49 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое детектор напряжения

Схемотехника: Типовая схема Супервизора питания (детектор пониженного напряжения). Методика расчёта [2015.03.24]

Полезна ли эта статья? Однако, меня заворожила красота математических выкладок и пришедших идей. Поэтому захотел её опредметить…

(Примечание: картинки в статье кликабельны и ведут на увеличенное изображение.)

Вступление

Определение: Супервизор — это микросхема детектор пониженного напряжения, для защиты схемы/устройства от некачественного питания (по англ. «Undervoltage Protection», «Undervoltage Sensing Circuit», «Supply Voltage Supervisor» и т.п.)

Читая даташиты на Супервизоры, и рассматривая функциональные схемы — заметил, что реализация встроенных компараторов напряжений различается:

  1. Некоторые схемы основаны на классической конфигурации, когда эталонный Источник Опорного Напряжения (ИОН) подключается Анодом к Земле и подпирает один из входов Компаратора — это, ИМХО, более естественно и привычно.
    Обычно, в такой схеме, ИОН подпирает инверсный вход (-), тогда при снижении напряжения питания ниже Порога — выход компаратора переключается в состояние «лог.0», что значит: «ошибка» или «нет питания»… (см. схему «Рис.2»)
  2. Но как ни странно, большинство Супервизоров общего назначения реализованы на перевёрнутой конфигурации: когда ИОН подключается как-то хитро… Катодом к шине Питания… Запутанная схема — вызвала желание разобраться… (см. схему «Рис.1»)

А впоследствии, ещё возник вопрос: какой из двух подходов эффективнее? Я тогда искал схемотехническое решение для собственной реализации Супервизора, на дискретных компонентах…

Таким образом, в этой статье представлен разбор принципа работы двух схем. Методика расчёта обвязки компаратора, для обоих схем. И мои рекомендации, какая из двух схем лучше.

1. Типовая схема Супервизора «Рис.1»

По этой схеме выполнены микросхемы Супервизоров: KIA70xx Series; PST529 Series; отечественные серии К1171СП2хх, К1274хх. То есть, здесь, большинство простейших универсальных трехвыводных супервизоров питания общего назначения.

Рис.1 — Типовая схема Супервизора:

Пояснение работы схемы

На компаратор поступает два напряжения, формируемые:
(1) каскадом со стабилитроном = Vcc — dUстаб. (фиксированная аддитивная добавка)
(2) резистивным делителем = Vcc * R2/(R1+R2) (пропорциональная часть)

Изначально: (1)>(2), компаратор выдаёт «лог.0» на выходе.

При уменьшении Vcc, пропорциональная часть (2) от Vcc — уменьшается медленнее, чем целое Vcc (1)… В конце концов, потенциал (1) нагонит и сравняется с (2).

Смещение dUстаб. не влияет на скорость схождения — это лишь небольшая фора для (1), чтобы успеть нагнать напряжение (2), которое стартует при изначально более «выгодных» условиях <Упрощённо: если напряжение (1) бежит аж от Vcc до 0V, то напряжение (2) бежит от Vcc*R2/(R1+R2) до 0V. >Хотя, скорость снижения напряжения (1) быстрее. Однако, если бы не было смещения dUстаб., то (1) никогда бы не догнал (2), но они бы лишь сравнялись только в точке =0V.

Практически, процессы можно проиллюстрировать графиком «Рис.3», который облегчает настройку параметров системы и делает вещи более очевидными.
Точка равенства напряжений (1)=(2): Uпорог-dUстаб. = Uпорог*R2/(R1+R2)

Рис.3 — Точка переключения компаратора:

Примечание: Для универсальности, далее в расчётах и по тексту, будем обозначать смещение и Стабилитрона, и ИОНа одинаково: dUстаб. (номинал стабилитрона) = Uref (номинал ИОН). По сути, это одно и тоже, тождественно.

Расчёт схемы

Пусть, требуется Uпорог=3.2V

Номинал стабилитрона: Uref=3/4*Uпорог=2.4V (меньше не бывает, и в рекомендуемый диапазон попадает)
Стабилитрон BZV55-B/C2V4 имеет ток утечки Irmax=50uA.
Следовательно, в него надо загонять ток на порядок больше >500uA.
Следовательно, номинал токоограничивающего резистора должен быть менее R3 3uA. Тогда, сумма номиналов резисторов должна быть, как минимум, меньше: (R1+R2) 30uA. Тогда, сумма номиналов резисторов должна быть меньше: (R1+R2) 4V) — то можно использовать и Стабилитрон, как дешёвую альтернативу.

Зачем нужен выходной транзистор Q1?

Этот вопрос лучше задать иначе: Почему на функциональной схеме Супервизора, в datasheet, после ОУ изображён дополнительный выходной каскад на биполярном транзисторе?
Ответ: Нет там никакого ключа! Это условное графическое изображение (УГО) того факта, что выход Супервизора — с открытым коллектором (англ. «Open collector» or «Open-Drain» Output).

Есть одно важное Функциональное Требование: от Супервизора требуется ВЫХОД С ОТКРЫТЫМ КОЛЛЕКТОРОМ. Ведь, одно из самых традиционных применений Супервизоров — это давить шину RESET к Земле (при некачественном питании)…

Как правило, и для большинства выпускаемых Компараторов это так: выход Компаратора напряжений представляет собой «выход с открытым коллектором»!
Почему именно выход с открытым коллектором? Это лёгкий и доступный, и наверное самый простой, способ обеспечить необходимую универсальность применения Компараторов: совместимость выходов логическим уровням TTL и CMOS. А также, для специфических схем, где требуется открытый коллектор: например, соединять выходы нескольких компараторов по «логике ИЛИ»… или вот, подобно Супервизору, для непосредственного подключения к «Шине с открытым коллектором»…

Но не смотря на то, что Компаратор — это разновидность ОУ… Однако, выходные каскады Операционных усилителей (ОУ) — построены по Двухтактной схеме (как в комплементарной логике), и не являются «выходами с открытым коллектором»!
Поэтому, Операционные усилители (такие как LM324, LM358 и LM741), обычно, не используются в радиоэлектронных схемах в качестве компаратора напряжений, из-за их биполярных выходов (и низкой скорости). Тем не менее, эти операционные усилители могут быть использованы в качестве компаратора напряжений, если к выходу ОУ подключить диод или транзистор — для того чтобы воссоздать выход с открытым коллектором… (Приятный бонус: использование внешнего транзистора позволит обеспечить бОльший ток нагрузки, чем у обычного компаратора.)

Поскольку условное графическое изображение (УГО) компараторов и ОУ практически не различаются, то на схемах в datasheet, чтобы подчеркнуть факт «открытого коллектора» — специально дорисовывают дополнительный выходной каскад на биполярном транзисторе (с открытым коллектором)…

Какой номинал «эталонного смещения» выбрать?

Комментарии ( 20 )

  • kalobyte-ya
  • 10 апреля 2015, 21:56
  • Vitalik
  • 11 апреля 2015, 13:42
  • EW1UA
  • 11 апреля 2015, 02:40

По поводу этой схемы меня мучают несколько глобальных (в целом теоретических) вопросов, на которые у меня нет ответов:

1/ Чем будет отличаться работа схемы и какова суть проистекающих в ней процессов, если VD1 и R1 поменять местами? Т.е. если этот вариант мы обозначим R1-VD1, R2-VD2. В отличии от исходной комбинации VD1-R1, R2-VD2

2/ И что можно сказать про другие комбинации этой схемы, коих в общем числе 4?

  • well-man2000
  • 11 апреля 2015, 04:08

если VD1 и R1 поменять местами?

  • EW1UA
  • 11 апреля 2015, 04:25
  • well-man2000
  • 11 апреля 2015, 04:44
  • EW1UA
  • 11 апреля 2015, 05:06

А, понял! Я, как и Celeron, тоже не был киндервудом в школе, но гугель и педевикия помогут старине веллману! Ход моих мыслей (а-ля Celeron) таков:


Електроны бегут от минуса к плюсу, и I1 = I2 + I3, т.е. БОЛЬШИЙ ток I1 течет через ДЕШЕВЫЙ и дубовый резистор, а уже МЕНЬШИЙ ток I2 течет через столь ЦЕННЫЙ прибор, как стабилитрон. :DDDD

  • well-man2000
  • 11 апреля 2015, 04:55
  • EW1UA
  • 11 апреля 2015, 05:12

педевикия помогут старине веллману!

  • e_mc2
  • 14 апреля 2015, 21:33

Если бы Вы такое написали кому другому из здешних обитателей — я очень хорошо представляю их МГНОВЕННУЮ РЕФЛЕКСИЮ: кто-то осклабясь и ехидненько улыбаясь ответил бы, что эти законы ему давно уже знакомы и якобы случайно ляпнул бы еще чего умного/формульного или, опять же якобы случайно, упомянул бы, что получил 5-ку по ТОЭ, вспомнил свой «крутой» институт/кафедру и тд и тп; другой же начал бы выдавать аналогичную инфу, но в более злобной манере, и обиженно-оскорбленно преследовал бы Вас еще несколько постов подряд, объясняя таким образом(как и первый) — какой он УМНЫЙ и образованный :DDD

Нет худшего оскорбления для типичного здешнего киндервуда, чем упрек или даже тонкий намек на его НЕУМНОСТЬ, НЕОБРАЗОВАННОСТЬ или просто НЕЗНАНИЕ чего-либо в профильной специальности. Такое предсказуемое поведение — уже даже не смешит, как некогда, а уже навевает тоскливую скуку на человека уже давно достигшего полного похуизма нирваны во всем этом суетном и неблагодарном деле — стать умнее/начитаннее/осведомленнее других киндервудов, получить на лоб клеймо «IQ >> medium_level» и всем с гордостью демонстрировать его при каждом удобном случае.

Вот один из эпичнейших пруфов сказанного мной — даже сейчас, прочитав это еще раз, меня просто распирает от дикого хохота :DDD Чел с просто википедическим_багажом_знаний, и который_все_знает_обо_всем загадал задачку. Тут же(точнее через 50 мин) подорвался отнюдь не вьюноша, но «телемастер» по установке и настройке колонок и видеопроекторов, с коротким сообщением: Решил. WTF. Т.е. даже такой якобы СЕРЬЕЗНЫЙ старикан купился на наживку и сообщил всей local_universe: Я, Я — УМНЫЙ (САМЫЙ/САМЫЙ_ПЕРВЫЙ УМНЫЙ). Далее нарисовался уже супер-мега-пупер-киндервуд, который лениво слонялся в этой теме, как обычно высокомерно и свысока поглядывая на остальных и поковыривая зубочисткой в зубах. Якобы снисходительно отписался: Занятная задачка. Немного подумал(ну кто такой по сравнению со мной этот старикан-телемастер?) и дописал: Решил (Э-з-з. ) минуты за ДВЕ. Wow. Я чуть не упал с табуретки от хохота, когда читал это в первый раз :DDD e_mc2, а Вам разве не смешно все это? Для полной широты комедии и ее персонажей(сами своими же пальцами написали не хуже Гоголя, даже не догадываясь об этом) советую почитать Вам всю эту тему.

  • well-man2000
  • 15 апреля 2015, 23:18

Долгими зимними вечерами в своей деревне я писал докторскую диссертацию и открыл целую науку, но радость моя после завершения сего труда была преждевременной — к сожалению эту науку(термодинамику) уже открыли ушлые киндервуды и мажоры, которым, в отличии от меня, в детстве и юности дали хорошее образование.

Детектор напряжения

В некоторых случаях для измерения напряжения нет смысла использовать аналоговый или цифровой вольтметр, а есть смысл сделать предлагаемый мной бюджетный прибор на микроконтроллере, который будет индицировать и издавать звуковой сигнал при заранее настроенных пороговых значениях напряжения.

Реализованный на микроконтроллере PIC16F628A алгоритм позволяет измерить напряжение с разрешением в 4 бита. Для этого в микроконтроллере задействован компаратор (однобитный АЦП) и ИОН, где ИОН пошагово изменяет напряжение, а компаратор сравнивает потенциалы. Принципиальная схема прибора приведена на рисунке 1. Используя делитель напряжения собранный на резисторах R2 и R3 можно задавать измеряемый диапазон напряжения. В таблице 1 указаны значения детектируемого напряжения и соответствующая им индикация в шестнадцатеричной системе на семисегментном индикаторе HL1. Если читателя не устраивает реализуемый диапазон, то можно путём подборки резисторов R2 и R3 сделать свой делитель напряжения. DA1 — любой операционный усилитель усиливающий ток.

Питание прибора осуществляется от постоянного или переменного источника напряжения 9 -15 В при токе 0.5 A, которое подключается к разъёму X1. Далее напряжение выпрямляется диодным мостом VD1 и фильтруется конденсаторами C1 – C4. Для стабилизированного питания микроконтроллера был выбран линейный стабилизатор напряжения DA2. При питании устройства постоянным напряжением 12 В максимальный потребляемый ток составляет 70 мА.

Напряжения, В

Индикация

При включении прибора происходит чтение EEPROM памяти микроконтроллера в которой записаны настройки прибора. По умолчанию заданы: детектор включен, выбран «внутренний диапазон», первое пороговое значение 0, второе пороговое значение 0. (Т.е. после включения не подав детектируемое напряжение, прибор будет сигнализировать о нуле!) После чего прибор согласно настройкам детектирует напряжение. Если нажать кнопку менее 1 с, то прибор будет инвертировать работу детектора, включая или выключая его. При нажатии и удержании кнопки более 1 с, прибор переходит в режим настройки первого порогового напряжения детектора. Длительность удержания кнопки помогает различать звуковой сигнал. Так при нажатии и удержании кнопки менее 1 с происходит генерация звука, затем при удержании кнопки более 1 с генерация звука прекращается. Выбор первого порогового значения детектора происходит последовательным нажатием на кнопку менее 1 с. От 0 до F (т.е. от 0 до 15), после F происходит обнуление. Выбранное значение отображается на семисегментном индикаторе. Для перехода к настройке второго порогового значения напряжения детектора нужно нажать и удерживать кнопку более 1 с. Выбор второго порогового значения начинается с установленного первого порогового значения и инкрементируется последовательным нажатием на кнопку менее 1 с. После F прибор начинает выбор с установленного первого порогового значения. Выбираемые значения отображается на семисегментном индикаторе. Для выбора диапазона детектора нужно нажать и удерживать кнопку более 1 с. Нажатием на кнопку менее 1 с происходит выбор диапазона детектора. Если у HL1 горят сегменты «E», «D», «C», то выбран «внутренний диапазон», т.е. прибор в исходном состоянии будет сигнализировать о детектировании напряжении в диапазоне от первого до второго порогового напряжения. Если у HL1 горят сегменты «F», «A», «B», то выбран «внешний диапазон», т.е. прибор в исходном состоянии будет сигнализировать о детектировании напряжении в диапазоне от минимального (0) до первого порогового напряжения и от второго порогового до максимального (F) напряжения (где первое и второе пороговое значение не входят во «внешний диапазон»). После нажатия и удержания кнопки более 1 с прибор сохранит настройки в EEPROM памяти микроконтроллера и перейдёт в исходный режим.

Читать еще:  Как использовать электродвигатель от стиральной машины

Алгоритм управления прибором кнопкой изображен на рисунке 2.

В исходном состоянии прибор измеряет напряжение, поданное на вилку XP1. Если детектор включен и напряжение на вилке XP1 входит в детектируемый диапазон, то прибор сигнализирует об этом, т.е. происходит периодическое мерцание семисегментного индикатора HL1 (отображая напряжение) и излучатель звука P1 издаёт периодический сигнал. Если напряжение на вилки XP1 не входит в настроенный диапазон или детектор выключен, то прибор не сигнализирует о вхождении измеренного напряжения в детектируемый диапазон, а HL1 индицирует измеренное напряжение. При выходе за пределы измеряемого диапазона (смотреть таблицу *), то у HL1 горит сегмент «G», а P1 издаёт звуковой сигнал.

Микроконтроллер DD1 имеет функциональные выводы VREF, AN1, RA0, RB0 – RB2, CCP1, RB4 – RB7 которые служат для ввода и вывода информации. Тактовой кнопкой SB1 добиваются настройки прибора, которая подключена к выводу RA0 через токоограничивающий резистор R12. В отжатом положении тактовой кнопки SB1 резистор R13 имитирует низкий логический уровень. Cемисегментный индикатор HL1 подключается к выводам RB0 – RB2, RB4 – RB7 через токоограничивающие резисторы R4 – R10. К выводу CCP1 (аппаратная реализация ШИМ, частота 2.4 кГц, скважность 2) через токоограничивающий резистор R11 подключен излучатель звука P1. Микроконтроллер DD1 не имеет функции принудительного сброса, вывод для сброса подключен через резистор R1 к положительному потенциалу питания. Для генерации тактовой частоты в микроконтроллере используется встроенный RC-генератор тактовой частоты на кристалле.

В данном устройстве можно заменить следующие детали. Микроконтроллер DD1 из серии PIC16F628A-I/P-xxx с рабочей тактовой частотой 20 МГц в корпусе DIP18. Стабилизатор напряжения DA2 отечественный КР142ЕН5А (5 В, 1.5 А). Диодный мост VD1 можно применить любой из серии 2Wxx. Разъём питания X1 аналогичный указанному на схеме с центральным контактом d=2.1 мм. Угловая вилка XP1 с шагом контактов 2.54 мм. Неполярные конденсаторы С1 и С4 номиналом 0.01 – 0.47 µF x 50 V. Излучатель звука P1 с рабочей частотой 2.4 кГц. Cемисегментный индикатор HL1 с общим катодом.
Думаю, что данный прибор может быть применён в разных областях. Например, для автомобилистов, которым нужно знать напряжение на аккумуляторе.

Ниже вы можете скачать прошивку и исходник на ассемблере

Как найти скрытые провода в стене, используя сканер проводки: обзор моделей детекторов

В домашнем хозяйстве такая задача не редкость при ремонте. Не зная точного места, где идут провода, приходится ломать много и восстанавливать долго. Но можно использовать искатель скрытой проводки. Он поможет точно определить место скрытой проводки.

Что полезно знать заранее

Цена сканеров проводки находится в пределах от 700 до десятков тысяч рублей. Чтобы сделать выбор, вам не надо полагаться на советы продавца, не имея собственного мнения. Любой продавец хочет продать товар подороже или избавиться от залежалого. Если вы не слишком сильно разбираетесь в теме, прочтите эту статью! Не пожалеете.

Приборы используют различные физические принципы и примерно делятся так:

  • Электростатический.
  • Электромагнитный.
  • Металлодетектор.

Пассивные детекторы (приемники излучения)

Такие детекторы проводки реагируют на электрическое или магнитное поле провода. Они нечувствительны к обесточенной проводке. Также бесполезно искать с их помощью проводку с постоянным током.

Электростатический сканер

Реагирует на электрическое поле, создаваемое проводником с током. Прибор обнаруживает переменное электрическое поле, создаваемое рядом с проводником электросети. Такой сканер не сможет обнаружить проводку, если она не под напряжением.

Напряжение можно подавать от маломощного генератора импульсов. Сканером обследуют место предполагаемой трассы и его нужно подвести к месту, где сигнал имеет наибольшую силу. Индикаторы сигнала бывают разными. Это может быть светодиод, зуммер (“пищалка”), ЖКИ-дисплей. Такой прибор определяет проводку на расстоянии до 10 … 15 см, что вполне достаточно для стен. Это самый дешевый вид сканеров.

Электромагнитный сканер

Реагирует на переменное магнитное поле от провода с током. Как и предыдущий детектор, он обнаруживает проводку только в том случае, если она находится под напряжением. Чувствительность этого сканера примерно такая же, как у электростатического. Цена обеих видов приборов примерно одинаковая. Такие искатели скрытой проводки хорошо подойдут для домашних ремонтов непрофессионалам.

Разница между детекторами

В электростатическом искателе чувствительным элементом является небольшой штырь, в котором переменным электрическим полем наводится напряжение. В электромагнитном приборе – используется катушка. Переменное магнитное поле наводит в ней ток. Поскольку сигналы получается слишком слабыми для непосредственного отображения, то они дополнительно усиливаются электронным усилителем.

В принципе, оба детектора действуют, как радиоприемник. Поскольку частота переменного тока слишком мала, то чувствительности такого детектора хватает только на очень маленькое расстояние от провода. Но вполне достаточного для целей поиска проводов в стенах небольшой толщины, не экранированных металлической сеткой, листами и другими проводящими препятствиями.

Если проводка идет в металлических трубах, то обнаружить ее таким детекторами будет невозможно. Штукатурка или дерево никаких преград электрическому или магнитном полю практически не представляют.

Активные детекторы

Данные приборы более совершенны, чем уже рассмотренные. Стоят они подороже, но обладают дополнительными возможностями и помогают находить не только проводку.

Металлодетектор

В сущности, это тот прибор, который раньше называли миноискателем. Теперь он называется металлоискатель. Он находит металл. Неважно, находится этот металл под напряжением или нет. Приборы такого вида довольно чувствительны, кроме того, их чувствительность можно регулировать и добиваться тонкой настройки под условия поиска.

Принцип работы металлодетектора состоит в следующем. В катушку с проводом, которая является датчиком, подается переменный ток повышенной частоты от одного генератора. В приборе есть еще один генератор, работающий на той же самой частоте, причем эта частота жестко стабилизируется. Сигналы от катушки и образцового генератора поступают на смеситель, который выделяет разность этих частот.

Когда к катушке датчика приближается металлический предмет, частота первого генератора слегка меняются. Но из-за того, что это частота довольно приличная, даже небольшое ее изменение создает на смесителе сигнал вполне обнаруживаемой частоты. Дальше он усиливается и выдается на индикатор.

Искатели для неметаллов

Они оказываются чувствительными не только к металлу, но и к диэлектрикам, например, к дереву. Такой датчик представляет собой “открытый” конденсатор, чувствительный к изменениям электрического поля рядом с его обкладками. Он тоже питается переменным током и так же использует метод биений (разности близких частот), как и прибор с катушкой.

Комбинированные приборы содержат катушку и датчик электрического поля одновременно. Все эти приборы, в духе времени, снабжены микропроцессорами, которые обсчитывают электрические сигналы от датчиков и показывают пользователю результат в понятной человеку интерпретации. Например, расстояние до металлических предметов, присутствие напряжения и даже его примерную величину. Пожалуй, такой прибор можно чаще всего встретить на рынке как прибор среднего уровня по цене в несколько тысяч рублей.

И наконец, несколько слов об ультразвуковом и радарном датчике. Это тоже активные приборы. Первый из них излучает ультразвук, в точности как эхолот или сонар для подводных лодок. Отраженный ультразвук, после усиления, анализируется микропроцессором и пользователь может узнать довольно много о том, что и как расположено внутри исследуемого материала.

Металлические предметы, дерево, пластик, различные неоднородности, все это будет точно обнаружено. Для точного и глубокого поиска металлов и проводов используют самый настоящий радиолокатор, только ручной. Это наиболее дорогой искатель, он используется строителями-профессионалами в трудных и ответственных случаях.

Советы по использованию детекторов скрытой проводки

Здесь несколько полезных советов:

  • Самый первый совет – перед использованием детектора убедитесь, что батарейка в нем свежая. Если это не так, то точность обнаружения будет крайне низкой и вы можете угодить сверлом прямо в кабель под напряжением или водопроводную трубу.
  • Если вы пользуетесь генератором для подачи питания в проверяемый кабель, обязательно убедитесь, что он отключен от электросети и на нем нет напряжения! Несоблюдение этого совета может привести к поражению током.
  • При обнаружении отклика от прибора (неважно, звуковой или световой индикатор он использует) не торопитесь с выводами. Особенно, если это прибор активного типа, металлодетектор. Обстоятельно исследуйте трассу, зарисуйте ее расположение на бумаге или отметьте карандашом на стене. Только после анализа всех данных решайте, где может быть труба или арматура, а где проводка. Также учитывайте входы коммуникаций в известном месте, чтобы отслеживать их трассу дальше.
  • Имейте в виду, что детектор проводки простого типа (пассивный) в режиме питания от электросети покажет расположение только фазного провода. Нейтраль или защитную землю он не обнаружит, если они идут отдельно от фазных проводов.

Обзор нескольких моделей детекторов проводки и металла

Начнем обзор с недорогих моделей, которые часто оказываются наиболее практичными для непрофессионалов, желающих сделать ремонт в своем доме.

Детектор напряжения UNI-T UT-12A

Этот недорогой и компактный прибор пользуется хорошей репутацией. Цена до 500-600 руб. Несмотря на свою простоту надежно обнаруживает скрытую проводку под напряжением. Устройство снабжено звуковой сигнализацией, которую можно отключить и ориентироваться по светодиодному индикатору, который будет мигать при обнаружении напряжения. Если индикатор не мигает, а горит постоянно, то это не признак неисправности прибора, а признак того, что пора менять батарейку.

Детектор автоматически отключается через полчаса при бездействии. Питается от двух батареек типоразмера AAA. Вес 50 г.

Трассоискатель Mastech MS6812

Тестер для кабелей и детектор проводки MS6812 может находить скрытую проводку под напряжением. В комплект входит генератор, который расширяет возможности сканера. Если вы читали статью с начала, то знаете, что он дает возможность искать проводку даже без напряжения. А кроме того, можно найти место скрытого замыкания. Или вызвонить отдельный проводник в пучке, что иногда бывает нужно и является не самой простой задачей.

Этот сканер и тон-генератор в комплекте питается от батареек 9 В. Индикация звуковая и световая. Прибор имеет хорошие отзывы. По цене около 800 руб покупатель приобретает весьма полезное и многофункциональное устройство.

Искатель проводки BSIDE FWT11

Прибор FWT11 аналогичен предыдущему, но имеет больше полезных функций. Он уже в большей степени адресован покупателям-профессионалам. Хотя цена его остается сравнительно небольшой, этот сканер можно купить за 1700 … 2500 рублей. Устройство может обнаруживать не только силовую проводку но и тестировать слаботочные системы: находить обрывы, замыкания, взаимные наводки проводников.

При помощи разъемов RJ45 и RJ11 можно подключать кабели ЛВС, Ethernet и производить их проверку. Есть также возможность подключаться к кабелям при помощи “крокодилов”. Для шумных условий работы предусмотрено гнездо для головных телефонов (наушников).

Характеристики:

Длина кабеля:300 м
Класс защиты:IP40
Функции:трассировка, топология, генератор сигнала
Размеры:235 х 145 х 51 мм
Вес:500 г

Сканер IdeenWelt (Германия)

Этот прибор можно отнести к комбинированным. В него входит катушка и емкостный датчик. Поэтому он может обнаруживать дерево и пластики. При поиске проводки такие функции вовсе не помешают, так как они иногда позволяют получить ответ на дополнительные вопросы. К несомненным достоинствам устройства можно отнести простоту обращения с ним.

В устройстве предусмотрена звуковая и световая индикация обнаруженных предметов.

Некоторые характеристики приводятся в таблице:

Обнаружение проводки:до 30 мм
Обнаружение металла:до 50 мм
Обнаружение дерева:до 38 мм

Цена прибора около 1800 … 2000 руб. – это совсем недорого для такого набора функций. Хотя, есть подозрение, что прибор все-таки, изготовлен в Китае. Европейские цены будут повыше.

Детектор металла Einhell TC-MD 50

Устройство комбинированного типа, использует магнитное и электрическое поле для обнаружения предметов. С обратной стороны имеется прокладка для того, чтобы не царапать стены при поиске, также можно использовать мягкое покрытие. Детектор имеет визуальную и звуковую сигнализацию. Если прибор не используется, то он автоматически отключается через 1 минуту.

Характеристики:

Обнаружение металла (черный):50 мм
Обнаружение дерева:19 мм
Обнаружение металла (медь):38 мм
Обнаружение проводки:50 мм
Вес сканера:150 г
Вес в упаковке:340 г

Сканер проводки BOSCH PMD 7

Многофункциональный сканер для обнаружения металлов, дерева и скрытой проводки. Все металлы обнаруживаются до глубины 70 мм, а проводка под напряжением – до 50 мм. Детектор имеет трехцветную индикацию (желтый, зеленый, красный цвета).

Читать еще:  Стиральная машина двигается при отжиме что делать

Калибровка в приборе автоматическая, обнаружение происходит в реальном времени. Питание производится от элемента 1.5 В. Вес всего 150 г. Производитель (Германия) дает гарантию на полтора года.

Цена приблизительно 4500 … 5500 руб.

Детектор проводки Bosch GMS 120 M

Это прибор профессионального класса. Он позволяет определять проводку (под напряжением) на глубине до 50 мм. Дерево обнаруживается на глубину до 38 мм, черные металлы до 120 мм и медь – до 80 мм.

В приборе предусмотрена автоматическая калибровка. Имеется функция обнаружения центра. Кроме того, кольцо в середине предназначено для указания точного положения цели и нанесения отметки маркером на стену. Переключатель позволяет выбрать один из трех режимов работы: дерево, металл, проводка.

Дисплей сканера имеет подсветку. Для питания устройства используется батарейка 9 В. Имеется функция автоматического отключения при неиспользовании свыше 5 минут.

Цена приблизительно 7000 … 8000 рублей.

Сканер кабелей и металлических материалов BOSCH D-Tect 150 Professional

В конце обзора профессиональный прибор радарного типа. Он обнаруживает проводку на глубине 60 мм. Металлы (в том числе и стальная арматура) обнаруживаются на глубине 150 мм, трубы – 80 мм. Прибор весит около 700 г.

Главное достоинство прибора – высокая точность до 1 мм – обнаружения металла. Дисплей очень информативный. Калибровка этому радару не нужна, и он готов к измерениям сразу после включения.

Единственный недостаток прибора – цена. Он стоит примерно 37000 … 40000 рублей.

Заключение

Перед покупкой детектора проводки необходимо решить, для чего он будет использоваться. Если задача заключается только в поиске электропроводки, особенно в условиях наличия арматуры, труб, а также металлического крепежа, то лучше брать простой детектор, реагирующий на поле напряжения сети или генератора. Металлодетектор в таких условиях может вводить в заблуждение. К тому же, он и стоит дороже.

Если целью является преимущественно поиск труб и другого металла, то в таком случае требуется именно металлодетектор. Взвесьте все за и против и сделайте правильную покупку.

Видео-обзор: кабель трекера Mastech MS6812, инструкция и отзыв

Как выбрать детектор проводки и металлов

Детекторы проводки и металлов – назначение и виды.

Необходимость «заглянуть в стену» хоть раз, да возникала у каждого мастера. Причин может быть много:

— убедиться, что в месте сверления отверстия или прорезания штроба нет проводки или водопровода (большинство сверлят «наобум», надеясь на низкую вероятность попадания случайным отверстием в единственный провод на стене; и многие из них потом вспоминают о теории вероятности плохими словами);

Скрытая проводка в стене может проходить в довольно неожиданных местах

— найти в стене провод, чтобы подключиться к нему с минимальным повреждением стены;

— найти в стене несущую конструкцию, чтобы прикрепить к ней силовой элемент.

А уж если нужно просверлить отверстие в теплом полу (неважно каком), тот тут без детектора лучше даже не начинать, поскольку риск повреждения проводки или трубы высок, а цена ошибки весьма значительна.

Не все детекторы способны справиться со всеми перечисленными задачами. К примеру, дешевого электростатического детектора хватит, чтобы убедиться в отсутствии провода под штукатуркой в месте предполагаемого сверления, но с поиском арматурины в толще бетона или провода теплого пола под кафелем и слоем стяжки он уже не справится. Поэтому выбор детектора следует начинать с определением задач, для которых он будет применяться.

Сейчас потребителю предлагается несколько видов детекторов, наиболее популярны из них электростатические, электромагнитные и металлодетекторные – они используются для поиска металлов и токопроводящих материалов. Реже встречаются ультразвуковые и емкостные детекторы – они могут определять наличие любых посторонних материалов внутри стены. Попадаются также и комбинированные: сочетающие в себе несколько способов обнаружения материалов.

Электростатические детекторы металлов имеют самую простую конструкцию, основанную на свойстве датчика реагировать на наличие электрического поля, возникающего вокруг любого проводника под напряжением. Они просты в применении, дешевы и способны определить наличие проводника на расстоянии до 5-7 см до него. Часто электростатический детектор может работать как емкостной и способен определять наличие не только проводов в стене, но и пустот или деталей из дерева.

Но у этого прибора есть и существенные минусы:

— надежность определения наличия провода может меняться под действием внешних факторов (наличия других источников электрического поля поблизости).

— если электрическое поле провода под напряжением экранировано другим проводником (например, металлическим коробом или просто влажной штукатуркой), то определить наличие провода будет невозможно;

— проводник с протекающим по нему током создает вокруг себя электрическое поле только за счет поверхностного заряда, и при слабом токе напряженности поля может не хватить для выявления проводника с помощью такого прибора.

Для определения отсутствия провода в месте сверления этот прибор можно применять, для поиска же провода работа с электростатическим детектором имеет свои тонкости:

Если идет поиск фазового провода до выключателя, его следует выключить. Статический заряд в фазовом проводе разорванной выключателем цепи даст хорошую напряженность поля, легко обнаруживаемую таким детектором.

Если идет поиск фазового провода от выключателя до потребителя (например, лампочки), потребитель следует отключить (вывинтить лампочку), а выключатель включить.

Если идет поиск нулевого провода или отключить потребитель невозможно, выключатель должен быть включен, и по цепи должен протекать ток. Если потребляемый ток мал (например, потребитель — светодиодная лампа) цепь желательно нагрузить дополнительно достаточно мощным потребителем.

Электромагнитные детекторы металлов основаны на определении прибором электромагнитного поля, создающегося вокруг любого проводника с протекающим по нему током. Такие детекторы тоже недороги и способны довольно точно (

1см) определять наличие провода в стене, многие модели способны также сразу определить положение (направление) проходящего в стене провода. Минусом является то, что такой детектор способен обнаружить только тот провод, по которому протекает ток. Провод под напряжением, идущий к «пустой» розетке такой прибор не обнаружит.

Поэтому вне зависимости от того, для чего используется такой прибор – для поиска провода или для определения безопасного для сверления места – следует подключить потребители ко всем возможным точкам потребления в месте работы (т.е, включить все лампочки, подключить и включить какие-либо приборы во все розетки). Только тогда электромагнитный детектор будет способен «заметить» любой провод.

Металлодетекторные приборы используют, как ясно из названия, принцип металлодетекции – детектор создает собственное электромагнитное поле, создающее наведенное электромагнитное поле вокруг проводников поблизости от излучателя детектора. А уже это поле улавливается электромагнитным приемником детектора.

Эти приборы имеют наиболее сложную конструкцию, поэтому они значительно дороже двух вышеприведенных типов.

Зато такой детектор способен найти в стене не только проводник под напряжением, но и вообще любой металл – от одиночного самореза до арматурного прутка. Часто утверждается, что металлодетекторный прибор не может определить, находится провод под напряжением или нет – это не совсем так. Любой металлодетектор способен отличить электромагнитное поле, наведенное собственным излучением, от созданного протекающим током – но только протекающим. Для выявления проводки таким прибором следует воспользоваться теми же рекомендациями, что для электромагнитного детектора. Впрочем, многие металлодетекторные приборы комбинируют с электростатическим детектором – это обеспечивает максимальную универсальность прибора.

Емкостные детекторы по принципу действия близки к электростатическим – они также реагируют на изменение величины заряда на подносимом к стене датчике. Но на этот раз заряд на датчике создается собственным источником тока, а изменение его происходит из-за изменения диэлектрической проницаемости близлежащего материала. При простоте и дешевизне такие детекторы не обладают высокой точностью и подвержены влиянию помех от проходящих в стене проводов.

Ультразвуковые детекторы определяют структуру материала стены, излучая ультразвуковые волны и анализируя полученное «эхо». Такие приборы значительно дороже емкостных, но и их точность намного выше.

Электростатические, электромагнитные и металлодетекторные приборы часто комбинируются с емкостными – это значительно повышает их универсальность при небольшом увеличении цены.

Но что делать, если производитель не указал тип прибора в документации (что бывает довольно часто)? Можно определить тип по характеристикам прибора и, в первую очередь, по его цене. Модели в ценовом диапазоне до 1000 рублей, скорее всего, электростатические или комбинированные электростатические-емкостные. Модели с ценой от 1000 рублей могут иметь в составе электромагнитный детектор для более точного определения проводки или ультразвуковой – для определения дерева. Металлодетекторные приборы с отдельным или встроенным излучателем начинаются по ценам от 10000 рублей. Другие характеристики также могут подсказать, к какому типу принадлежит прибор.

Характеристики детекторов

Локализуемые материалы. Характеристика понятна из названия – это материалы, которые прибор может обнаружить за стеной. Однако, к этой характеристике следует подходить с осторожностью: не все типы детекторов одинаково хороши в распознавании материалов. Наличие в списке материалов дерева или пластика при цене прибора ниже 1000 рублей указывает на комбинированный электростатический-емкостной детектор и рассчитывать на точное определение положения деревянных элементов с его помощью не стоит. Достоверно различить разные металлы такой прибор тоже не сможет, как и найти проводку под мокрой штукатуркой.

Глубина обнаружения материала. Глубина, на которой указанный материал еще может быть обнаружен. Глубина эта очень сильно зависит от материала стен и может сильно меняться в худшую сторону. Поэтому, приобретая прибор, лучше брать его с запасом глубины обнаружения.

Автокалибровка. Автокалибровка подразумевает автоматическую подстройку сенсора прибора под конкретные условия работы. На итог работы ультразвуковых и емкостных детекторов большое влияние оказывают посторонние помехи и материал стены. Поэтому при первом запуске таких приборов, к примеру, в режиме поиска дерева, производится автокалибровка: прибор некоторое время считывает показания датчика, определяет диапазон сигнала и относит сигнал выше определенного уровня – к стене, ниже – к дереву. Разумеется, это сработает только в том случае, если дерево в стене во время калибровки действительно попадалось.

Система поиска места обрыва. Для ремонта электропроводки (например, теплого пола) очень полезно иметь прибор с такой функцией – он сможет проследить за поврежденным проводом и точно определить место его обрыва, минимизировав строительные работы и многократно сократив возможные расходы на ремонт. Из всех типов детекторов это могут делать только электростатические и металлодетекторные. Первые в разы дешевле, но, к сожалению, обладают меньшей точностью, меньшей глубиной обнаружения проводки и могут находить обрыв только фазового провода под напряжением.

Детекторы просадок напряжения питания для МК

BOD (Brown-Out Detector) — это детектор, который следит за колебаниями напряжения питания МК и генерирует сигнал сброса при его значительных «просадках». Такие узлы часто называют «супервизорами» или «мониторами питания».

Детекторы BOD разделяются на внутренние и внешние. Считается, что внутренний аппаратный узел BOD, имеющийся в современных моделях МК Atmel AVR, Microchip PIC, обеспечивает достаточную надёжность и ему можно доверять автоматическую перезагрузку устройства при аварии. Однако иногда требуется выставить нестандартный порог срабатывания детектора или подстраховаться «на всякий пожарный случай». В таких ситуациях применяют отдельный узел внешнего BOD, собранный на транзисторах или микросхемах.

Промышленностью выпускаются следующие типы микросхем BOD:

  • трёхвыводные супервизоры с однотактным выходным каскадом. Они содержат на выходе п—р—^-транзистор, включённый по схеме с общим эмиттером, и внутренний «pull-up» резистор;
  • трёхвыводные супервизоры с выходным каскадом, имеющим открытый коллектор или открытый сток без нагрузочного «pull-up» резистора;
  • трёхвыводные супервизоры с двухтактным выходным каскадом. Они формируют уровни «rail-to-rail», близкие к напряжению Усс и GND;
  • четырёхвыводные супервизоры, совмещённые с элементами начального сброса POR (Power-On-Reset) или со сторожевым таймером Watch-Dog;
  • многовыводные мониторы питания, содержащие одновременно узлы BOD, POR и Watch-Dog.

На Рис. 4.3, а. д показаны схемы подключения узлов BOD, собранных на «россыпи» элементов, а на Рис. 4.4, а. п — на микросхемах супервизоров.

Рис. 4.3. Схемы подключения узлов BOD, выполненных на «россыпи» элементов:

а) резисторы Rl, R2 должны иметь точность ±1%. Сопротивление резистора R3 должно быть примерно в три раза меньше, чем у внутреннего «pull-up» резистора МК. Резистор R4 можно заменить перемычкой, если не используется адаптер программирования ISP;

б) напряжение BOD определяется порогом срабатывания стабилитрона VD1 и напряжением перехода «база — эмиттер» транзистора VT1. В рабочем состоянии транзистор открыт и на вход сброса МК поступает ВЫСОКИЙ уровень. При снижении напряжения питания ниже порога, транзистор закрывается (R1, R2) и МК сбрасывается НИЗКИМ уровнем от резистора R3

Читать еще:  Методы определения шероховатости поверхности

в) питание МК пилообразным напряжением для проверки устойчивости срабатывания узла BOD. Сигнал «пилы», снимаемый с обкладок конденсатора С1, имеет частоту 2. 3 Гц (зависит от типа «мигающего» светодиода HL1) ц может использоваться в качестве синхронизирующего для других трактов устройства;

г) аналогично Рис. 4.3, б, но с более крутыми фронтами импульса сброса за счёт триггера Шмитта, собранного на транзисторах VTI, VT2. Пороговое напряжение BOD задаётся стабилитроном VD1 и напряжением «база — эмиттер» транзистора VT1

д) светодиод HL1 индицирует напряжение +5 В и одновременно осуществляет функцию внешнего BOD при «просадках» питания. Порог срабатывания подбирается резистором R1, чтобы при напряжении питания +3. +3.5 В на входе RES гарантированно был НИЗКИЙ уровень (зависит от конкретного МК).

Рис. 4.4. Схемы подключения микросхем супервизоров питания к МК (начало):

д) супервизор DA1 (фирма Microchip) формирует на выходе «Out» логические уровни НИЗКОГО уровня и ВЫСОКОГО уровня. Порог срабатывания BOD зависит от модификации микросхемы DAI (цифры «ххх» в названии) и выбирается из ряда напряжений: 2.7; 3.0; 3.15; 4.5; 4.6; 4.75; 4.85 В. Перемычка SI временно удаляется при программировании, иначе канал ISP не сможет сформировать сигнал RES. Замена DAI — МСР112;

е) супервизор DAI (фирма Microchip) имеет выход с открытым стоком. Это позволяет физически не отключать адаптер ISP при программировании. Порог срабатывания BOD зависит от модификации микросхемы супервизора (цифры «ххх» в названии) и выбирается из ряда напряжений: 1.95; 2.4; 2.7; 2.9; 3.0; 3.15; 4.5; 4.75 В. Замена DAI- МС33064;

ж) супервизор DA1 (фирма Maxim/Dallas) имеет на выходе транзисторный ключ и «pull-up» резистор сопротивлением 3.5. 7.5 кОм. Дополнительно в супервизор встроена схема мониторинга состояния кнопки SB1. При её нажатии автоматически вырабатывает импульс сброса длительностью 150 мс, который шунтирует «дребезг» контактов кнопки. Наличие схемы мониторинга не позволяет подключать напрямую к МК адаптер ISP, поскольку его сигналы будут восприниматься как нажатие кнопки. Порог срабатывания BOD зависит от модификации микросхемы DA1 (цифры «хх» в названии) и выбирается из ряда напряжений: 4.0; 4.25; 4.5 В;

з) супервизор DA1 (фирма Microchip) имеет двухтактный выходной каскад. Резистор R1 необходим для развязки от цепей адаптера ISP. Конденсатор C1 устраняет ложные срабатывания супервизора DA1 в условиях сильных помех. Подобный конденсатор можно устанавливать и в других аналогичных схемах;

и) резисторы R1 R2, обеспечивают гистерезис порога срабатывания супервизора DA1 (фирма ON Semiconductor), имеющего выход с открытым стоком;

к) нажатие кнопки SB1 вызывает формирование на выходе супервизора DA 1 одиночного импульса сброса длительностью 140. 280 мс, свободного от «дребезга» контактов;

Рис. 4.4. Схемы подключения микросхем супервизоров питания к МК (окончание):

л) длительность импульса сброса супервизора DA 1 (фирма National Semiconductor) регулируется конденсатором С1. Достоинство — низкое собственное потребление тока DA1

м) развязка микросхемы супервизора DA1 и адаптера программирования ISP через логический элемент DDL Для ТТЛ-логики следовало бы ещё поставить резистор как на Рис. 3.16, з;

н) подключение детектора BOD DA 1 (фирма Maxim/Dallas) к уже существующей цепи сброса VDI, Rl, CL Резистор R1 в данной схеме может отсутствовать, т.к. внутри микросхемы DA1 уже находится свой «pull-up» резистор сопротивлением 3.75. 6.25 кОм;

о) DA1 — это регулируемый стабилизатор напряжения (фирма National Semiconductor), используемый для питания МК. Стабилизатор имеет встроенный детектор «просадок» выходного напряжения. При снижении напряжения больше, чем на 5%, вырабатывается сигнал НИЗКОГО уровня на выводе 5. Этот сигнал поступает в МК, который и принимает решение о целесообразности программного «самосброса». Схема рассчитана на МК с широким диапазоном питания;

п) многофункциональный монитор питания выполнен на микросхеме DA1 фирмы TelCom Semiconductor. Для его нормальной работы требуется, чтобы МК (или другой цифровой узел) периодически генерировал контрольные импульсы на линии «Watch-Dog».

Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.

Разновидности указателей напряжения

При работе в электроустановках важно контролировать состояние цепей и токоведущих частей. Первичная проверка (в целях обеспечения безопасности) выявляет наличие или отсутствие напряжения в зоне работ. Для этого используют указатель наличия напряжения, подключаемый оператором вручную, то есть он не является элементом конструкции электроустановки.

В каких случаях обязательно надо пользоваться указателем напряжения:

  • перед началом ремонтных работ в электроустановке;
  • перед наложением переносного заземления;
  • для определения участка, на котором произошла авария;
  • для выявления токопроводящих частей электроустановки, на которых не должно быть опасного потенциала.

Важно: От правильного применения индикатора напряжения зависит безопасность, и даже жизнь электрика!

Мы рассмотрим принцип действия указателей высокого напряжения, виды и способы их применения.

Деление по типам

  1. По напряжению указатели напряжения делятся до 1000 В и свыше 1000 В. Для бытового применения обычно используются низковольтные приборы до 1 кВ. Тем не менее, это все указатели высокого напряжения. Согласно нормативам ПУЭ (Правил устройства электроустановок), безопасным для человека является напряжение переменного тока до 50 В, и постоянного тока до 120 В. При неблагоприятных условиях (влажность, токопроводящая пыль) высоким считается напряжение переменного тока до 25 В, и постоянного тока до 60 В. Указатели напряжения выше 1000 В используются профессиональными электриками, для бытовых электросетей 220 В и 380 В их применение нецелесообразно. Например, УВНУ-10 с выносной штангой.
  2. По исполнению указатели напряжения до 1000 В делятся на однополюсные и двухполюсные. Первый вариант — это скорее индикаторная отвертка, чем инструмент. Второй вариант предпочтительней, если речь идет о точности и гарантированном определении опасного потенциала.
  3. По типу электротока: для переменного или постоянного. В бытовом применении указатель высокого напряжения постоянного тока не применяется. К тому же, большинство современных индикаторов универсальные.
  4. По типу индикатора приборы могут быть неоновыми, светодиодными или цифровыми. В последнем случае можно с высокой точностью определить значение напряжения. Но это скорее сервисная, чем необходимая функция.
  5. Способ применения: контактный или бесконтактный. Первый вариант предназначен для работы с открытыми токоведущими частями, и гарантирует точное определение наличия потенциала. Бесконтактный метод используется для поиска скрытых проводок, и не может гарантировать безопасность.

Общие принципы действия УНН (указателей низкого напряжения)

Для срабатывания индикатора (вне зависимости от его типа), необходимо обеспечить протекание электротока по цепи прибора. При этом на первом месте стоит обеспечение безопасности оператора. Двухполюсная конструкция исключает прикосновение открытых участков тела к токоведущим частям. А вот однополюсный указатель напряжения, работает только при касании вспомогательного электрода пальцем. Соответственно, конструкция обязательно должна включать в себя систему ограничения тока до безопасного значения. После снижения порога тока, прибор превращается в указатель низкого напряжения, вне зависимости от реального потенциала на токоведущих частях.

  • Двухполюсные указатели представляют собой типичную электрическую цепь, где ток протекает от фазы к нулевому (или заземленному) проводнику электроустановки. Благодаря этому можно гарантировано определить наличие потенциала, и даже измерить напряжение на контрольном участке.
  • Однополюсные указатели для срабатывания индикатора используют индукционные токи, протекающие через тело оператора. Для срабатывания достаточно наличия фазы на проверяемом элементе электроустановки или проводнике. Точность невысокая, поэтому определить напряжение таким способом невозможно.

Требования к оборудованию

Для обеспечения безопасности и надежности срабатывания, подобные устройства обязательно сертифицируются. Требования государственного стандарта занимают не меньше страницы текста, выделим основные из них:

  • изоляционная оболочка прибора должна выдерживать напряжение, превышающее диапазон измерения;
  • однополюсный указатель изготавливается только в одном корпусе, при этом исключается необходимость работы двумя руками;
  • на одном конце указателя имеется щуп для контакта с проверяемым участком цепи, на противоположном — контактная площадка для касания пальцем оператора;
  • двухполюсный указатель напряжения должен состоять их двух корпусов с одинаковыми показателями защищенности, соединенными гибким изолированным кабелем длиной 1 метр;
  • открытый участок щупа не должен превышать длину, установленную для выбранного диапазона измерения;
  • световой и (или) звуковой индикатор наличия потенциала должен быть отчетливо различим в любых условиях измерения.

Стандарты безопасности единые для всей территории Российской Федерации. Никакой субъект, будь то Москва или любой областной центр не вправе смягчать требования к производству или применению подобного оборудования.

Рассмотрим работу основных типов указателей напряжения.

Двухполюсная конструкция

Указатель высокого напряжения с двумя измерительными контактами работает по принципу фиксации прохождения тока на участке цепи. Внутренняя схема сравнивает разность потенциалов между точкой измерения и заземлением (или нулевым контактом). Если порог срабатывания превышает установленное значение, срабатывает индикация.

Исполнение может быть различным, в зависимости от назначения: только индикация, поиск пробоя, измерение точного значения напряжения, установление диапазона (220 В, 380 В). В качестве примера, на иллюстрации электрическая схема прибора, определяющего наличие фазы на измеряемом участке и приблизительного порога напряжения.

Сложных интегральных элементов нет, поэтому такой указатель надежен и безотказен в любых условиях эксплуатации. Если измерения проводятся на улице, при ярком освещении — параллельно световому индикатору (в данном случае это LED элемент), добавляется звуковой.

При добавлении в измерительную цепь модуля измерения напряжения, мы получаем однорежимный мультиметр, предназначенный для безопасного измерения высокого напряжения.

Это интересно: Обычный мультиметр также можно использовать, как указатель высокого напряжения. Однако для приведения в готовность потребуется время (установка соответствующего режима измерения). Да и с безопасностью не все так гладко: специализированные приборы проходят жесткую сертификацию.

Пользоваться таким устройством несложно: пассивный контакт на соединительном проводе прикладывается к земляной (нулевой) шине электроустановки. Затем измерительным контактом надо коснуться точки замера потенциала.

  • высокая точность измерения, при необходимости можно расширить функционал;
  • возможность работать с высоким напряжением без дополнительных средств защиты оператора;
  • обеспечена защита оператора: нет непосредственного контакта с открытыми участками тела.
  • более высокая стоимость;
  • измеритель достаточно громоздкий.

Однополюсная конструкция

Электрический ток протекает между фазой (точка измерения) и заземляющим контуром, который обеспечивает тело человека (оператора). Внутри прибора простая электрическая цепь, состоящая из неоновой лампы и резистора. Сопротивление подбирается таким образом, чтобы электрический ток не превышал безопасное для человека значение.

В то же время, сила тока должна обеспечивать надежное срабатывание индикатора. Для неоновой лампы достаточно нескольких сотых миллиампер, так что схема работает устойчиво.

Как пользоваться таким указателем? Прибор удерживается в одной руке, палец кладется на тыльный контакт. После чего измерительный щуп прикладывается к токоведущей части электроустановки. При наличии потенциала контрольная лампа загорается.

Интересно, что различные «продвинутые» схемы с транзистором и светодиодом не так надежны, как простая неоновая лампа и графитовый резистор. Высокий процент ложных срабатываний не позволяет использовать такой прибор в профессиональных целях.

  • дешевизна прибора;
  • оперативность использования;
  • возможность работать одной рукой.
  • низкая точность и надежность;
  • нет расширенного функционала;
  • потенциально опасен: есть контакт открытых участков тела с измерительной частью прибора.

Бесконтактный указатель напряжения

При наличии прямого доступа к открытым контактам электропроводки или электроустановки, производить измерение напряжения легко. А как определить потенциал (хотя бы его наличие) в скрытой проводке?

Для этого существуют бесконтактные индикаторы (не путать с токоизмерительными клещами).

Такие указатели работают не напрямую с электрическим током, а с электромагнитным полем, возникающим вокруг проводника. Фактически, это трансформатор без сердечника, или катушка индуктивности.

Простейшие указатели реагируют на переменное магнитное поле. При его обнаружении срабатывает схема, собранная на триггерах, и на индикатор (LED элемент) подается напряжение. Для усиления эффекта обнаружения, параллельно включается звуковой сигнал.

Разумеется, ни о каких измерениях напряжения не может быть и речи. Мало того, наличие электромагнитного поля зависит от многих факторов, в том числе наличие рядом с проводником заземляющей шины. Иными словами, качественно (по требованиям ПУЭ) проложенный электрический кабель, бесконтактным пробником обнаружен не будет.

Важно: Использовать такой указатель в качестве детектора скрытой проводки нельзя, расстояние обнаружения составляет 1-2 см по открытому воздуху.

  • удобство применения: не надо искать открытые контакты;
  • безопасность: нет контакта с токоведущими частями.
  • в реальности прибор не гарантирует даже 50 % результата.

Исходя из принципа работы такого указателя, чем сильнее ток в кабеле — тем выше вероятность обнаружения потенциала. Соответственно, если электроприбор не включен, его питающий кабель не будет активно формировать вокруг себя электромагнитное поле. При этом потенциал на фазном проводе присутствует, и опасность поражения электротоком остается.

Важно: Если вы планируете использование такого указателя, все равно перед началом работ следует проверить отсутствие напряжения на открытых участках обычным контактным прибором.

Перед использованием любого измерительного прибора убедитесь в наличии сертификата соответствия безопасности.

Видео по теме

Ссылка на основную публикацию
Adblock
detector