­жены коррозии, гниению и во многих случаях отличаются высо­кой химической стойкостью.

Ввиду малой плотности, сочетающейся с достаточной проч­ностью, на основе полимеров можно получить материалы (пласт­массы, ткани) с высокой удельной прочностью. Многие полиме­ры отличаются ценными специальными свойствами: прозрачно­стью, радиопрозрачностью, диамагнетизмом, антифрикционны­ми свойствами, высокой эластичностью и т. д.

Большинство полимеров легко поддаются различным видам технологической обработки (литье, прессование, вытяжка, обработка резанием, распыление и т. д.) и на их основе производят весьма разнообразные по свойствам продукты: пластмассы и ре­зины, электроизоляционные лаки и лакокрасочные материалы, клеи, компаунды, волокнистые и пленочные материалы. Они находят широкое применение в промышленности и в быту.

Большинство полимеров может быть получено из дешевого сырья — природных и попутных газов нефтедобычи и переработ­ки нефти, угля в сочетании с водой и воздухом. Поэтому про­изводство полимерных материалов развивается быстрыми тем­пами.

По структуре полимеры делятся на линейные, линейно-раз­ветвленные и сетчатые: аморфные, кристаллитные и кристал­литно-ориентированные.

Основные виды полимерных молекул и структур полимерных материалов. Молекулы — линейные (а), разветвленные (б), сетчатые (в); структуры — аморф­ные (г), кристаллитные (3), кристаллитно-ориентированные (е).

Недостатком многих полимерных материалов, проявляю­щимся при эксплуатации, является изменение их размеров и свойств, называемое старением. Старение связано с физико-химическими превращениями, происходящими во многих поли­мерах в процессе работы, особенно при нагреве, механическом истирании, радиационном облучении и т. п.

Процессы превращения в зависимости от природы материала и действующих факторов могут быть весьма различными. Чаще всего это деструкция — реакция, протекающая с разрывом хими­ческой связи в главной цепи макромолекулы и образованием продуктов более низкого молекулярного веса. В зависимости от основной причины, вызвавшей ее, различают: термодеструкцию, механодеструкцию, фотохимическую и химическую, в частности окислительную, деструкции. Особенно склонны к процессам окислительной деструкции полиолефины.

На Энцеладе найдены сложные органические молекулы

NASA/JPL-Caltech/Space Science Institute

В шлейфах гейзеров Энцелада существуют крупные органические молекулы, которые могли образоваться в глубинах подповерхностного океана в результате гидротермальной активности. К такому выводу пришли ученые, проанализировавшие данные межпланетной станции «Кассини». Статья опубликована в журнале Nature, кратко о ней рассказывается в пресс-релизе на сайте Европейского Космического Агенства.

Энцелад — один из спутников Сатурна. Его диаметр оценивается в 500 километров, а орбита находится примерно 237 тысячах километров от газового гиганта. Сильный интерес к этому небесному телу возник после 2004 года, когда межпланетная станция «Кассини» обнаружила над южным полюсом спутника огромные водяные шлейфы высотой до 250 километров. Выбросы стали одним из важных указаний на существование глобального подледного океана на спутнике — аналогичного океану на Европе, спутнике Юпитера. Анализ частиц, выброшенных шлейфами Энцелада, позволил определить кислотность океана — он оказался щелочным, подобно раствору аммиака. По первым оценкам ученых, средняя толщина ледяного слоя над ним составляет около 18-22 километров, однако затем исследователи показали, что лед на полюсе может оказаться значительно тоньше — от пяти до двух километров. Помимо воды, углекислого газа, метана и аммиака ученые обнаружили в выбросах большие количества водорода, что указывает на активные гидротермальные процессы на дне океана Энцелада, а также метанол. Все это делает Энцелад одной из интереснейших целей для изучения с точки зрения астробиологии, а сам он может считаться наиболее пригодным известным нам местом для возникновения внеземной жизни, например бактерий.

В новой работе группа астрономов во главе с Фрэнком Постбергом (Frank Postberg) и Нозаиром Хаваджа (Nozair Khawaja) из Гейдельбергского университета сообщает о результатах анализа данных, собранных инструментами CDA (Cosmic Dust Analyzer) и INMS (Ion and Neutral Mass Spectrometer), установленными на аппарате «Кассини», в ходе изучения состава частиц из выбросов Энцелада и кольца E, которое образовано ледяными зернами, поставляемыми спутником. До сих пор в веществе выбросов обнаруживались только простые органические соединения с молекулярными массами ниже 50 атомных единиц массы, однако теперь ученые сообщают о наличии в ледяных зернах фрагментов крупных органических молекул с массами до 200 атомных единиц массы, состоящие из атомов углерода, водорода, кислорода и азота, которые образуют ароматические и алифатические структуры. В частности, в спектрах были обнаружены линии, соответствующие фрагментам бензола (например, C6H5 + и C6H7 + ), а также ионам, содержащим атомы азота и кислорода: CH2NH2 + , CH2OH + , CH3CHOH + . Кроме того, были найдены кластерные катионы вида H3O(H2O)n + , характерные для водяного льда. Анализ показывает, что содержание органических веществ в ледяных частицах может достигать одного процента от общей массы, а в зернах могут существовать еще более крупные макромолекулы, которые могут иметь молекулярные массы до тысячи атомных единиц массы.

Такие крупные молекулы могут образовываться только в ходе сложных химических процессов, например в результате гидротермальной активности в океане Энцелада, в условиях высоких давлений и температур. Газовые пузырьки (это может быть углекислый газ, метан или водород), поднимающиеся со дна океана, могут уносить с собой органический материал с глубины к ледяной коре, где он образует тонкую пленку. Когда пузырьки лопаются вблизи поверхности океана, то небольшие твердые частицы из органических соединений покрываются оболочкой из замерзшей соленой воды, а затем оказываются захваченными в выбрасываемые в космос шлейфы, где их регистрировал «Кассини».

Гидротермальная активность в коре Энцелада и механизм роста пузырьков, содержащих органические вещества.

Ссылка на основную публикацию
Adblock
detector