11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула со2 что это

Диоксид углерода: формула, свойства и области применения

Диоксид углерода (углекислый газ) — часто встречающееся в природе соединение. Оно образуется при окислении различных органических веществ. Наиболее часто встречающиеся процессы образования этого соединения — гниение животных и растительных останков, горение различных видов топлива, дыхание животных и растений. Например, один человек за сутки выделяет в атмосферу около килограмма углекислого газа. Оксид и диоксид углерода могут образовываться и в неживой природе. Углекислый газ выделяется при вулканической деятельности, а также может быть добыт из минеральных водных источников. Углекислый газ находится в небольшим количестве и в атмосфере Земли.

Особенности химического строения данного соединения позволяют ему участвовать во множестве химических реакций, основой для которых является диоксид углерода.

Формула

В соединении этого вещества четырехвалентный атом углерода образовывает линейную связь с двумя молекулами кислорода. Внешний вид такой молекулы можно представить так:

Теория гибридизации объясняет строение молекулы диоксида углерода так: две существующие сигма-связи образованы между sp-орбиталями атомов углерода и двумя 2р-орбиталями кислорода; р-орбитали углерода, которые не принимают участие в гибридизации, связаны в соединении с аналогичными орбиталями кислорода. В химических реакциях углекислый газ записывается в виде: CO2.

Физические свойства

При нормальных условиях диоксид углерода представляет собой бесцветный газ, не обладающий запахом. Он тяжелее воздуха, поэтому углекислый газ и может вести себя, как жидкость. Например, его можно переливать из одной емкости в другую. Это вещество немного растворяется в воде – в одном литре воды при 20 ⁰С растворяется около 0,88 л CO2. Небольшое понижение температуры кардинально меняет ситуацию – в том же литре воды при 17⁰С может раствориться 1,7 л CO2. При сильном охлаждении это вещество осаждается в виде снежных хлопьев – образуется так называемый «сухой лед». Такое название произошло от того, что при нормальном давлении вещество, минуя жидкую фазу, сразу превращается в газ. Жидкий диоксид углерода образуется при давлении чуть выше 0,6 МПа и при комнатной температуре.

Химические свойства

При взаимодействии с сильными окислителями 4-диоксид углерода проявляет окислительные свойства. Типичная реакция этого взаимодействия:

Так, при помощи угля диоксид углерода восстанавливается до своей двухвалентной модификации — угарного газа.

При нормальных условиях углекислый газ инертен. Но некоторые активные металлы могут в нем гореть, извлекая из соединения кислород и высвобождая газообразный углерод. Типичная реакция – горение магния:

2Mg + CO2 = 2MgO + C.

В процессе реакции образуется оксид магния и свободный углерод.

В химических соединениях СО2 часто проявляет свойства типичного кислотного оксида. Например, он реагирует с основаниями и основными оксидами. Результатом реакции становятся соли угольной кислоты.

Например, реакция соединения оксида натрия с углекислым газом может быть представлена так:

Угольная кислота и раствор СО2

Диоксид углерода в воде образует раствор с небольшой степенью диссоциации. Такой раствор углекислого газа называется угольной кислотой. Она бесцветна, слабо выражена и имеет кисловатый вкус.

Запись химической реакции:

Равновесие довольно сильно сдвинуто влево – лишь около 1% начального углекислого газа превращается в угольную кислоту. Чем выше температура – тем меньше в растворе молекул угольной кислоты. При кипении соединения она исчезает полностью, и раствор распадается на диоксид углерода и воду. Структурная формула угольной кислоты представлена ниже.

Свойства угольной кислоты

Угольная кислота очень слабая. В растворах она распадается на ионы водорода Н + и соединения НСО3 — . В очень небольшом количестве образуются ионы СО3 — .

Угольная кислота – двухосновная, поэтому соли, образованные ею, могут быть средними и кислыми. Средние соли в русской химической традиции называются карбонатами, а сильные – гидрокарбонатами.

Качественная реакция

Одним из возможных способов обнаружения газообразного диоксида углерода является изменение прозрачности известкового раствора.

Этот опыт известен еще из школьного курса химии. В начале реакции образуется небольшое количество белого осадка, который впоследствии исчезает при пропускании через воду углекислого газа. Изменение прозрачности происходит потому, что в процессе взаимодействия нерастворимое соединение – карбонат кальция превращается в растворимое вещество – гидрокарбонат кальция. Реакция протекает по такому пути:

Получение диоксида углерода

Если требуется получить небольшое количество СО2, можно запустить реакцию соляной кислоты с карбонатом кальция (мрамором). Химическая запись этого взаимодействия выглядит так:

Также для этой цели используют реакции горения углеродсодержащих веществ, например ацетилена:

Для сбора и хранения полученного газообразного вещества используют аппарат Киппа.

Для нужд промышленности и сельского хозяйства масштабы получения диоксида углерода должны быть большими. Популярным методом такой масштабной реакции является обжиг известняка, в результате которого получается диоксид углерода. Формула реакции приведена ниже:

Применение диоксида углерода

Пищевая промышленность после масштабного получения «сухого льда» перешла на принципиально новый метод хранения продуктов. Он незаменим при производстве газированных напитков и минеральной воды. Содержание СО2 в напитках придает им свежесть и заметно увеличивает срок хранения. А карбидизация минеральных вод позволяет избежать затхлости и неприятного вкуса.

В кулинарии часто используют метод погашения лимонной кислоты уксусом. Выделяющийся при этом углекислый газ придает пышность и легкость кондитерским изделиям.

Данное соединение часто используется в качестве пищевой добавки, повышающей срок хранения пищевых продуктах. Согласно международным нормам классификации химических добавок содержания в продуктах, проходит под кодом Е 290,

Порошкообразный углекислый газ – одно из наиболее популярных веществ, входящих в состав пожаротушительных смесей. Это вещество встречается и в пене огнетушителей.

Транспортировать и хранить углекислый газ лучше всего в металлических баллонах. При температуре более 31⁰С давление в баллоне может достигнуть критического и жидкий СО2 перейдет в сверхкритическое состояние с резким подъемом рабочего давления до 7,35 МПа. Металлический баллон выдерживает внутреннее давление до 22 МПа, поэтому диапазон давления при температурах свыше тридцати градусов признается безопасным.

Что за соединения: CO, CO2, NOx?

Я даже почти разобралась с двумя первыми, вроде как окись углерода и двуокись углерода — но точное ли это название? В третьем скорее всего вместо х могут стоять разные циферки, но название будет общее?

Помогите, надо очень-очень срочно.

СО — оксид углерода(II), окись углерода (устаревшее название), угарный газ (бытовое название).

СО2 — оксид углерода(IV), диоксид углерода, двуокись углерода, угольный ангидрид, ангидрид угольной кислоты, углекислый газ.

NOx — общее название оксидов азота в химии атмосферы, включая выбросы двигателей внутреннего сгорания, разных топок — везде, где при высокой температуре реагируют кислород и азот воздуха. Это только два газа NO и NO2 (остальные оксиды азота не образуются). NO на воздухе окисляется до NO2. Оксиды азота и сами вредны, и способствуют образованию смога, и в атмосфере могут давать пероксиацетилнитрат (ПАН), вызывающий паралич сердца. К счастью, высокие его концентрации исключительно редки.

Если элемент имеет несколько валентностей, или он может иметь различную степень окисления, то возможно образование нескольких соединений с кислородом.

1.Углерод может иметь степень окисления в соединениях с кислородом (2+, 4+) или валентность II и IV, поэтому существует

  • окись углерода СО, или оксид углерода (II);
  • двуокись углерода СО2, или оксид углерода (IV).

2.Азот может иметь валентность или степень окисления в соединениях с кислородом: 1+, 2+, 3+, 4+, 5+ всегда с плюсом ( отдает электроны), поэтому он может иметь несколько оксидов:

  • N20 — закись азота, или оксид азота (I);
  • NO — окись азота, или оксид азота (II),
  • N2O3 — окись азота, или оксид азота (III),
  • NO2 — двуокись азота, или оксид азота (IV),
  • N2O5 — пятиокись азота, или оксид азота (V).

Порой в химии некоторые соединения вызывают серьёзные затруднения, поскольку одна и та же химическая формула может иметь несколько названий.

Ниже предлагаю ознакомиться с тремя формулами CO, CO2, NOx, а также с их кратким описанием.

СО — окись или оксид углерода, соединение СО2 — углекислый газ, NO — нитрат, NO2 — нитрит, а вот у нитридов не помну сколько молекул кислорода.

Окись углерода, химическая формула — СО, это бесцветный газ без запаха и вкуса, но очень токсичный. Он является продуктом неполного сгорания углеродсодержащих соединений.

Диоксиид углероода или двуоокись углерода СО2 — присутствует в атмосфере в количестве примерно 385 частей на миллион (по объему) или 0,039%. 50 лет назад эта пропорция была гораздо меньше и составляла 280 частей на миллион.

NOx — оксиды азота, это семейство ядовитых, химически активных газов, которые образуются при сгорании топлива. NOx — побочный продукт работы почти всех транспортных средств (автомобили, строительная техника, лодки), а также промышленных предприятий: электростанций, различных печей, турбин и т.п. NOx является сильным окислителем, вступает в контакт с летучими органическими соединениями.

Формула со2 что это

Плотность при нормальных условиях 1,98 г/л. При атмосферном давлении диоксид углерода не существует в жидком состоянии, переходя непосредственно из твёрдого состояния в газообразное. Твёрдый диоксид углерода называют сухим льдом. При повышенном давлении и обычных температурах углекислый газ переходит в жидкость, что используется для его хранения.

Углекислый газ легко пропускает ультрафиолетовые лучи и лучи видимой части спектра, которые поступают на Землю от Солнца и обогревают её. В то же время он поглощает испускаемые Землёй инфракрасные лучи и является одним из парниковых газов, вследствие чего принимает участие в процессе глобального потепления. Постоянный рост уровня содержания этого газа в атмосфере наблюдается с начала индустриальной эпохи.

Химические

По химическим свойствам диоксид углерода относится к кислотным оксидам. При растворении в воде образует угольную кислоту. Реагирует со щёлочами с образованием карбонатов и гидрокарбонатов. Вступает в реакции электрофильного замещения (например, с фенолом — реакция Кольбе) и нуклеофильного присоединения (например, с магнийорганическими соединениями).

Биологические

Диоксид углерода играет одну из главных ролей в живой природе, участвуя во многих процессах метаболизма живой клетки. Диоксид углерода получается в результате множества окислительных реакций у животных, и выделяется в атмосферу с дыханием. Углекислый газ атмосферы — основной источник углерода для растений. Однако, ошибкой будет утверждение, что животные только выделяют углекислый газ, а растения — только поглощают его. Растения поглощают углекислый газ в процессе фотосинтеза, а без освещения они тоже его выделяют.

Читать еще:  Выбираем электробритву для мужчин

Диоксид углерода не токсичен, но не поддерживает дыхание. Большая концентрация в воздухе вызывает удушье (см. Гиперкапния). Недостаток углекислого газа тоже опасен (см. Гипокапния)

Углекислый газ в организмах животных имеет и физиологическое значение, например, участвует в регуляции сосудистого тонуса (см. Артериолы).

Получение

В промышленности получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). Смесь газов промывают раствором карбоната калия, который поглощает углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании разлагается, высвобождая углекислоту. При промышленном производстве закачивается в баллоны.

В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора с соляной кислотой.

Применение

В пищевой промышленности диоксид углерода используется как консервант и обозначается на упаковке под кодом Е290, а также в качестве разрыхлителя теста.

Жидкая углекислота (жидкая пищевая углекислота) — сжиженный углекислый газ, хранящийся под высоким давлением (

65-70 Атм). Бесцветная жидкость. При выпуске жидкой углекислоты из баллона в атмосферу часть её испаряется, а другая часть образует хлопья сухого льда.

Баллоны с жидкой углекислотой широко применяются в качестве огнетушителей и для производства газированной воды и лимонада. Углекислый газ используется в качестве активной среды при сварке проволокой так как при температуре дуги углекислота разлагается на угарный газ СО и кислород который в свою очередь и входит в заимодействие с жидким металом окисляя его. Углекислота в баллончиках применяется в пневматическом оружии и в качестве источника энергии для двигателей в авиамоделировании.

Твёрдая углекислота — сухой лёд — используется в качестве хладагента в ледниках и морозильных установках.

Методы регистрации

Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях — анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO2 в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта.

Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем. Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф.

Что такое CO2

Что такое диоксид углерода

Диоксид углерода известен в основном в своем газообразном состоянии, т.е. в качестве углекислого газа с простой химической формулой CO2. В таком виде он существует в нормальных условиях – при атмосферном давлении и «обычных» температурах. Но при повышенном давлении, свыше 5 850 кПа (таково, например, давление на морской глубине около 600 м), этот газ превращается в жидкость. А при сильном охлаждении (минус 78,5°С) он кристаллизуется и становится так называемым сухим льдом, который широко используется в торговле для хранения замороженных продуктов в рефрижераторах.

Жидкая углекислота и сухой лед получаются и применяются в человеческой деятельности, но эти формы неустойчивы и легко распадаются.

А вот газообразный диоксид углерода распространен повсюду: он выделяется в процессе дыхания животных и растений и является важной составляющей частью химического состава атмосферы и океана.

Свойства углекислого газа

Углекислый газ CO2 не имеет цвета и запаха. В обычных условиях он не имеет и вкуса. Однако при вдыхании высоких концентраций диоксида углерода можно почувствовать во рту кисловатый привкус, вызванный тем, что углекислый газ растворяется на слизистых и в слюне, образуя слабый раствор угольной кислоты.

Кстати, именно способность диоксида углерода растворяться в воде используется для изготовления газированных вод. Пузырьки лимонада – тот самый углекислый газ. Первый аппарат для насыщения воды CO2 был изобретен еще в 1770 г., а уже в 1783 г. предприимчивый швейцарец Якоб Швепп начал промышленное производство газировки (торговая марка Schweppes существует до сих пор).

Углекислый газ тяжелее воздуха в 1,5 раза, поэтому имеет тенденцию «оседать» в его нижних слоях, если помещение плохо вентилируется. Известен эффект «собачьей пещеры», где CO2 выделяется прямо из земли и накапливается на высоте около полуметра. Взрослый человек, попадая в такую пещеру, на высоте своего роста не ощущает избытка углекислого газа, а вот собаки оказываются прямо в густом слое диоксида углерода и подвергаются отравлению.

CO2 не поддерживает горение, поэтому его используют в огнетушителях и системах пожаротушения. Фокус с тушением горящей свечки содержимым якобы пустого стакана (а на самом деле — углекислым газом) основан именно на этом свойстве диоксида углерода.

Углекислый газ в природе: естественные источники

Углекислый газ в природе образуется из различных источников:

  • Дыхание животных и растений.
    Каждому школьнику известно, что растения поглощают углекислый газ CO2 из воздуха и используют его в процессах фотосинтеза. Некоторые хозяйки пытаются обилием комнатных растений искупить недостатки приточной вентиляции. Однако растения не только поглощают, но и выделяют углекислый газ в отсутствие света – это часть процесса дыхания. Поэтому джунгли в плохо проветриваемой спальне – не очень хорошая идея: ночью уровень CO2 будет расти еще больше.
  • Вулканическая деятельность.
    Диоксид углерода входит в состав вулканических газов. В местностях с высокой вулканической активностью CO2 может выделяться прямо из земли – из трещин и разломов, называемых мофетами. Концентрация углекислого газа в долинах с мофетами столь высока, что многие мелкие животные, попав туда, умирают.
  • Разложение органических веществ.
    Углекислый газ образуется при горении и гниении органики. Объемные природные выбросы диоксида углерода сопутствуют лесным пожарам.

Углекислый газ «хранится» в природе в виде углеродных соединений в полезных ископаемых: угле, нефти, торфе, известняке. Гигантские запасы CO2 содержатся в растворенном виде в мировом океане.

Выброс углекислого газа из открытого водоема может привести к лимнологической катастрофе, как это случалось, например, в 1984 и 1986 гг. в озерах Манун и Ньос в Камеруне. Оба озера образовались на месте вулканических кратеров – ныне они потухли, однако в глубине вулканическая магма все еще выделяет углекислый газ, который поднимается к водам озер и растворяется в них. В результате ряда климатических и геологических процессов концентрация углекислоты в водах превысила критическое значение. В атмосферу было выброшено огромное количество углекислого газа, который наподобие лавины спустился по горным склонам. Жертвами лимнологических катастроф на камерунских озерах стали около 1 800 человек.

Искусственные источники углекислого газа

Основными антропогенными источниками диоксида углерода являются:

  • промышленные выбросы, связанные с процессами сгорания;
  • автомобильный транспорт.

Несмотря на то, что доля экологичного транспорта в мире растет, подавляющая часть населения планеты еще не скоро будет иметь возможность (или желание) перейти на новые автомобили.

Активное сведение лесов в промышленных целях также ведет к повышению концентрации углекислого газа СО2 в воздухе.

Углекислый газ в организме человека

CO2 – один из конечных продуктов метаболизма (расщепления глюкозы и жиров). Он выделяется в тканях и переносится при помощи гемоглобина к легким, через которые выдыхается. В выдыхаемом человеком воздухе около 4,5% диоксида углерода (45 000 ppm) – в 60-110 раз больше, чем во вдыхаемом.

Углекислый газ играет большую роль в регуляции кровоснабжения и дыхания. Повышение уровня CO2 в крови приводит к тому, что капилляры расширяются, пропуская большее количество крови, которое доставляет к тканям кислород и выводит углекислоту.

Дыхательная система тоже стимулируется повышением содержания углекислого газа, а не нехваткой кислорода, как может показаться. В действительности нехватка кислорода долго не ощущается организмом и вполне возможна ситуация, когда в разреженном воздухе человек потеряет сознание раньше, чем почувствует нехватку воздуха. Стимулирующее свойство CO2 используется в аппаратах искусственного дыхания: там углекислый газ подмешивается к кислороду, чтобы «запустить» дыхательную систему.

Углекислый газ и мы: чем опасен СO2

Углекислый газ необходим человеческому организму так же, как кислород. Но так же, как с кислородом, переизбыток углекислого газа вредит нашему самочувствию.

Большая концентрация CO2 в воздухе приводит к интоксикации организма и вызывает состояние гиперкапнии. При гиперкапнии человек испытывает трудности с дыханием, тошноту, головную боль и может даже потерять сознание. Если содержание углекислого газа не снижается, то далее наступает черед гипоксии – кислородного голодания. Дело в том, что и углекислый газ, и кислород перемещаются по организму на одном и том же «транспорте» – гемоглобине. В норме они «путешествуют» вместе, прикрепляясь к разным местам молекулы гемоглобина. Однако повышенная концентрация углекислого газа в крови понижает способность кислорода связываться с гемоглобином. Количество кислорода в крови уменьшается и наступает гипоксия.

Такие нездоровые для организма последствия наступают при вдыхании воздуха с содержанием CO2 больше 5 000 ppm (таким может быть воздух в шахтах, например). Справедливости ради, в обычной жизни мы практически не сталкиваемся с таким воздухом. Однако и намного меньшая концентрация диоксида углерода отражается на здоровье не лучшим образом.

Согласно выводам некоторых исследований, уже 1 000 ppm CO2 вызывает у половины испытуемых утомление и головную боль. Духоту и дискомфорт многие люди начинают ощущать еще раньше. При дальнейшем повышении концентрации углекислого газа до 1 500 – 2 500 ppm критически снижается работоспособность, мозг «ленится» проявлять инициативу, обрабатывать информацию и принимать решения.

И если уровень 5 000 ppm почти невозможен в повседневной жизни, то 1 000 и даже 2 500 ppm легко могут быть частью реальности современного человека. Наш эксперимент в школе показал, что в редко проветриваемых школьных классах уровень CO2 значительную часть времени держится на отметке выше 1 500 ppm, а иногда подскакивает выше 2 000 ppm. Есть все основания предполагать, что во многих офисах и даже квартирах ситуация похожая.

Безопасным для самочувствия человека уровнем углекислого газа физиологи считают 800 ppm.

Еще одно исследование обнаружило связь между уровнем CO2 и окислительным стрессом: чем выше уровень диоксида углерода, тем больше мы страдаем от окислительного стресса, который разрушает клетки нашего организма.

Углекислый газ: характеристики и применение

Человечество научилось использовать газообразные вещества для поддержания искусственных процессов и реакций, в результате которых удаётся получить другие химические соединения. Кроме этого, различные газы используются для получения определённых физических явлений и свойств. Углекислый газ или СО2 обладает большим количеством качеств, которые не могут не использоваться в химической промышленности и быту.

Читать еще:  Можно ли прерывать зарядку автомобильного аккумулятора

Что такое углекислый газ

Оксид углерода (IV) представляет собой тяжёлый газ. Плотность углекислоты примерно в полтора раза больше чем у атмосферного воздуха. Несмотря на то, что этот газ уже при температуре минус 78,3 градуса Цельсия превращается в снегообразную массу, получить жидкую углекислоту при нормальном давлении не представляется возможным. Так называемый сухой лёд при малейшем повышении температуры сразу переходит из твёрдой, в газообразную форму. Получить жидкую углекислоту можно только при давлении более 60 атмосфер. В таких условиях газ конденсируется даже при комнатной температуре с образованием бесцветной жидкости.

Углекислый газ не окисляется, но может поддерживать горение некоторых металлов. В среде углекислоты, при определённых условиях, могут возгораться такие активные элементы как магний, кальций и барий. Этот газ хорошо растворим в воде, а в воздухе его содержится большое количество благодаря дыханию живых организмов и растений, наличию вулканической активности на земле, а также в результате сгорания органических веществ.

В результате растворения СО2 в воде в большой концентрации образуется угольная кислота. Это вещество может вступать в реакцию с фенолом и магнийорганическими соединениями. Углекислый газ также реагирует с щелочами. В результате такой реакции образуются соли и эфиры угольной кислоты.

Свойства углекислого газа

Углекислый газ невозможно определить органами зрения или обоняния. Если концентрация СО2 невелика, то не будет ощущаться и вкуса, но при наличии большого количества этого газа в воздухе может ощущаться кисловатый привкус.

При большой концентрации углекислоты во вдыхаемом воздухе может наступить отравление. Признаками негативного воздействия СО2 на организм человека являются:

  • Шум и гул в ушах.
  • Обильный холодный пот.
  • Потеря сознания.

Учитывая тот факт, что углекислый газ тяжелее воздуха, его концентрация в нижней части помещения будет более значительной. По этой причине, первую очередь симптомы отравления могут наблюдаться у животных и детей, а также у взрослых очень маленького роста. Большая концентрация СО2 может привести к гибели людей. При потере сознания человек может оказаться на полу, где количество кислорода будет недостаточным для поддержания нормального процесса дыхания.

Углекислый газ: получение в промышленности

Существует большое количество способов промышленного получения углекислоты. Наиболее рентабельными являются варианты добычи газа, основанные на получении СО2, который образовывается на химических производствах в виде отходов.

Газообразный оксид углерода (IV) получают из промышленного дыма способом адсорбции моноэтаноламина. Частицы этого вещества подаются в трубу с отходами и вбирают в себя углекислоту. После прохождение через смесь CO2 моноэтаноламины направляются на очистку в специальные резервуары, в которых, при определённых показателях температуры и давления, происходит высвобождение углекислого газа.

Углекислый газ высокого качества получается в результате брожения сырья при изготовлении спиртных напитков. На таких производствах газообразный СО2 обрабатывают водородом, перманганатом калия и углем. В результате реакции получают жидкую форму углекислоты.

Твёрдое состояние СО2 или «сухой лёд» также получают из отходов пивоваренных заводов и ликероводочных производств. Это агрегатное состояние вещества в промышленных масштабах образуется в такой последовательности:

  • Из резервуара, где происходит брожение, газ подаётся в ёмкость для промывки.
  • Углекислота направляется в газгольдер, в котором подвергается воздействию повышенного давления.
  • В специальных холодильниках СО2 охлаждается до определённой температуры.
  • Образовавшаяся жидкость фильтруется через слой угля.
  • Углекислота снова направляется в холодильник, где производится дополнительное охлаждение вещества с последующим прессованием.

Таким образом получается высококачественный «сухой лёд», который может использоваться в пищевой промышленности, растениеводстве или в быту.

Применение углекислого газа

Благодаря наличию определённых физических и химических свойств углекислый газ может использоваться в различных сферах. В химической промышленности углекислота используется для:

  • Синтеза искусственных химических соединений.
  • Для очистки животной и растительной ткани.
  • Регулирования температуры реакций.
  • Нейтрализации щёлочи.

В металлургии CO2 применяется с целью:

  • Регулирования отвода воды в шахтах.
  • Создания лазерного луча для резки металлов.
  • Осаждения вредных газообразных веществ.

Кроме перечисленных областей углекислый газ активно используется при производстве бумаги. Оксид углерода применяется регулирования водородного показателя древесной массы, а также усиления мощности производственных машин.

Углекислый газ используется в пищевой промышленности в качестве добавки, которая оказывает консервирующее действие. При изготовлении выпечки СО2 применяется в качестве разрыхлителя. Газированные напитки также изготавливаются с применением углекислоты, а для хранения быстро портящихся продуктов используется «сухой лёд».

Незаменим углекислый газ и при выращивании овощей и фруктов в зимних теплицах. В таких помещения в воздухе недостаточное количество СО2, который необходим для «дыхания» растений, поэтому приходится искусственно насыщать атмосферу этим газом.

В медицине углекислота применяется во время проведения сложных операций на внутренних органах. Наиболее ценным качеством этого газа, является использование его для реанимационных мероприятий, ведь благодаря возможности повысить его концентрацию можно эффективно стимулировать процесс дыхания пациента.

При сварке металлов углекислота применяется в качестве инертного облака, которое служит защитой расплавленного участка от попадания в него активного кислорода. В результате такой обработки сварочный шов получается идеально ровным и не подверженным окислению.

Благодаря способности охлаждаться при испарении, СО2 используется для тушения пожаров. Заправленные этим веществом огнетушители являются эффективным средством борьбы с возгораниями на объектах, где применение порошковых или пенных средств тушения невозможно.

В быту углекислота используется в качестве напорного газа в пневматическом оружии, а также для отпугивания комаров и борьбы с грызунами.

Углекислый газ: хранение и транспортировка

Хранение СО осуществляется в баллонах чёрного цвета, на корпусе которых обязательно должна быть надпись «Углекислота».

Кроме этого, на ёмкости наносится маркировка, по которой можно получить информацию о производителе баллона, весе пустой ёмкости, а также узнать дату последнего освидетельствования. Нельзя использовать углекислотные баллоны, у которых:

  • Истёк срок освидетельствования.
  • Имеются повреждения.
  • Неисправны вентили.

Транспортировка наполненных газом баллонов должна осуществляться по следующим правилам:

  • Транспортировать ёмкости только в горизонтальном положении. Вертикальное размещение допускается только в том случае, если имеются специальные ограждения, которые препятствуют падению баллона во время перевозки.
  • Для безопасного перемещения на баллонах должны быть резиновые кольца.
  • Не допускать механических воздействий, а также чрезмерного нагрева.
  • Запрещается перевозка углекислотных баллонов в торговых аппаратах.

Кроме этого, техникой безопасности запрещается переносить баллоны вручную или перекатывать их по земле.

Хранение баллонов с углекислотой может осуществляться как в специально оборудованных помещениях, так и под открытым небом. В зданиях ёмкости следует размещать на расстоянии не менее 1 метра от отопительных приборов. При хранении на улице необходимо оградить ёмкости от воздействия прямых солнечных лучей и осадков, поэтому размещать резервуары таким способом рекомендуется под навесом. Если хранение баллонов осуществляется в неотапливаемом помещении или под открытым небом, то в зимнее время необходимо следить за тем, чтобы ёмкости не охлаждались ниже минус 40 градусов Цельсия.

СО2 — что это такое? Использование СО2 в аквариуме. Система подачи СО2

Рано или поздно перед каждым серьезным аквариумистом встает вопрос о снабжении аквариума СО2. И неспроста. Зачем он нужен аквариумным растениям?

Итак, СО2 — что это такое? Все мы знаем, что водные растения питаются в первую очередь углекислым газом, растворенным в воде. Это и есть СО2. В природе растения получают его из водоема, в котором растут. Поскольку объем воды в природных водоемах очень велик, его концентрация в них обычно постоянна. А вот про аквариумы этого сказать нельзя.

Растения быстро используют весь газ СО2 из аквариумной воды, а само по себе восстановление его концентрации не произойдет, потому что аквариум является замкнутой системой. Даже содержащиеся в нем рыбки не смогут восполнить недостаток СО2, так как они выдыхают настолько мизерную его долю, что ее никогда не хватит для растений. А в итоге аквариумные растения перестают расти.

Кроме того, что растения перестают расти из-за недостатка СО2, вода, в которой его содержание низкое, имеет повышенную жесткость (рН), что губительно для них. Даже неопытные аквариумисты наверняка замечали, что после добавления растений водопроводная вода становится более жесткой, чем была в пустом аквариуме. Это объясняется тем, что углекислый газ способствует появлению в воде угольной кислоты, а она понижает жесткость. То есть важно понимать: чем меньше СО2 в воде, тем выше ее рН.

Как помочь растениям в аквариуме?

Для решения вопроса снабжения растений СО2 есть несколько путей. Можно установить специальный баллон и соответствующую аппаратуру, а можно и пойти другим путем и попробовать сделать все необходимое своими руками. Многим такой способ нравится больше. И понятно почему — ведь намного интересней и приятней решить проблему самостоятельно, не прибегая к помощи покупного оборудования.

Единственное, на что стоит обратить внимание, это полученный результат. Не зная, как все работает в аквариуме, не стоит лезть туда и что-то менять и переделывать, чтобы потом не расстраиваться. Здесь важно не участие, а понимание того, что вы делаете.

В наше время все больше аквариумистов занимается разведением водных растений и самостоятельно решает проблемы с недостатком углекислоты в воде. В какой-то степени такие масштабы вполне могут свести на нет все результаты борьбы с вредными выбросами предприятий и автомобилей, потому что самодельные аквариумные девайсы стали необходимыми и весьма модными, а их объемы порой довольно велики. Конечно, это образное сравнение, но доля правды в этих опасениях есть.

Итак, газ СО2 — что это такое? Как же разобраться с углекислым газом в нашем аквариуме и как производить его недорого и в достаточных количествах? А ведь вполне реально самим сделать такую систему и перезаправлять ее 5-7 раз в год.

Что нужно аквариумным растениям?

Еще раз вспомним о том, что представляет собой СО2 и для чего он необходим растениям в аквариуме. СО2 для аквариума – это нужный растениям источник углерода, как пища для человека. Растения потребляют его на свету, однако в темноте им не меньше нужен кислород. Это первая проблема, с которой сталкиваются начинающие аквариумисты.

Если об этом забывать, то по ночам в аквариуме начнутся заморы. Даже если очевидной гибели флоры и не будет, то растения просто перестанут нормально расти, а это сделает бессмысленными все наши старания.

Читать еще:  Как подключить щеточный электродвигатель

Другими словами, в аквариуме постоянно должна быть диффузия (аэрация). И кислорода должно хватать и на темную половину суток. Обычно его много в начале дня, но растения, как и дышащие им рыбы, его «выбирают» довольно быстро. В такой ситуации СО2 не только не сможет помочь, но и запросто усугубит проблему.

Не менее часто встречается другое. Новички в аквариумном деле, видя, как их, казалось бы, неприхотливая валлиснерия или несложная в уходе риччия с гигрофилой совершенно отказываются расти, начинают мудрить с CO2 и экспериментировать в надежде на улучшение. А дело вовсе не в недостаточном количестве углекислоты или света. Эти простые в содержании растения прекрасно живут и при меньшем освещении и в менее насыщенной углекислотой воде. Оказывается, что просто-напросто либо растения были куплены «на грани смерти», либо грунт слишком бедный или вода новая, еще не устоявшаяся.

Что важней – свет, удобрения или СО2?

Формула, ведущая к успеху, проста: СО2 для аквариума, питательные вещества и свет. И относиться к ней нужно не фиктивно, а со всем уважением, потому, что все ее составляющие одинаково важны для жизни растений. Если «разогнать» систему в сторону одной из них, без учета двух остальных, то довольно быстро и неизбежно вы столкнетесь с проявлением закона Либиха вместо того, чтобы любоваться сильной и здоровой флорой в своем искусственном водоеме. Это так называемый эффект качелей. Причем, чем сильней разогнана система, тем большее вмешательство потребуется, а тем временем растения «устают и тоскуют».

В результате вместо бодрой зелени в аквариуме постепенно все тускнеет, а затем и вовсе часть посадок гибнет. Либо вода начнет заполняться водорослями, если наш «бульон» растения не смогут «переварить».

Факторы, влияющие на состав воды в аквариуме

Интересно, что часто, думая о СО2, кислороде, свете и питательных веществах, совершенно забывают о температуре. А она является главным регулятором аквариумного фотосинтеза. Не свет и не СО2, как может показаться. Об этом хорошо осведомлены ботаники, но «аквариумные исследователи» об этом факте забывают довольно часто.

Регуляторная роль таких волн, как инфракрасные, отражает именно эту функцию. Возможно, так происходит из-за того, что в применяемых для аквариумов технологиях изготовления источников света вспоминать о температуре невыгодно. Поэтому делают вид, что она не важна.

Без чего может обойтись любой аквариум?

Аквариум вполне может обойтись без модных и гламурных излишеств. И не только может, но и благополучно обходится. Главное, сбалансировать в системе знания и полученные путем исследований причинно-следственные связи. Если система уже в равновесии, то ее больше не нужно трогать! И не стоит пробовать починить то, что и так исправно работает.

И тем не менее, если аквариумная емкость слишком густо засажена растениями, то даже при хорошем освещении им может на хватать СО2. Особенно это актуально для слабощелочной жесткой воды. Если совмещены и виды, которые могут усваивать только не занятый углекислый газ (это все виды мхов, многие травы, которые растут только в кислой и мягкой воде, лобелии), и эвриионные и стеноионные виды, которые способны извлекать углерод из карбонатов (а это валлиснерия, элодея, эхинодорусы и др.), то концентрация СО2 будет особенно низка.

Вылечить это совсем не сложно, так как достаточно просто заселить в аквариум больше рыбок. В тех аквариумах, в которых с экологией все нормально, и при плотном заселении живностью растения не испытывают недостатка углекислоты даже при довольно мощном свете. Но в любом случае дополнительная доза СО2 будет не лишней и для такого водоема.

Мы подробно рассмотрели роль СО2. Что это такое, теперь тоже наверняка понятно. Осталось научиться его производить дома.

Бражный метод снабжения аквариума углекислотой

Для обогащения аквариума углекислотой проще всего использовать обыкновенную брагу. Однако она нестабильно бродит. Вначале получится переизбыток газа, который будет улетучиваться, создавать парниковый эффект или создаст лишнюю концентрацию СО2 в воде. Затем скорость его производства резко снизится.

Недостатки метода с применением браги

  • Необходимость слишком частых перезарядок (1,5-3 недели).
  • Сложность осуществления контроля работы системы в течение суток.

Однако это не означает, что вам недоступна подача СО2 в аквариум, так как эти недостатки легко решаются при использовании системы с баллоном. Правда, она имеет довольно высокую цену, да и помимо покупки, ее еще необходимо квалифицированно настроить.

Рассмотрим один из рецептов использования такой бражки. Ее достоинство в том, что брожение проходит очень ровно и долго (3-4 месяца). Конечно, ничего нового в науке нет, больше газа не выйдет из такого же количества вещества, но зато аквариум получает необходимый объем СО2 равномерно и медленно. Тем же, кому нужно большое количество углекислоты, этот рецепт ни в коем случае не подойдет, им однозначно требуется баллон СО2. В принципе, никакая брага не подойдет для стабильных высоких концентраций. Но она вполне удовлетворительно справляется с задачей снабжения углекислотой среднестатистического аквариума с плотным «населением», питательным грунтом и хорошей освещенностью, если в его жесткой воде соседствуют эвриионные и стеноионные виды.

Как сделать систему производства СО2 для аквариума своими руками

Используем полиэтиленовую емкость объемом 1,5 и 2 литра. В каждом конкретном случае размеры емкостей могут меняться, в зависимости от объема аквариума и количества необходимой углекислоты.

1. Насыпаем в емкости составляющие: 5-6 столовых ложек (с горкой) сахара, одну ложку соды и 2-3 ложки крахмала (тоже с горкой).

2. Наливаем 1,5-2 кружки воды, как видно на фото.

3. Отправляем все на водяную баню.

Важно: в кастрюле должно быть воды почти по уровень жидкости в бутылках, иначе состав на дне не станет густым, а сверху останется жидким.

4. Варим до консистенции густого киселя, то есть до готовности. Нужно получить очень густую смесь. Если опрокинуть бутылку, то она почти не должна стекать.

4. Остужаем полученные смеси.

Пока бутылки остывают, занимаемся изготовлением герметичных и надежных крышек с аккуратными креплениями для трубок. Ведь СО2 — что это такое? Это газ, а значит, и герметизация должны быть очень тщательной. Удобно использовать штуцеры для системы тормозов ВАЗ (примерно 12 руб./пара в магазинах автозапчастей). Нам понадобятся два таких штуцера, прокладки и шайбы на 8 (около 40 руб./пара комплектов в ОБИ), а также пара гаек на 8.

Ножом и разогретым гвоздем нужно проделать отверстие, затем загнать в него резьбой вниз штуцер (резьбой внутрь бутылки). Наверху через шайбу, а внизу по схеме: прокладка/шайба/гайка.

Использовать для герметизации различные клеи нет смысла, поскольку они не дадут требуемой защиты. А вот изготовленная по описанной схеме крышка надежно удержит трубку, при этом вся система подачи СО2 получится довольно стойкой к манипуляциям и перезарядкам.

После того как бутылки остынут, нужно добавить в наш кисель по чайной ложке дрожжей (можно сухих), перед этим тщательно перемешав их в воде. Например, в стакане или рюмке.

Подготовленные таким образом бутылки ставим на места, аккуратно подключаем и не прикасаемся к ним 3-4 месяца. Углекислота выделяется равномерно и медленно, а если использовать слабопроточные реакторы типа «колокол», то весь процесс будет легко контролироваться визуально. Когда уровень в бутылках опустится ниже середины, их пора перезаряжать.

Перезарядка осуществляется просто. Перебродившая смесь снова превращается в жидкость и выливается, на ее место закладывается новая, а вы снова получаете СО2 для аквариума. Своими руками сделанное приспособление на основе пластиковых бутылок с легкостью переживет много таких перезарядок без потери своих качеств. Газ при этом подается круглосуточно.

Виды реакторов для аквариумов

  • «Колокол» — это выполненный по принципу перевернутого стакана любой реактор. Другими видами реакторов не рекомендуется растворять брагу, поскольку процесс выделения углекислоты станет неуправляемым, а плотность СО2 — неравномерной.
  • Самый простой реактор подобного типа – это разовый шприц, прикрепленный к стенке аквариума на присоске. Довольно эстетично смотрятся и переделанные поилки для птиц, к тому же они недороги. Вариантов много: от пластикового стакана, перевернутого вверх дном, до сложных конструкций.

Эффективность любого реактора напрямую зависит от «контактного пятна» — размера площади соприкосновения воды с газом. Лаффарт советует на каждые 100 литров воды (жесткостью 10 гр.) делать площадь растворения 30 кв. см. Это не так много – всего-то 5х6 см.

Итак, существует дилемма – изготавливать большой реактор, либо маленький, в котором процесс растворения будет проходить намного лучше, чем в большом.

Такой эффект можно получить, если направить часть воды по тонкой трубке от фильтра под «флейту» для получения «фонтана» внутри реактора. Если организовать такую проточность, например, в реакторе из шприца (20 куб.), то растворение улучшится в несколько раз, а концентрация СО2 будет равномерной. А это равносильно применению реактора типа «колокол», который имеет более громоздкие размеры.

Баллонный метод обогащения СО2

Для больших аквариумов оптимальным методом обогащения воды углекислотой является метод баллонной установки. Такая система состоит из баллона и системы для контроля, то есть редуктора, клапана, фитингов, катушки с разъемами, пневмодросселя и блока питания. Несложно собрать подобную установку самостоятельно, но проще купить уже готовую в магазине, правда, обойдется она в несколько раз дороже.

Достоинства и недостатки баллонного метода

  • Стабильность выработки СО2.
  • Большое количество вырабатываемого газа.
  • Экономичность.
  • Если подключить рН-контроллер и газоанализатор СО2, то можно полностью автоматизировать процесс.
  • Высокая цена.
  • Сложность самостоятельной сборки.
  • Требуется баллон высокого давления.

В заключение

Возвращаясь к выбору генератора СО2, следует упомянуть и о другом типе – химическом. В отличие от генератора, работающего на браге, химический использует реакции кислоты с карбонатами. Как и способ с брагой, такие химические реакторы пригодны для небольших аквариумов — размером до 100 литров. Кроме всего упомянутого в этой статье, есть возможность приобрести в магазине газоанализатор СО2 и с его помощью постоянно контролировать состояние воды в своем искусственном водоеме.

Ссылка на основную публикацию
Adblock
detector