Hbr16200 характеристики на русском
Диод Шоттки
Виды диодов
Диод Шоттки относится к семейству диодов. Выглядит он почти также, как и его собраться, но есть небольшие отличия.
Простой диод выглядит на схемах вот так:
обозначение диода на схеме
Стабилитрон уже обозначается, как диод с “кепочкой”
обозначение стабилитрона на схеме
Диод Шоттки имеет две “кепочки”
обозначение диода шоттки на схеме
Чтобы проще запомнить, можно добавить голову и ножки и представить себе человечка, танцующего ламбаду)
Обратное напряжение диода
Итак, как вы помните, диод пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока до какого-то критического значения, называемым обратным напряжением диода.
Это значение можно найти в даташите
обратное напряжение диода
Для каждой марки диода оно разное
Если превысить это значение, то произойдет пробой, и диод выйдет из строя.
Падение напряжения на диоде Шоттки
Если же подать прямой ток на диод, то на диоде будет “оседать” напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.
прямое падение напряжения на диоде
Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:
Vf – прямое падение напряжение на диоде, В
Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.
Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.
падение напряжение на диоде в прямом включении
В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.
Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.
Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.
падение напряжения на диоде Шоттки при прямом включении
При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.
Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.
Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки
график зависимости прямого тока от напряжения
В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В
Диод Шоттки в ВЧ цепях
Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.
Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц
Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя
и будем снимать с них показания
Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.
Но что будет, если мы увеличим частоту до 300 кГц?
Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс
Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.
Обратный ток утечки
Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?
Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод. В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки. На английский манер это звучит как reverse leakage current.
Он очень мал, но имеет место быть.
Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении
Замеряем ток утечки
обратный ток утечки диода
Как вы видите, его значение составляет 0,1 мкА.
Давайте теперь повторим этот же самый опыт с диодом Шоттки
обратный ток утечки диода Шоттки
Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора
схема пик детектора
В этом случае эти 20 мкА будут весьма значительны.
Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!
зависимость обратного тока утечки от температуры корпуса диода Шоттки
Поэтому, вы не можете использовать Шоттки везде в схемах.
Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В
То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В
Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:
Применение диодов Шоттки
Диоды Шоттки находят достаточно широкое применение. Их можно найти везде, где требуется минимальное прямое падение напряжения, а также в цепях ВЧ. Чаще всего их можно увидеть в компьютерных блоках питания, а также в импульсных стабилизаторах напряжения.
Также эти диоды нашли применение в солнечных панелях, так как солнечные панели генерируют электрический ток только в светлое время суток. Чтобы в темное время суток не было обратного процесса потребления тока от аккумуляторов, в панели монтируют диоды Шоттки
Шоттки в солнечных панелях
В компьютерной технике чаще всего можно увидеть два диода в одном корпусе
При написании данной статьи использовался материал с этого видео
Диод Шоттки
Обозначение, применение и параметры диодов Шоттки
К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.
Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.
Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.
В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.
На принципиальных схемах диод Шоттки изображается вот так.
Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.
Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).
Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.
Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.
У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.
К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).
Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!
Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.
Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.
К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.
К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.
В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.
Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.
Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.
Применение диодов Шоттки в источниках питания.
Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.
Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.
В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.
То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.
Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.
Проверка диодов Шоттки мультиметром.
Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.
Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.
Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.
Диод Шоттки
Виды диодов
Диод Шоттки относится к семейству диодов. Выглядит он почти также, как и его собраться, но есть небольшие отличия.
Простой диод выглядит на схемах вот так:
обозначение диода на схеме
Стабилитрон уже обозначается, как диод с “кепочкой”
обозначение стабилитрона на схеме
Диод Шоттки имеет две “кепочки”
обозначение диода шоттки на схеме
Чтобы проще запомнить, можно добавить голову и ножки и представить себе человечка, танцующего ламбаду)
Обратное напряжение диода
Итак, как вы помните, диод пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока до какого-то критического значения, называемым обратным напряжением диода.
Это значение можно найти в даташите
обратное напряжение диода
Для каждой марки диода оно разное
Если превысить это значение, то произойдет пробой, и диод выйдет из строя.
Падение напряжения на диоде Шоттки
Если же подать прямой ток на диод, то на диоде будет “оседать” напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.
прямое падение напряжения на диоде
Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:
Vf – прямое падение напряжение на диоде, В
Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.
Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.
падение напряжение на диоде в прямом включении
В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.
Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.
Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.
падение напряжения на диоде Шоттки при прямом включении
При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.
Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.
Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки
график зависимости прямого тока от напряжения
В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В
Диод Шоттки в ВЧ цепях
Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.
Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц
Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя
и будем снимать с них показания
Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.
Но что будет, если мы увеличим частоту до 300 кГц?
Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс
Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.
Обратный ток утечки
Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?
Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод. В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки. На английский манер это звучит как reverse leakage current.
Он очень мал, но имеет место быть.
Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении
Замеряем ток утечки
обратный ток утечки диода
Как вы видите, его значение составляет 0,1 мкА.
Давайте теперь повторим этот же самый опыт с диодом Шоттки
обратный ток утечки диода Шоттки
Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора
схема пик детектора
В этом случае эти 20 мкА будут весьма значительны.
Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!
зависимость обратного тока утечки от температуры корпуса диода Шоттки
Поэтому, вы не можете использовать Шоттки везде в схемах.
Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В
То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В
Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:
Применение диодов Шоттки
Диоды Шоттки находят достаточно широкое применение. Их можно найти везде, где требуется минимальное прямое падение напряжения, а также в цепях ВЧ. Чаще всего их можно увидеть в компьютерных блоках питания, а также в импульсных стабилизаторах напряжения.
Также эти диоды нашли применение в солнечных панелях, так как солнечные панели генерируют электрический ток только в светлое время суток. Чтобы в темное время суток не было обратного процесса потребления тока от аккумуляторов, в панели монтируют диоды Шоттки
Шоттки в солнечных панелях
В компьютерной технике чаще всего можно увидеть два диода в одном корпусе
При написании данной статьи использовался материал с этого видео
FSP ATX-400PNR дешевый БП от именитого производителя
Ранее я бегло описывал блок питания FSP ATX-450PNR на 450W, сегодня более подробно опишу 400 Вт блок питания FSP ATX-400PNR. Они очень похожи, как внешне, так и внутренне. Поэтому не буду останавливаться на внешности сегодняшнего БП, затрону лишь этикетку и выходные провода с разъемами. Вес блока питания FSP ATX-400PNR составляет 1 кг 225 грамм.
Этикетка: на ней логотип производителя — FSP Group INC. Название модели ATX-400PNR. Выходные напряжения: 400W
+12V2 = 13.0A (YEL/BLACK)
(+3.3V & +5V = 130W Max)
(+12V1 & +12V2 = 324W Max)
Как видим, разница между 450 Вт небольшая. но она есть, по крайней мере, на этикетке.
Смотрим выходные провода и разъемы. Они идентичны с FSP ATX-450PNR, по количеству разъемов, по длине и толщине проводов. Итак, имеется, длина проводов указана вместе с разъемами):
Разъем 20+4 питания материнской платы — длина 350 мм
Дополнительный 4 контактный разъем питания CPU — 350 мм
Два разъема Molex — 400 + 160 мм
Два разъема Molex и один FDD — 290 + 160 + 160 мм
Два SATA разъема — 450 + 160 мм
Толщина проводов — 20AWG максимум.
Примечание 1: в интернете часто в описании блока питания FSP ATX-400PNR указывается наличие одного 6 контактного разъема для дополнительного питания видеокарт — в моем экземпляре такового разъема нет.
Примечание 2: провода линии +12V1 желтого цвета, провода линии +12V2 желтого с черной полосой и они идут только на 4 контактный разъем питания CPU.
+ Щелкните по рисунку, чтобы увеличить!
+ Щелкните по рисунку, чтобы увеличить!
+ Щелкните по рисунку, чтобы увеличить!
+ Щелкните по рисунку, чтобы увеличить!
+ Щелкните по рисунку, чтобы увеличить!
+ Щелкните по рисунку, чтобы увеличить!
+ Щелкните по рисунку, чтобы увеличить!
Вскрываем блок питания. Вентилятор тот же самый. Корпус сделан из стали толщиной 0,6 мм. Электроника внутри FSP ATX-400PNR — это полная копия FSP ATX-450PNR (или правильнее наоборот). Чем они отличаются, откуда FSP взяла дополнительные 50 Вт мощности на другом блоке питания?
Входные фильтры распаяны полностью. Предохранитель в стеклянном корпусе заключен в термоусадочную трубку (вообще, очень многие детали закрыты такими трубками, иногда даже двойными).
Диодный мост GBU606 — специального охлаждения не имеет, хотя отверстие на нем есть — для крепления радиатора.
Два входных электролитических конденсатора 680 мкФ на 200 вольт, производства Ost (в 450W два 820 мкФ на 200V, того же производителя).
Два алюминиевых радиатора одинаковы, что в 400, что в 450 ваттных моделях, толщина основной пластины 5 мм. На первом радиаторе силовые ключи — два транзистора с маркировкой D209L — полное наименование 2SD209L (на 450 Вт модели пара транзисторов D4515).
Второй радиатор чуть длиннее, на нем выпрямительные диодные сборки: один SRPS2045C — линия +5V поддерживает до 20А. Два включенных параллельно HBR16200 обеспечивают линию +12V, в паре суммарно они теоретически могут давать ток 32А (
384W). И еще один YM3045N — линия 3.3V до 30А. (к сожалению 450 ваттный БП я не подвергал разборке и какие там диоды Шоттки стоят не знаю, но по некоторым данным точно такие же).
Между радиаторами три трансформатора — они идентичны 450 Вт FSP, с той же маркировкой: SPI 8TG00212.
Дежурное напряжение формирует микросхема ШИМ-контроллера, которая расположена у первого радиатора — DM311.
Второй ШИМ-контроллер FSP3528 распаян на отдельной плате с маркировкой FSP3828-20D-17P REV:1.05 и еще маркировка 3BS00898 GP. Даташит этой микросхеме не найден, но есть хорошее описание здесь. В обвязке микросхемы два транзистора G945 и два AZ431. Видимо эта микросхема выполняет роль и компаратора — контроля выходных напряжений.
На обратной стороне платы код E301791 — он принадлежит SHANGHAI WANZHENG CIRCUIT BOARD CO LTD.
На плате разведено место для еще одной платы — OCP Control Board, но ее нету. значит в этом БП нет защиты от перегрузки по току.
Здесь отлично видно пустующее место конденсатора, неужели этот конденсатор и выдает дополнительно 50 Вт в другой модели?
Выходные фильтры и дроссели такие же, как и у 450W модели — один большой дроссель групповой стабилизации и несколько меньших, причем вторая линия +12V имеет всего лишь один дополнительный тороидальный дроссель, который, впрочем, точно такой же, как и в 450 ваттной модели. на выходе мы имеем электролитические конденсаторы, в 400W их на один меньше чем в 450W.
Ко второму радиатору прикручена одна маленькая плата — это контроллер вентилятора, маркировка на плате соответствующая: Fan Speed Board Ver:1 и 3BS00383XXGP. Основа платы контроллер TS358CD. На плату поступает питание 12 вольт, В плату впаян один провод термодатчика (второй идет на «общий» на плате). Сюда же припаиваются два провода, идущие на 120 мм вентилятор блока питания.
На плате сразу видно зияющее пустотой место на плате — подозрительно место, однако. Здесь по идее должен быть большой дроссель пассивного корректора фактора мощности, с креплением на стенку корпуса. Но его нет. А в каких моделях он есть, которые используют эту же самую плату — неизвестно.
+ Щелкните по рисунку, чтобы увеличить!
Под трансформатором такая маркировка на плате: PNR SERIES 3BS0133117GP REV: 1
На обратной стороне платы мы видим маркировку производителя: логотип, название FSP Group INC. Revision: 1. С этой стороны некоторое количество деталей SMD монтажа. Разводка и пайка качественные. Претензий нет.
Итак, сравнивая этот 400 ваттный БП с 450 Вт FSP ATX-450PNR можно сказать — различия минимальны. В FSP ATX-400PNR использованы входные электролиты меньшей емкости, на выходе их распаяли не все. и вот из-за этих деталей знаменитая FSP добавляет или убавляет 50 ватт на этикетке. Жульничество. И если FSP ATX-400PNR вполне хороший БП, то FSP ATX-450PNR уже не очень. По сути один и тот же блок питания, но разной мощности и соответственно разной стоимости.
В остальном — качество сборки отличное, элементы залиты мягким клеем (но это требование для сборки), термоусадочных трубок не пожалели, концы проводов не просто впаяны в плату, а через наконечники.
Напоследок несколько слов об брендах и изготовителях. Не все знают, что блоки питания, носящие имена Antec, SPI, OCZ, SilverStone, Nexus, Zalman на самом деле просто имена, их блоки питания изготавливает тайваньская компания FSP Group INC, а реальное место производства — материковый Китай. Но FSP Group не ограничивается такими именитыми брендами, она производит свои БП и более скромным компаниям, например Cooler Master. В данном случае нас интересует конкретная модель БП, рассмотренная сегодня — ATX-400PNR. Она же присутствует в линейке Cooler Master под именем Elite Power 400W модель RS-400-PSAR-J3. Но и это не все, есть и Cooler Master Elite Power 460W, модель RS-460-PSAR-J3. И если FSP приписали лишних 50 ватт, взяв их с потолка, то Cooler Master добавили 60 Вт, также с потолка. Так как и упоминание об OCP — защите от перегрузки по току, которой нет ни там, ни здесь.
Ниже фото блока питания Cooler Master Elite Power RS-460-PSAR-J3 он же FSP ATX-450PNR
(взято на одном буржуйском сайте)
Конденсаторы входных фильтров.
Этикетка Cooler Master Elite Power RS-400-PSAR-J3
Этикетка Cooler Master Elite Power RS-460-PSAR-J3
Примечание 3: Надо сказать, что сегодняшний блок питания FSP ATX-400PNR мне попал в руки в нерабочем состоянии. Хотя проработал он чуть более года. Вздутые конденсаторы — первое, что бросается в глаза. Но и убитые транзисторы на входе. и кто еще знает чего. Заниматься его ремонтом я не стал — оно того не стоит.
Михаил Дмитриенко, Алма-Ата, 2015 г.

Комментарии |
Добавить комментарий |
Пожалуйста, авторизуйтесь для добавления комментария. |
Реклама |
Авторизация |
Вы не зарегистрированы? Забыли пароль? Транзистор IRF3205В документации (datasheet) по характеристикам от МОП-транзистора IRF3205 (HEXFET) говорится – это современный, высокопроизводительное устройство от компании International Rectifier (IR) с индуцированной конструкцией затвора (N-канальный). В параметрах заявлено большое поддерживаемое им напряжение 55 В и ток стока до 110 А. Основной особенностью этого MOSFET является очень низкое сопротивление, в открытом состоянии, составляющее порядка 0,008 Ом. Из за низкого внутреннего сопротивления его часто используют для коммутации цепей в инверторах, электроинструменте, преобразователях постоянного тока и т.д. Power MOSFET-транзистор отличается от обычного затвором с большей толщиной оксида кремния, выдерживающего высокое входное и выходное напряжение. ЦоколевкаРаспиновка транзистор irf3205 выполнена в пластиковом корпусе TO-220. Такой обычно применяется при мощности рассеяния до 50 Ватт. Три металлических, гибких вывода имеют следующее назначение: 1) З-затвор (G-gate); 2) С-сток (D-drain); 3) И-исток (S-source). Именно такое назначение и порядок следования выводов, если смотреть на маркировку, у всех транзисторов с префиксом “irf” в 220 корпусе. Основные параметрыДля определения возможности использования транзистора irf 3205 в своем проекте необходимо изучить его технические характеристики. Они указываются в техническом описании (даташит) от производителя. Основные параметры изготовители представляют в двух таблицах, с наименование: абсолютные максимальные рейтинги и электрические характеристики. Абсолютные максимальные рейтингиАбсолютные максимальные рейтинги определяют предельные значения напряжений, тока, рассеиваемой мощности и рабочей температуры, которые способен выдержать полупроводниковый прибор в различных условиях эксплуатации. Надо знать, что эти величины устройство способно выдержать, но это не значит, что возможна его эксплуатация при таких значениях. Использование устройства на максимальных параметрах однозначно приведет к выходу его из строя. У irf3205 следующие максимальные параметры: Необходимо внимательней отнестись к этим значениям. Иногда производители хитрят и указывают не применимые на практике величины. Так, максимальный заявленный ток стока (ID) у irf3205, указанный в первой строке таблицы, равен 110 A. Однако можно сказать, что это значение не более чем рекламный ход изготовителя, способствующий возможным продажам. Кристалл рассматриваемого прибора действительно может выдержать такой ID, но не корпус ТО-220 в который он заключен, ограниченный током 75 А. Об этих ограничениях в применении производитель указывает только в конце таблицы. Электрические характеристикиВ таблица электрических характеристик все параметры проверены производителем с учетом условий измерений, указных в столбце с соответствующим названием. Они проверяются при температуре окружающей среды менее 25 градусов. У данного устройства они следующие при TJ = 25 °C: Тепловые параметрыРассмотрим тепловые параметры irf3205. Они представлены в виде тепловых сопротивлений корпус-кристалл (RθJC=0.75°C /Вт) и кристалл-окружающая среда (RθJA=62°C /Вт). Для большинства современных полевых МОП-транзисторов RθJA определяется в первую очередь размещением элементов на печатной плате, а не самим полевым МОП-транзистором. Поэтому RθJA имеет меньшее значение для оценки тепловых характеристик, чем RθJC. МаркировкаПервые символы маркировки указывают на изготовителя — International Rectifier (IR). Однако, так как транзистор выпускается очень давно (примерно с 2000 г.), выпуск его копии наладили и другие компании. Обновленные, безсвинцовые версии, размещенные в другом корпусе, содержат в конце маркировки символ “Z”: irf3205z (TO-220AB), irf3205zs (D2Pak), irf3205zl (TO262). Встречающиеся иногда символы «PbF» в конце , так же указывают на наличие безсвинцовой технологии изготовления. Замена и аналогиАналог irf3205 можно подобрать из: BUK7508-55 (Philips), BUZ111S (Infineon), HRF3205 (Fairchild), HUF75343P3 (Fairchild, Intersil), 2SK2985 (Toshiba), MTP75N05 (ON Semiconductor), 2SK2985 (Toshiba), STP80NE06 (STMicroelectronics), SUB75N06, IRFD120 (Vishay). Полным отечественным аналогом является КП783A. Комплементарная параКомплементарной пары у irf3205 нет. Принцип работыНазначение выводов сток и исток у мосфетов аналогичны контактам коллектора и эмиттера биполярного транзистора. Эти выводы делаются из материала n-типа, а корпус устройства и подложка из материала p-типа. Добавление диоксида кремния SiO2 на подложку образует тонкий слой диэлектрика, который отделяет клемму затвора от всего корпуса. Получается однополярное устройство, в котором проводимость осуществляется движением электронов. Область между стоком и истоком образуют свободную от носителей заряда зону. Ее насыщение электронами управляется путем подачи положительного напряжения на клемму затвора. Оно изменяет распределение заряда в полупроводнике, поэтому дырки под слоем диэлектрика, под действием электрического поля двигаются вниз, а свободные электроны притягиваются к области вверх, образуя таким образом n-переход. По этому переходу в последующем и течет электрический ток, сила которого зависит от величины приложенного на затвор напряжения. Возможная схема включения irf3205 показан на рисунке ниже. Так же, в зависимости от величины управляющего сигнала МОП-транзистор закрываться (низкая проводимость) или в открываться (высокая проводимость). Правила безопасностиОсновная причина отказа у полевых транзисторов — КЗ между контактами стока-истока. В таком случае только внутреннее сопротивление источника напряжения сдерживает максимальный ток. Из за КЗ кристалл устройства плавится. А повышенное напряжение на затворе разрушает тонкий слой диэлектрика MOSFET. Таким образом, затвор irf3205 разрушится если напряжение на нем будет превысит 25 вольт. Производители советуют выбирать транзистор с 30% запасом по ожидаемым параметрам, при этом должны быть соблюдены требования по подавлению различных скачков напряжения и тока. ПрименениеПредельно допустимое напряжение сток-исток до 55 В, позволяют использовать транзистор IRF 3205 в преобразователях напряжения работающих от 12 до 36 В, в бесперебойных источниках питания и др. Он так же популярен при работе в ключевом режиме в повышающих высокочастотных инверторах, например автомобильных. Посредством параллельного включения нескольких корпусов есть возможность построения преобразователей, рассчитанных на значительные токи. На видео можно посмотреть одну из простейших схем собранных на irf 3205 – сенсорный выключатель. ПроизводителиДалее можете скачать DataSheet транзистора IRF3205 от нескольких производителей. В России наиболее распространены: International Rectifier; Infineon Technologies. Однако, встречаются и других марок: First Silicon, Nell, Kersemi Electronic и др. ДИОДЫ, АНАЛОГИДИОДЫ, АНАЛОГИ detector |