6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет балки на жесткость онлайн

Расчет балки на жесткость онлайн

Расчет простой балки на прочность и жесткость

Инструкция к программе

Программа написана на языке PHP и предназначена для использования студентами строительных вузов при выполнении расчетно-графической работы (РГР) «Расчет балки на прочность и жесткость». Все расчеты выполняются Online, что освобождает студентов от необходимости посещать компьютерный класс.

При использовании программы студентами машиностроительных вузов следует заменить следующие термины: нормативное сопротивление Rn – на предельное напряжение, расчетное сопротивление R – на допускаемое напряжение, коэффициент надежности по материалу γ – на коэффициент запаса прочности, коэффициент надежности по нагрузке γf положить равным единице. Кроме того, сечение стальной балки подбирается по предельному состоянию всего сечения, а в машиностроении основным методом расчета на прочность является метод допускаемых напряжений.

Подробно методика расчета, реализованная в данной программе, изложена в следующих методических указаниях:
«Расчет балки на прочность» Скачать
«Расчет балки на жесткость» Скачать

Порядок выполнения расчетов

Расчет начинаем с пункта «Исходные данные». Начало отсчета располагается на левом конце балки, ось x направлена вправо, ось y – вниз. Сосредоточенные силы, включая опорные реакции, и распределенные нагрузки считаются положительными, если направлены вниз. Момент пары сил считается положительным, если направлен по часовой стрелке. Вводить следует значения нормативных нагрузок. Так как программа используется в учебных целях, то число нагрузок любого типа должно быть не более 10!

Пункты главного меню, выделенные серым цветом, неактивны на соответствующем этапе вычислений. При нажатии на них откравается окно с указанием того, что нужно сделать для продолжения расчетов.

Исходные данные расположены в следующем порядке:
— тип балки: 0 – шарнирно опертая, 1 – с заделкой;
— длина балки;
— для шарнирно опертой балки координаты опор;
— для балки с заделкой указание на то, левый или правый конец защемлен;
— коэффициент надежности по нагрузке (используется при расчете балки на прочность);
— число сосредоточенных сил;
— число пар сил;
— число распределенных нагрузок;
— для каждой сосредоточенной силы – величина и координата точки приложения;
— для каждой пары сил – величина и координата сечения, в котором она действует;
— для каждой распределенной нагрузки – интенсивность нагрузки в начале и в конце участка, на котором она действует, и координаты концов этого участка.
В качестве разделителя целой и дробной частей вещественного числа используется точка.

Распределенные нагрузки предполагаются распределенными по линейному закону. Если какой-либо тип нагрузок отсутствует, то следует положить число этих нагрузок равным нулю. После ввода исходных данных нажимаем на ссылку «Продолжить расчет» и переходим на вкладку «Эпюры Q(x) и M(x)» для нахождения опорных реакций, построения эпюр поперечной силы и изгибающего момента и нахождения Mmax.

Далее можно выполнить подбор сечения двутавровой балки (нормативное сопротивление и коэффициент надежности по материалу вводятся по дополнительному запросу) и выполнить расчет прочности в заданном сечении. Затем перейти к нахождению прогибов и углов поворота сечений. При этом следует задать значение модуля упругости. Величина момента инерции сечения либо задается (в этом случае подбор сечения можно опустить), либо используется момент инерции подобранного ранее двутавра.

Результаты расчетов выдаются на экран монитора. Нажимая правую кнопку мышки и выбирая пункт «Печать» (в браузерах Google Chrome, Internet Explorer, Yandex), можно либо распечатать результаты на принтере, либо сохранить их на компьютере пользователя в файле формата pdf. Можно также выделить часть текста, скопировать и вставить в любой редактор текстов (в Word выбрать выравнивание по левому краю). Вкладка «Полный расчет» становится доступной после выполнения всех предыдущих этапов и выводит на экран результаты расчетов по всем этим этапам.

Значения поперечной силы Q(x), изгибающего момента M(x), прогибов v(x) и углов поворота сечений φ(x) выдаются в сечениях, отстоящих друг от друга на расстоянии L/10, где L – длина балки.

Кроме того, в число расчетных сечений включаются те, в которых действуют сосредоточенные нагрузки, включая опорные реакции (при этом искомые величины находятся непосредственно слева и справа от этих сечений) и сечения, в которых равна нулю поперечная сила. Имеется возможность найти значения этих величин в произвольном сечении.

Бланк с РГР, рассмотренной в приведенных выше методичках.

Данные из этого бланка вводятся в поля ввода программы по умолчанию. Контроль за корректностью вводимых данных возложен на пользователя.

Расчет деревянных балок перекрытия – Калькулятор онлайн

Онлайн-калькулятор для расчета балки на прогиб/изгиб и прочность. Расчет деревянных балок перекрытия на прогиб. Подбор сечения балки.

Цельная деревянная балка

Клееная балка из досок

Клееная балка из шпона LVL Ultralam

Бревно отёсанное на 2 канта (лафет)

Балка – это элемент строительных несущих конструкций, который широко используется для возведения межэтажных перекрытий. Перекрытия, в свою очередь, предназначены для разделения по высоте смежных помещений, а также принятия статических и динамических нагрузок от находящихся на нем предметов интерьера, оборудования, людей и т.д.

В большинстве случаев, для частного домостроения используются деревянные балки из цельного бруса, отесанного бревна, клееных досок или шпона. Эти материалы, при правильном подборе параметров, способны обеспечить необходимую прочность и жесткость основания, что является залогом долговечности постройки.

Мы предлагаем вам выполнить онлайн расчет балки перекрытия на прочность и изгиб, подобрать её сечение и определить шаг между балками. Также вы получите набор персональных чертежей и 3D-модель для лучшего восприятия возводимой конструкции. Программа учитывает СНиП II-25-80 (СП 64.13330.2011) и другие справочные источники.

Точный и грамотный расчет деревянных балок в сервисе KALK.PRO, позволяет узнать все необходимые параметры для сооружения крепкого перекрытия. Все вычисления бесплатны, есть возможность сохранения рассчитанных данных в формате PDF, плюс доступны схемы и 3D-модель.

Инструкция к калькулятору

Наш сервис предоставляет на выбор два вида расчета однопролетных балок перекрытия. В первом случае, вам предлагается рассчитать сечение балки при известном шаге между ними, во втором случае, вы можете узнать рекомендуемое значение шага между балками при выбранных характеристиках сечения. Разберем работу калькулятора на примере, когда ваша задача заключается в нахождении сечения балки.

Для расчета вам понадобится знать ряд обязательных начальных параметров. В первую очередь это характеристики самой балки:

  • ширина сечения (толщина), мм;
  • длина пролета балки (на изображении BLN), м;
  • вид древесины (сосна, ель, лиственница…);
  • класс древесины (1/К26, 2/К24, 3/К16);
  • пропитка (есть, нет).

В случае, если вы не знаете толщину предполагаемой балки, в первом блоке следует выбрать пункт «Известно соотношение высоты сечения балки к её ширине — h/b» и указать значение 1,4. Эта наиболее оптимальная величина, которая получена эмпирическим методом и указывается во многих справочниках.

Затем нужно указать условия, в которых будет эксплуатироваться перекрытие:

  • температурный режим ( 50 °C);
  • влажностный режим;
  • присутствуют постоянные повышенные нагрузки или нет.

После этого, сконфигурируйте конструкцию и заполните поля калькулятора:

  • длина стены дома по внутренней стороне, м;
  • шаг между балками, см;
  • полная длина балки (на изображении BFL), м;
  • нагрузка на балку, кг/м 2 ;
  • предельный прогиб в долях пролета.

При необходимости впишите стоимость одного кубометра древесины, для того чтобы узнать общую стоимость всех пиломатериалов.

Также, обратим внимание, что обычно шаг балки не делают меньше 0,3 м, так как это нецелесообразно с экономической точки зрения и больше 1,2 м, так как возможен прогиб чернового пола со всеми вытекающими последствиями.

Читать еще:  Размеры конусов морзе для токарного станка

Когда вы нажмете кнопку «Рассчитать», сервис произведет расчет балки онлайн и выведет на экране рекомендуемые значения сечения подобранной балки.

Кроме того, в блоке «Результаты расчета» вы сможете узнать:

  • параметры балки при расчете на прочность;
  • параметры балки при расчете на прогиб;
  • максимальный прогиб балки, см.

Квалифицированный расчет перекрытия по деревянным балкам — залог долговечности сооружения и безопасность для вашей семьи.

Расчет балок перекрытия

Самостоятельный расчет деревянной балки перекрытия – это долгое и нудное занятие, которое обязывает вас знать основы инженерных дисциплин и сопромата. Без определенных навыков и знаний, вручную подобрать материал, рассчитать необходимое сечение или шаг балки – не просто тяжело, а порой и невозможно. Тем не менее, мы попытаемся вам рассказать об основных характеристиках, которые нужны для вычислений и по какому алгоритму работает наш калькулятор.

Виды балок

В настоящее время, деревянные балки, используемые для изготовления перекрытий, можно разделить на два принципиально разных вида:

Исходя из названия становится понятно, что в первом случае, это будет цельный кусок древесины определенного типа сечения (чаще всего это брус на 2 или 4 канта), во втором случае, это клееная балка из досок или шпона LVL.

Несмотря на низкую стоимость, по ряду объективных причин, деревянные балки из цельной древесины в последнее время используются все реже. Качественные показатели этого материала значительно уступают клееному дереву: низкий модуль упругости способствует появлению больших прогибов в середине пролета (особенно это становится заметно при расстоянии между несущими стенами более 4 метров), при высыхании на балках появляются продольные трещины, которые приводят к уменьшению момента инерции прогиба, отсутствие пропитки подвергает древесину воздействиям вредителей и гниения.

Благодаря современным технологиям, клееные балки не имеют подобных недостатков. Их структура однородна и волокна ориентированы по всем направлениям – повышается общая прочность и модуль упругости материала, он получает защиту от растрескивания, а специальная пропитка обеспечивает повышенный уровень пожаробезопасности и устойчивости к влаге. Эти балки разрешено использовать при проемах в 6-9 м и можно рассматривать, как полноценный аналог железному перекрытию.

Расчет балки

построение эпюр в балках

Расчетная схема № 274130

Почему не бесплатно? — Сайт создан исключительно на энтузиазме автора и дабы этот энтузиазм не угас, хотелось бы его подкрепить хоть каким-нибудь материальным поощрением. Кроме того, возросшее количество пользователей вынудило перейти на платный хостинг.

Условия оплаты? — Взнос денег считаем спонсорским взносом, поэтому ни о каком возврате речь идти не может, тем более суммы мизерные — практически не о чем спорить.
Но! Если Вы оплатили взнос, но недовольны результатом, Вы всегда можете обратиться за помощью к автору — Telegram: sopromat_xyz WhatsApp

А Ваш сайт не сворует мой номер карты, пароли и т.д. — Это невозможно! После того, как Вы нажмете «Перевести», Вы будете направлены на страницу Яндекса (можете проверить в адресной строке), и все дальнейшие операции будете производить на сервисе Яндекса, так что со стороны сайта Вам ничего не грозит.

Жесткая заделка

Шарнирная опора

Врезной шарнир

Сосредоточенная сила F

Сосредоточенный момент M

Распределенная нагрузка

Подбор сечения и прогибы

подобрать двутавр [σ] = МПа

подобрать круг [σ] = МПа

подобрать квадратное сечение [σ] = МПа

подобрать трубчатое сечение [σ] = МПа при d/D=

подобрать прямоугольное сечение [σ] = МПа при h/b=

записать уравнения начальных параметров для каждого участка и посчитать прогибы и углы поворота в промежуточных точках

Подробный ход решения — расчет балки, построение эпюр

Заменим распределенную нагрузку равнодействующей

Составим уравнения равновесия для определения реакций опор

Σ MA = + P · 2 + Q1 · 3 — M — RE · 6= + 412 · 2 + 32 · 3 — 10 — RE · 6=0

Σ ME = — P · 4 — Q1 · 3 — M + RA · 6= — 412 · 4 — 32 · 3 — 10 + RA · 6=0

Из этих уравнений находим реакции опор

Записываем уравнения поперечных сил и изгибающих моментов на участках балки , используя метод сечений

На участке AB: (0 ≤ z1 ≤ 2 м )

На участке BC: (2 ≤ z2 ≤ 4 м )

M(z2) = + RA · z — P·(z — 2) — q1·(z — 2) 2 /2 = + 292.3 · z — 412·(z — 2) — 16·(z — 2) 2 /2

На участке CD: (4 ≤ z3 ≤ 5 м )

Q(z3) = + RA — P — Q1 = + 292.3 — 412 — 32 = -151.667 кН

M(z3) = + RA · z — P·(z — 2) — Q1·(z — 3) = + 292.3 · z — 412·(z — 2) — 32·(z — 3)

На участке DE: (5 ≤ z4 ≤ 6 м )

Q(z4) = + RA — P — Q1 = + 292.3 — 412 — 32 = -151.667 кН

M(z4) = + RA · z — P·(z — 2) — Q1·(z — 3) — M = + 292.3 · z — 412·(z — 2) — 32·(z — 3) — 10

Максимальный момент в балке составляет Mmax = 585 кНм. По этому значению подбираем сечение балки.

Условие прочности при изгибе σ = Mmax / W ≤ [σ]

Отсюда, минимально необходимый момент сопротивления вычисляем по формуле Wmin=Mmax / [σ]

Подбираем двутавровое сечение при допускаемом напряжении [σ] = 160 МПа
Wmin=585000 / 160 = 3656.25 см 3
Из сортамента выбираем двутавр № с моментом сопротивления W = 0 см 3 и площадью A = см 2
Максимальные нормальные напряжения в двутавре составляют
σmax = Mmax/Wx = 585000/0 = 0 МПа
Максимальные касательные напряжения в двутавре (на центральной оси) составляют
τmax = Qmax×Sx/b×Ix = 292000×0×10 -6 /0××10 -8 = 0×10 6 Па = 0 МПа
Касательные напряжения на границе полки и стенки составляют
τmax = Qmax×Sx’/b×Ix = 292000×0×10 -6 /0××10 -8 = 0×10 6 Па = 0 МПа,
где статический момент отсеченной полки составляет
Sx’=b×t×(h-t)/2=0×0×(0-0)/2=0 см 3 .
Эпюры нормальных и касательных напряжений для двутавра:

Подбираем круг.
Wmin=585000/160=3656 см 3
Момент сопротивления сплошного круглого сечения
W=π×d 3 / 32
d 3 =32×W / π = 32×3656 / π = 37259
Диаметр сечения будет таким d=33.4 см
Площадь сечения
A=π×d 2 /4=π×33.4 2 /4=875.71 см 2
Максимальные нормальные напряжения составляют
σmax = 32×Mmax/π×d 3 = 32×585000/π×33.4 3 = 160.01 МПа
Максимальные касательные напряжения для круга составляют
τmax = 4Qmax/3A = 4×292000/3×875.71×100 = 4.446 МПа
Эпюры нормальных и касательных напряжений для круга:

Подбираем трубу с отношением диаметров α = d/D = 0.9
Wmin=585000 / 160=3656 см 3
Момент сопротивления трубчатого сечения
W=π×D 3 ×(1-α 4 )/32
D 3 =32×W / π×(1-α 4 ) = 32×3656 / π×(1-0.9 4 )=108341
Диаметр сечения будет таким D=47.7 см
Площадь сечения A=π×D 2 (1-α 2 )/4=π×47.7 2 (1-0.9 2 )/4=339.36 см 2
Максимальные нормальные напряжения составляют
σmax = 32×Mmax/π×D 3 ×(1-α 4 ) = 32×585000/π×47.7 3 ×(1-0.9 4 ) = 159.73 МПа
Максимальные касательные напряжения для трубы определим по формуле Журавского
τmax = Qmax×Sx/b×Ix, где b=D-d
Статический момент полусечения
Sx=2R 3 /3-2r 3 /3=(D 3 -d 3 )/12=(47.7 3 -(47.7×0.9) 3 )/12=2451 см 3
Момент инерции сечения
Ix=π×D 4 ×(1-α 4 )/64=π×47.7 4 ×(1-0.9 4 )/64=87348.48 см 4
τmax = 292000×2451×10 -6 /(47.7-0.9×47.7)×0.01×87348.48 -8 =0.172×10 6 Па = 0.172 МПа
Эпюры нормальных и касательных напряжений для трубы:

Подбираем квадрат.
Wmin=585000 / 160=3656 см 3
Момент сопротивления квадратного сечения
W=a 3 /6
Сторона квадрата будет такой a= 28 см
Площадь сечения A=a 2 =28 2 =784 см 2

Подбираем прямоугольное сечение с отношением сторон h / b=2
Wmin=585000 / 160 = 3656 см 3
Момент сопротивления прямоугольного сечения
W=b×h 2 / 6 = b 3 × 2 2 / 6 = b 3 ×0.67
b 3 =3656 / 0.67=5457
Ширина сечения b=17.6 см, Высота сечения h=b×2=17.6×2=35.2 см
Площадь сечения A=b×h=17.6×35.2=619.52 см 2
Максимальные нормальные напряжения составляют
σmax = 6×Mmax/b×h 2 = 6×585000/17.6×35.2 2 = 160.96 МПа
Максимальные касательные напряжения для прямоугольника составляют
τmax = 3Qmax/2A = 3×292000/2×619.52×100 = 7.07 МПа
Эпюры нормальных и касательных напряжений для прямоугольного сечения:

Читать еще:  Как сварить уголок встык

Записываем уравнения углов поворота и прогибов по методу начальных параметров

На участке AB: (0 ≤ z1 ≤ 2 м )

На участке BC: (2 ≤ z2 ≤ 4 м )

EJ×φ(z) = EJ×φ + RA·z 2 /2 — P·(z — 2) 2 /2 — q1·(z — 2) 3 /6

На участке CD: (4 ≤ z3 ≤ 5 м )

EJ×φ(z) = EJ×φ + RA·z 2 /2 — P·(z — 2) 2 /2 — q1·(z — 2) 3 /6 + q1·(z — 4) 3 /6

На участке DE: (5 ≤ z4 ≤ 6 м )

EJ×φ(z) = EJ×φ + RA·z 2 /2 — P·(z — 2) 2 /2 — q1·(z — 2) 3 /6 + q1·(z — 4) 3 /6 — M· (z — 5)

EJ×v(z) = EJ×v + EJ×φ×z + RA·z 3 /6 — P·(z — 2) 3 /6 — q1·(z — 2) 4 /24 + q1·(z — 4) 4 /24 — M· (z — 5) 2 /2

Из условий закрепления по этим уравнениям вычислим начальные параметры:

— начальный угол поворота φ = -994.1 кНм 2

— начальный прогиб балки v = 0 кНм 3

Найдем углы поворота и прогибы сечений на каждом участке

Расчет балки на жесткость онлайн

Расчет простой балки на прочность и жесткость

Инструкция к программе

Программа написана на языке PHP и предназначена для использования студентами строительных вузов при выполнении расчетно-графической работы (РГР) «Расчет балки на прочность и жесткость». Все расчеты выполняются Online, что освобождает студентов от необходимости посещать компьютерный класс.

При использовании программы студентами машиностроительных вузов следует заменить следующие термины: нормативное сопротивление Rn – на предельное напряжение, расчетное сопротивление R – на допускаемое напряжение, коэффициент надежности по материалу γ – на коэффициент запаса прочности, коэффициент надежности по нагрузке γf положить равным единице. Кроме того, сечение стальной балки подбирается по предельному состоянию всего сечения, а в машиностроении основным методом расчета на прочность является метод допускаемых напряжений.

Подробно методика расчета, реализованная в данной программе, изложена в следующих методических указаниях:
«Расчет балки на прочность» Скачать
«Расчет балки на жесткость» Скачать

Порядок выполнения расчетов

Расчет начинаем с пункта «Исходные данные». Начало отсчета располагается на левом конце балки, ось x направлена вправо, ось y – вниз. Сосредоточенные силы, включая опорные реакции, и распределенные нагрузки считаются положительными, если направлены вниз. Момент пары сил считается положительным, если направлен по часовой стрелке. Вводить следует значения нормативных нагрузок. Так как программа используется в учебных целях, то число нагрузок любого типа должно быть не более 10!

Пункты главного меню, выделенные серым цветом, неактивны на соответствующем этапе вычислений. При нажатии на них откравается окно с указанием того, что нужно сделать для продолжения расчетов.

Исходные данные расположены в следующем порядке:
— тип балки: 0 – шарнирно опертая, 1 – с заделкой;
— длина балки;
— для шарнирно опертой балки координаты опор;
— для балки с заделкой указание на то, левый или правый конец защемлен;
— коэффициент надежности по нагрузке (используется при расчете балки на прочность);
— число сосредоточенных сил;
— число пар сил;
— число распределенных нагрузок;
— для каждой сосредоточенной силы – величина и координата точки приложения;
— для каждой пары сил – величина и координата сечения, в котором она действует;
— для каждой распределенной нагрузки – интенсивность нагрузки в начале и в конце участка, на котором она действует, и координаты концов этого участка.
В качестве разделителя целой и дробной частей вещественного числа используется точка.

Распределенные нагрузки предполагаются распределенными по линейному закону. Если какой-либо тип нагрузок отсутствует, то следует положить число этих нагрузок равным нулю. После ввода исходных данных нажимаем на ссылку «Продолжить расчет» и переходим на вкладку «Эпюры Q(x) и M(x)» для нахождения опорных реакций, построения эпюр поперечной силы и изгибающего момента и нахождения Mmax.

Далее можно выполнить подбор сечения двутавровой балки (нормативное сопротивление и коэффициент надежности по материалу вводятся по дополнительному запросу) и выполнить расчет прочности в заданном сечении. Затем перейти к нахождению прогибов и углов поворота сечений. При этом следует задать значение модуля упругости. Величина момента инерции сечения либо задается (в этом случае подбор сечения можно опустить), либо используется момент инерции подобранного ранее двутавра.

Результаты расчетов выдаются на экран монитора. Нажимая правую кнопку мышки и выбирая пункт «Печать» (в браузерах Google Chrome, Internet Explorer, Yandex), можно либо распечатать результаты на принтере, либо сохранить их на компьютере пользователя в файле формата pdf. Можно также выделить часть текста, скопировать и вставить в любой редактор текстов (в Word выбрать выравнивание по левому краю). Вкладка «Полный расчет» становится доступной после выполнения всех предыдущих этапов и выводит на экран результаты расчетов по всем этим этапам.

Значения поперечной силы Q(x), изгибающего момента M(x), прогибов v(x) и углов поворота сечений φ(x) выдаются в сечениях, отстоящих друг от друга на расстоянии L/10, где L – длина балки.

Кроме того, в число расчетных сечений включаются те, в которых действуют сосредоточенные нагрузки, включая опорные реакции (при этом искомые величины находятся непосредственно слева и справа от этих сечений) и сечения, в которых равна нулю поперечная сила. Имеется возможность найти значения этих величин в произвольном сечении.

Бланк с РГР, рассмотренной в приведенных выше методичках.

Данные из этого бланка вводятся в поля ввода программы по умолчанию. Контроль за корректностью вводимых данных возложен на пользователя.

Расчет опорных реакций балки на двух опорах онлайн

Определение опорных реакций

Построение эпюр поперечных сил и моментов

Просмотр хода решения

Описание

Расчет выполняется по следующей методике:

1. Заменяем распределенную нагрузку ее равнодействующей, которая является сосредоточенной силой. Для равномерно распределенной нагрузки равнодействующая равна произведению интенсивности нагрузки q на длину участка L, на котором она действует: Fq = q*L.

2. Обозначаем опоры. Общепринято их обозначать буквами А и В. Простая балка имеет одну шарнирно-неподвижную и одну шарнирно-подвижную опоры.

3. Освобождаемся от опор и заменяем их действие на балку реакциями.
Реакции опор при такой нагрузке будут только вертикальными.

4. Составляем уравнения равновесия вида:
MA = 0; MB = 0,
Моментом силы относительно точки называется произведение этой силы на плечо — кратчайшее расстояние от этой точки приложения силы (в общем случае — до линии действия силы).

5. Выполним проверку решения. Для этого составим уравнение равновесия: Y = 0,
Если оно удовлетворено, то реакции найдены правильно, а если нет, но в решении допущена ошибка.

6. Строим эпюру поперечных сил Qx. Для этого определяем значения поперечных сил в характерных точках. Напомним, что поперечная сила в сечении равна сумме проекций всех сил, расположенных только слева или только справа от рассматриваемого сечения, на ось, перпендикулярную оси элемента. Силу, расположенную слева от рассматриваемого сечения и направленную вверх, считают положительной (со знаком «плюс»), а направленную вниз — отрицательной (со знаком «минус»). Для правой части балки — наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных сил, в том числе в точках приложения опорных реакций, необходимо определить два значения поперечной силы: чуть левее рассматриваемой точки и чуть правее ее. Поперечные силы в этих сечениях обозначаются соответственно Qлев и Qправ.
Найденные значения поперечных сил в характерных точках откладываются в некотором масштабе от нулевой линии. Эти значения соединяются прямыми линиями по следующим правилам:
а) если к участку балки нет распределенной нагрузки, то под этим участком значения поперечных сил соединяются прямой линией, параллельной нулевой линии;
б) если на участке балки приложена распределенная нагрузка, то под этим участком значения поперечных сил соединяются прямой, наклонной к нулевой линии. Она может пересекать или не пересекать нулевую линию.
Соединив все значения поперечных сил по указанным правилам, получим график изменения поперечных сил по длине балки. Такой график называется эпюрой Qx.

Читать еще:  Как заточить диск циркулярной пилы

7. Строим эпюру изгибающих моментов Мx. Для этого определяем изгибающие моменты в характерных сечениях. Напомним, что изгибающий момент в рассматриваемом сечении равен сумме моментов всех сил (распределенных, сосредоточенных, в том числе и опорных реакций, а также внешних сосредоточенных моментов), расположенных только слева или только справа от этого сечения. Если любое из перечисленных силовых воздействий стремится повернуть левую часть балки по часовой стрелке, то оно считается положительным (со знаком «плюс»), если против — отрицательным (со знаком «минус»), а для правой части наоборот.
В сечениях, соответствующих точкам приложения сосредоточенных моментов, необходимо определить два значения изгибающего момента: чуть левее рассматриваемой точки и чуть правее ее. Изгибающие моменты в этих точках обозначаются соответственно Млев и Мправ. В точках приложения сил определяется одно значение изгибающего момента.
Полученные значения откладываются в некотором масштабе от нулевой линии. Эти значения соединяются в соответствии со следующими правилами:
а) если на участке балки нет распределенной нагрузки, то под этим участком балки два соседних значения изгибающих моментов соединяются прямой линией;
б) если к участку балки приложена распределенная нагрузка, то под этим участком значения изгибающих моментов для двух соседних точек соединяются по параболе.

Расчет металлической балки на прогиб: учимся составлять формулы

В качестве примера, возьмем металлическую балку на двух опорах. Запишем для нее формулу для вычисления прогиба, посчитаем его численное значение. И также в конце этой статьи дам ссылки на другие полезные статьи с примерами определения прогибов для различных расчетных схем.

Что такое прогиб балки?

Под действием внешней нагрузки, поперечные сечения балки перемещаются вертикально (вверх или вниз), эти перемещения называются прогибами. Сопромат позволяет нам определить прогиб балки, зная ее геометрические параметры: длину, размеры поперечного сечения. И также нужно знать материал, из которого изготовлена балка (модуль упругости).

Кстати! Помимо вертикальных перемещений, поперечные сечения балки, поворачиваются на определенный угол. И эти величины также можно определить методом начальных параметров.

ν-прогиб сечения C; θ-угол поворота сечения C.

Прогибы балки необходимо рассчитывать, при расчете на жесткость. Расчётные значения прогибов не должны превышать допустимых значений. Если расчетное значение меньше, чем допустимое, то считают, что условие жесткости элемента конструкции соблюдается. Если же нет, то принимаются меры по повышению жесткости. Например, задаются другим материалом, у которого модуль упругости БОЛЬШЕ. Либо же меняют геометрические параметры балки, чаще всего, поперечное сечение. Например, если балка двутаврового профиля №12, не подходит по жесткости, принимают двутавр №14 и делают перерасчет. Если потребуется, повторяют подбор, до того момента пока не найдут тот самый – двутавр.

Метод начальных параметров

Метод начальных параметров, является довольно универсальным и простым методом. Используя этот метод можно записывать формулу для вычисления прогиба и угла поворота любого сечения балки постоянной жесткости (с одинаковым поперечным сечением по длине.)

Под начальными параметрами понимаются уже известные перемещения:

  • в опорах прогибы равны нулю;
  • в жесткой заделке прогиб и угол поворота сечения равен нулю.

Расчет прогибов балки

Посмотрим, как пользоваться методом начальных параметров на примере простой балки, которая загружена всевозможными типами нагрузок, чтобы максимально охватить все тонкости этого метода:

Реакции опор

Для расчета нужно знать все внешние нагрузки, действующие на балку, в том числе и реакции, возникающие в опорах.

Система координат

Далее вводим систему координат, с началом в левой части балки (точка А):

Распределенная нагрузка

Метод начальных параметров, который будем использовать чуть позднее, работает только в том случае, когда распределенная нагрузка доходит до крайнего правого сечения, наиболее удаленного от начала системы координат. Конкретно, в нашем случае, нагрузка обрывается и такая расчетная схема неприемлема для дальнейшего расчета.

Если бы нагрузка была приложена вот таким способом:

То можно было бы сразу приступать к расчету перемещений. Нам же потребуется использовать один хитрый прием – ввести дополнительные нагрузки, одна из которых будет продолжать действующую нагрузку q, другая будет компенсировать это искусственное продолжение. Таким образом, получим эквивалентную расчетную схему, которую уже можно использовать в расчете методом начальных параметров:

Вот, собственно, и все подготовительные этапы, которые нужно сделать перед расчетом.

Приступим непосредственно к самому расчету прогиба балки. Рассмотрим наиболее интересное сечение в середине пролета, очевидно, что это сечение прогнется больше всех и при расчете на жесткость такой балки, рассчитывалось бы именно это сечение. Обзовем его буквой – C:

Относительно системы координат записываем граничные условия. Учитывая способ закрепления балки, фиксируем, что прогибы в точках А и В равны нулю, причем важны расстояния от начала координат до опор:

Записываем уравнение метода начальных параметров для сечения C:

Произведение жесткости балки EI и прогиба сечения C будет складываться из произведения EI и прогиба сечения в начале системы координат, то есть сечения A:

Напомню, E – это модуль упругости первого рода, зависящий от материала из которого изготовлена балка, I – это момент инерции, который зависит от формы и размеров поперечного сечения балки. Также учитывается угол поворота поперечного сечения в начале системы координат, причем угол поворота дополнительно умножается на расстояние от рассматриваемого сечения до начала координат:

Учет внешней нагрузки

И, наконец, нужно учесть внешнюю нагрузку, но только ту, которая находится левее рассматриваемого сечения C. Здесь есть несколько особенностей:

  • Сосредоточенные силы и распределенные нагрузки, которые направленны вверх, то есть совпадают с направлением оси y, в уравнении записываются со знаком «плюс». Если они направленны наоборот, соответственно, со знаком «минус»:

  • Моменты, направленные по часовой стрелке – положительные, против часовой стрелки – отрицательные:

  • Все сосредоточенные моменты нужно умножать дробь:

[ Mcdot frac < < x >^ < 2 >>< 2 >]

  • Все сосредоточенные силы нужно умножать дробь:

[ Fcdot frac < < x >^ < 3 >>< 6 >]

  • Начало и конец распределенных нагрузок нужно умножать на дробь:

Формулы прогибов

С учетом всех вышеописанных правил запишем окончательное уравнение для сечения C:

В этом уравнении содержится 2 неизвестные величины – искомый прогиб сечения C и угол поворота сечения A.

Поэтому, чтобы найти прогиб, составим второе уравнение для сечения B, из которого можно определить угол поворота сечения A. Заодно закрепим пройденный материал:

Выражаем угол поворота:

Подставляем это значение в наше первое уравнение и находим искомое перемещение:

Вычисление прогиба

Значение получили в общем виде, так как изначально не задавались тем, какое поперечное сечение имеет рассчитываемая балка. Представим, что металлическая балка имеет двутавровое поперечное сечение №30. Тогда:

Таким образом, такая балка прогнется максимально на 2 см. Знак «минус» указывает на то, что сечение переместится вниз.

Ссылка на основную публикацию
Adblock
detector
×
×