Преимущества и недостатки автоматической сварки - Строительство домов и бань
691 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Преимущества и недостатки автоматической сварки

Преимущества и недостатки автоматической сварки

8.4. Преимущества и недостатки способа

При открытой дуге сила тока не выше 500-600 А.

При погруженной дуге применяемые токи в среднем 1000-2000 А и максимально до 3000-4000 А. Таким образом, появилась возможность при сварке под флюсом повысить сварочный ток в 6-8 раз по сравнению с открытой дугой с сохранением высокого качества сварки и отличного формирования шва.

Маломощная открытая дуга лишь незначительно расплавляет кромки металла, шов образуется главным образом за счет расплавленного электродного металла, заполняющего разделку кромок.

Мощная закрытая дуга под флюсом глубоко расплавляет основной металл, позволяет уменьшить разделку кромок под сварку, а часто и совсем обойтись без разделки.

Снижается доля участия электродного металла в образовании шва; в среднем наплавленный металл образуется на 2/3 за счет расплавления основного металла и лишь на 1/3 за счет электродного металла.

Производительность сварки, определяемая числом метров шва за час горения дуги, при сварке под флюсом значительно выше (до 10 раз), чем при сварке открытой дугой на одинаковых сварочных токах. Таким образом, производительность сварки под флюсом возрастает как за счет увеличения сварочного тока, так и за счет лучшего его использования.

Применение для сварки под флюсом дуговых автоматов особых осложнений не вызывает, дуга под флюсом обычно устойчивее открытой дуги. Переход на сварку под флюсом потребовал лишь увеличения сварочных токов и соответственного увеличения размеров и усиления конструкции автоматов. Сварка под флюсом в большинстве случаев ведется на токе высоких плотностей, поэтому широко применяются автоматы с постоянной скоростью подачи электродной проволоки.

Преимущества сварки под слоем флюса:

  • повышенная производительность;
  • возможность резкового увеличения силы сварочного ток. Лучшее использование тока заметно экономит расход электроэнергии;
  • заключение дуги в газовый пузырь со стенками из жидкого флюса практически сводит к нулю потери металла на угар и разбрызгивание, суммарная величина которых не превышает 2% веса расплавленного электродного металла. Отсутствие потерь на угар и разбрызгивание и уменьшение доли электродного металла в образовании шва позволяют весьма значительно экономить расход электродной проволоки;
  • отсутствие брызг;
  • максимально надёжная защита зоны сварки;
  • минимальная чувствительность к образованию оксидов;
  • мелкочешуйчатая поверхность металла шва в связи с высокой стабильностью процесса горения дуги;
  • не требуется защитных приспособлений от светового излучения, поскольку дуга горит под слоем флюса;
  • низкая скорость охлаждения металла обеспечивает высокие показатели механических свойств металла шва;
  • малые затраты на подготовку кадров;
  • отсутствует влияния субъективного фактора.
  • сварные швы получаются равномерного и очень высокого качества;

Недостатки сварки под слоем флюса:

  • трудозатраты с производством, хранением и подготовкой сварочных флюсов;
  • расход флюса по весу в среднем равняется весу израсходованной проволоки, и стоимость его оказывает существенное влияние на общую стоимость сварки;
  • трудности корректировки положения дуги относительно кромок свариваемого изделия;
  • невидимость места сварки, закрытого толстым слоем флюса. Невидимость места сварки повышает требования к точности подготовки и сборки изделия под сварку, затрудняет сварку швов сложной конфигурации;
  • нет возможности выполнять сварку во всех пространственных положениях без специального оборудования;
  • отсос и сбор флюса, пересыпка для повторного его использования являются дополнительными источниками пылевыделения. Установлено, что при повторном использовании флюса запыленность воздушной среды выше в 2 раза, чем при сварке под свежим флюсом.

Область применения автоматической сварки под слоем флюса

Благодаря ряду преимуществ дуговая сварка под флюсом в настоящее время стала наиболее распространенным видом механизированной дуговой сварки металлов.

Этот способ сварки позволяет не только заменить тяжелый труд сварщика-ручника, но вследствие более высокой производительности (возможности использования большего по величине сварочного тока), а также ряда технологических преимуществ коренным образом изменить технологию производства в некоторых отраслях промышленности.

В судостроении применение сварки под флюсом позволило использовать секционный способ постройки корпуса судов: секции корпуса сваривают в цехе автоматами и полуавтоматами, а затем собирают и сваривают между собой на стапеле. Это дало возможность сократить сроки строительства судов.

Большие изменения внесла сварка под флюсом в технику строительства крупных нефтерезервуаров. Раньше их строили, приваривая один лист к другому на месте сооружения резервуара. Теперь в заводских условиях сваривают огромные полотнища — днища и стенки резервуара.

Эти полотнища тут же на заводе сворачивают в рулоны, которые перевозят по железной дороге к месту строительства резервуара. На строительной площадке разворачивают рулон днища, затем ставят на него рулон стенки, разворачивают его, выполняют монтажные швы и получают готовый резервуар. На монтаж затрачивают всего три-пять дней.

Подлинную техническую революцию вызвало внедрение сварки под флюсом в производство стальных труб большого диаметра. Если раньше такие трубы изготовляли примитивными методами газокузнечной сварки, то сейчас цехи по производству газонефтепроводных труб высокого давления диаметрами от 529 до 1020 мм оснащены по последнему слову техники.

С помощью сварки под флюсом удается внедрить поточные методы производства во многие отрасли промышленности. Сейчас в промышленности успешно действуют поточные линии по массовому выпуску сварных конструкций и изделий, оснащенные автоматами для сварки под флюсом (производство автомобильных колес, шахтных угольных вагонеток и др.).

В первые годы освоения сварки под флюсом ее применяли только при производстве конструкций и изделий из обычной низкоуглеродистой стали. Затем в 1941-1942 гг. освоили сварку броневых сталей. В настоящее время успешно сваривают под флюсом различные стали, сплавы, цветные металлы. Наряду с конструкциями из углеродистых сталей успешно свариваются под флюсом различные конструкции и аппараты из низколегированных сталей, нержавеющих, кислотостойких, жаропрочных сплавов на никелевой основе. В последние годы освоена сварка под флюсом нового конструкционного металла — титана, а также сплавов на его основе. Под флюсом сваривают медь и ее сплавы. Широко применяется в промышленности сварка по слою флюса алюминия и алюминиевых сплавов.

Сварка под флюсом успешно применяется при изготовлении аппаратуры, конструкций и изделий самого ответственного назначения, которые должны надежно работать и в условиях глубокого холода, и под действием высоких температур, давлений, агрессивных жидких и газовых сред и т. д.

Наиболее выгодно автоматическую сварку под флюсом применять при массовом производстве однотипных металлических изделий, имеющих соединения правильной формы и удобных для удерживания слоя флюса. В некоторых случаях способ полуавтоматической сварки под флюсом может быть использован не только при массовом производстве однотипных изделий, но и при единичном производстве изделий с соединениями значительной протяженности и удобными для удерживания флюса. Нецелесообразно сваривать под флюсом решетчатые конструкции с большим количеством коротких соединений.

Если от сварных нахлесточных соединений не требуется герметичность, то они могут с успехом свариваться дуговой сваркой под флюсом электрозаклепками. При этом способе достигается значительно большая производительность, чем при полуавтоматической сварке прерывистыми швами.

Автоматическая сварка под флюсом. Её преимущества и недостатки

Автоматическая сварка под флюсом является разновидностью дуговой сварки, при которой электрическая дуга горит под слоём сварочного флюса, который препятствует проникновению атмосферного воздуха в зону сварки. На данной странице мы рассмотрим сущность автоматической сварки под флюсом.

Флюс не только защищает зону сварки от воздействия окружающей среды, он также способствует стабилизации электрической дуги, способствует раскислению металла, обеспечивает легирование свариваемого металла нужными химическими элементами, улучшая, таким образом, свариваемость металла и и обеспечивая высокие механические свойства сварного шва.

Схема процесса автоматической сварки под флюсом

На схеме показана сущность процесса автоматической сварки под флюсом. Процесс сварки рекомендуется выполнять на специальной подкладке поз.1. Подача сварочной проволоки в зону сварки происходит автоматически. Электрическая дуга возбуждается автоматически между концом электрода поз.4 и свариваемым металлом поз.2 и находится она под слоем сварочного флюса, поз.6. Подача флюса производится при помощи бункера поз.3.

В результате теплового воздействия электрической дуги, происходит расплавление сварочной проволоки и свариваемого металла. Также происходит расплавление флюса, попавшего в зону сварки. В зоне действия электрической дуги формируется некоторое пространство, ограниченное сверху плёнкой из расплавленного флюса. Это пространство занимают пары расплавленного металла, флюса и газы, образующиеся при сварке.

Давление смеси газов и паров в этом пространстве удерживают флюсовую плёнку, которая находится над зоной сварки. Электрическая дуга поз.5 всегда находится рядом со сварочной ванной, вблизи от её переднего края. Дуга, из-за её постоянного движения, горит не вертикально, а немного отклоняется в обратную сторону от направления сварки.

Электрическая дуга воздействует на расплавленный металл и оттесняет его в сторону, противоположную направлению сварки. В результате формируется сварочная ванна поз.8.

Непосредственно под электродом формируется кратер, с небольшим количеством жидкого металла. Но наибольший объём расплавленного металла располагается в зоне от кратера до поверхности сварного шва поз.12. Расплавленный флюс поз.7 имеет значительно меньшую плотность, по сравнению с жидким металлом и всплывает на поверхность сварочной ванны, охватывая её плотной оболочкой. Флюсовая оболочка предотвращает разбрызгивание расплавленного металла.

У расплавленного флюса теплопроводность достаточно низкая, из-за чего, охлаждение металла замедляется. Благодаря этому, шлаковые включения и растворённые в металле газы, поз.9, успевают подняться на поверхность и выйти из него, пока металл находится в жидком состоянии.

Не расплавленный флюс, оставшийся «незадействованным» в процессе сварки, откачивают пневматическим устройством поз.10 и затем используют при дальнейшей сварке. Расплавленный в процессе сварки металла флюс, при кристаллизации образует плотную корку на поверхности сварного шва. После окончания сварки и охлаждения сварного соединения, шлаковую оболочку, из затвердевшего флюса, удаляют с поверхности сварного шва поз.12.

Схема работы установки для автоматической сварки

На рисунке справа схематично показаны основные узлы установки для автоматической сварки и показана последовательность их работы.

Поз.5 и поз.4 — это ведущий и нажимной ролик, соответственно. Они необходимы для подачи электродной проволоки поз.3 в зону сварки. Из бункера поз.1 в зону сварки подаётся гранулированный флюс в зону сварки и покрывает непроницаемым слоем свариваемые кромки поз.7.

Через мундштук поз.6 происходит подача сварочного тока к электроду. Мундштук располагается на расстоянии 40-60мм от конца электродной проволоки и позволяет применять сварочные токи большой величины. Между свариваемым изделием поз.11 и сварочной проволокой горит электрическая дуга и расплавляет металл, образуя сварочную ванну. Ванну сверху закрывает расплавленный шлак поз.9 и нерасплавленный флюс поз.8.

По мере перемещения зоны сварки вдоль кромок, флюс, оставшийся нерасплавленным, отсасывается вытяжным шлангом поз.2 назад в бункер. Пары и газы, выделяющиеся в процессе сварки, создают в зоне сварки газовый пузырь, который закрыт слоем флюса и шлака.

Читать еще:  Какие электрические счетчики лучше устанавливать

При температурном расширении газового пузыря его давление оттесняет расплавленный металл в зону, противоположную от зоны сварки. Т.к. горение электрической дуги происходит внутри газового пузыря, закрытого шлаком и флюсом, угар и разбрызгивание металла исключаются.

По мере перемещения электрической дуги вдоль сварных кромок, жидкий металл остывает и формируется сварной шов. Как уже было сказано выше, слой шлака имеет более низкую температуру плавления, чем свариваемый металл и затвердевает он значительно позже, замедляя остывание расплавленного металла. Замедленное охлаждение сварного шва способствует выходу газов из ещё жидкого металла и шов получается более однородным по химическому составу.

Преимущества и недостатки автоматической сварки под слоем флюса

К преимуществам данного способа сварки можно отнести:

1. Высокая производительность, превышающая производительность ручной дуговой сварки в 5-10раз. Достигается она за счёт использования сварочного тока значительной силы, и, как следствие этого, за счёт глубокого проплавления свариваемого металла. А также за счёт того, что отсутствуют угар и разбрызгивание металла, а, следовательно, исключаются потери металла. Кроме этого, высокая производительность обеспечивается вследствие автоматизации процесса сварки металла.

2. Применение флюса повышает качество сварки за счёт того, что образует защитную плёнку вокруг зоны сварки и препятствует проникновению в неё окружающего воздуха. Кроме того, флюс, на поверхности расплавленного металла обладает низкой теплопроводностью и препятствует быстрому остыванию жидкого металла. Вследствие этого газы и неметаллические включения успевают всплыть па поверхность сварочной ванны и выйти из неё до того, как металл кристаллизуется. Об этом мы говорили выше по тексту.

3. Процесс автоматической сварки под флюсом полностью механизирован, что позволяет уменьшить до минимума трудоёмкий и дорогостоящий ручной труд и снизить квалификацию сварщика. А технология ручной дуговой сварки подразумевает ручной труд и для выполнения этих работ требуется сварщик более высокой квалификации.

4. Электрическая дуга при автоматизированной сварке получается более стабильной, т.к. находится под защитным слоем сварочного флюса.

5. При автоматической сварке потери электродного металла не превышают 2-5%, так как угар металла и его разбрызгивание практически отсутствуют. Для сравнения, при ручной сварке потери металла из-за его угара и разбрызгивания достигают 20%, а в некоторых случаях 30%.

6. При автоматической сварке коэффициент использования теплоты от электрической дуги более высокий, чем при ручной сварке. Это позволяет существенно экономить электроэнергию. Экономия может достигать 40%.

7. Улучшенные условия работы сварщика. Зона сварки закрыта непроницаемыми слоями флюса и шлака, которые исключают проникновение окружающего воздуха в зону сварки. Но также эти слои препятствуют выделению вредных газов и пыли из сварочной зоны в воздух. Поэтому, для удаления газов достаточно наличия естественной вытяжной вентиляции на рабочем месте сварщика.

8. Из-за того, что дуга находится под флюсом, она не видна оператору, следовательно, исключено её воздействие на глаза, поэтому, не требуется специальной маски или очков для защиты глаз.

К недостаткам такого вида сварки можно отнести возможность сварки швов только в нижнем положении, или при небольших наклонах сварных кромок, на угол не более 15°. Также затруднено применение автоматической сварки в монтажных условиях. Эти недостатки обусловлены недостаточной маневренностью сварочных автоматов из-за их конструктивных особенностей. Но со временем, по мере развития сварочной техники и технологии подобный недостаток будет устранён.

Автоматическая дуговая сварка под флюсом. Преимущества и недостатки область применения.

сварка электрической дугой, горящей между концом сварочной проволоки и свариваемым металлом под слоем флюса.

Сварка под флюсом применяется в стационарных цеховых условиях для всех металлов и сплавов, включая разнородные металлы толщинами от 1,5 до 150 мм.

· велики трудозатраты, связанные со стоимостью флюса.

· трудности корректировки положения дуги относительно кромок свариваемого изделия;

· экологическое воздействие газов на оператора;

· невидимость места сварки, расположенного под толстым слоем флюса;

· нет возможности выполнять сварку во всех пространственных положениях без специального оборудования;

· повышеннаяжидкотекучесть расплавленного металла и флюса;

· требуется тщательная сборка кромок под сварку. При увеличенном зазоре между кромками возможно вытекание в него расплавленного металла и флюса и образование в шве дефектов.

· минимальные потери электродного металла;

· максимально надёжная защита зоны сварки;

· минимальная чувствительность к образованию оксидов;

· не требуется защитных приспособлений от светового излучения, так как дуга горит под слоем флюса;

· низкая скорость охлаждения металла обеспечивает высокие показатели механических свойств металла шва.

62. Электрошлаковая сварка. Преимущества и недостатки область применения.

Широко применяют в тяжёлом машиностроении для изготовления ковано-сварных и лито сварных конструкций .

Обладает рядом преимуществ по сравнению с автоматической сваркой под флюсом: повышенной производительностью, лучшей макроструктурой шва и меньшими затратами на выполнение одного метра сварного шва повышение производительности непрерывность процесса сварки выполнением шва за один проход при любой толщине металла и увеличением сварочного тока 1.5-2 раза.

Недостатки образования крупного зерна в шве и околошовной зоне в следствии замедленного нагрева и охлаждения. После сварки необходима термическая обработка для измелчения зерна в металле сварного соединения.

63. Плазменная сварка. Преимущества и недостатки область применения.

Плазменная сварка используется в авиационной, космической, машиностроительной, автомобилестроительной, электротехнической, пищевой промышленности и других отраслях народного хозяйства, где к конструкциям предъявляются высокие требования к качеству их изготовления.

К преимуществам сварки относят:

  • высокую концентрацию тепла при минимальной зоне теплового воздействия, что исключает в процессе сварки коробление деталей, а значит и отпадает необходимость в их правке;
  • стабильность горения дуги;
  • высокую скорость сварки (до 50 м/час), что позволяет повысить производительность труда;
  • проплавление металла на всю глубину, что позволяет перед сваркой не осуществлять разделку кромок;
  • широкие пределы регулирования сварочной дуги;
  • отсутствие разбрызгивания металла в процессе проведения работ;
  • экономичность;
  • высокое качество полученного сварного соединения;
  • возможность полной автоматизации сварочного процесса.

К недостаткам относят:

  • сложность обслуживания некоторых видов оборудования;
  • необходимость соблюдать технику безопасности.

64. Термомеханическая сварка и механическая. Электроконтактная сварка.

Термомеханический класс сварки основан на использовании совместного действия тепла и давления, вводимых в зону сварки. Термомеханический, или термопрессовый, класс сварки по принципу действия во многом аналогичен рассмотренному выше механическому классу сварки. Основное отличие в том, что тепловая энергия вводится в зону сварки извне. Тепловая энергия образуется при прохождении электрического тока через сопротивление по границе «металл—металл», введением теплоты от газовой горелки, электрическим разрядом от конденсатора. Используется также тепловая энергия от дугового разряда.

В соответствии с этим термомеханический класс сварки разделяют на следующие виды:

сварка аккумулированной энергией.

Электроконтактная сварка является одним из самых распространенных видов сварки металлов давлением. Электроконтактная сварка относится к видам сварки с кратковременным нагревом места соединения деталей без оплавления или с оплавлением и осадкой разогретых заготовок. Характерная особенность этих процессов – пластическая деформация, в ходе которой формируется сварное соединение. В процессе этой деформации происходит удаление окислов из зоны сварки, устранение раковин и местное уплотнение металла.

К механическому классу относят виды сварки, осуществляемые с использованием механической энергии и давления.

К механическому классу относят следующие виды сварки:

Механическая энергия используется для сближения поверхностей на уровень межатомных взаимодействий элементов свариваемых деталей с образованием устойчивых связей.

Простота оборудования и высокая скорость процесса сварки позволили занять механическому классу сварки достойное место в различных технологических процессах.

65. Точечная сварка и шовная.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9153 — | 7302 — или читать все.

188.64.174.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Преимущества и недостатки дуговой сварки

Вопросы, рассмотренные в материале:

  • Каковы основные преимущества и недостатки дуговой сварки
  • Какими преимуществами и недостатками обладают разные приемы дуговой сварки
  • Как минимизировать недостатки дуговой сварки

Одним из широко распространенных методов соединения металлических поверхностей является дуговая сварка. Суть данной технологии заключается в том, что тепловая энергия, необходимая для плавки соединяемых кромок металлических поверхностей с помощью электрода, получается посредством воздействия постоянного или высокочастотного тока. Остановимся более подробно на том, какие есть преимущества и недостатки дуговой сварки.

Основные преимущества и недостатки дуговой сварки

Процесс сварки происходит следующим образом: создается электрическая дуга, которую необходимо располагать между свариваемым изделием и электродом. Высокой температуры, которая создается дугой, достаточно для того, чтобы кромка металлического изделия и стержень электрода начали плавиться.

Металл изделия и электрода переходит в жидкую фазу и смешивается. Этот процесс получил название сварочной ванны. Ее размеры обычно составляют 8–15 мм в ширину, 10–30 мм – в длину и около 6 мм в глубину. Обмазка электрода имеет такой химический состав, при расплавлении которого над сварочной ванной образуется газовая область, не допускающая взаимодействия металла с кислородом. После того как воздействие сварочной дуги прекращается, металл переходит из жидкой фазы в твердую, образуя прочный шов между соединяемыми деталями. Слой шлака, который образуется поверх шва, подлежит удалению.

Преимущества дуговой сварки:

  • не требует сложного обучения;
  • высокая производительность процесса;
  • невысокая стоимость расходных материалов (электродов для сварки);
  • простота процесса легко позволяет произвести его автоматизацию и механизацию;
  • маленькая область нагрева поверхности.

Недостатки электродуговой сварки:

  • привязка к электросети;
  • невозможность работы без преобразователей тока (выпрямителей, инверторов) и трансформаторов;
  • наличие предварительного этапа подготовки свариваемых поверхностей.

Дуговая сварка: преимущества и недостатки использования разных приемов

Для того чтобы правильно «поджечь» электрод и получить сварочную дугу, существует два способа: касание (впритык) и чиркание («спичкой»).

Посредством «касания» сварочная дуга возникает при соприкосновении электрода с металлом. Стержень электрода надо постараться расположить перпендикулярно к поверхности. В момент прикасания надо начать медленный подъем электрода от поверхности. Это самое сложное во всем процессе: если соприкосновение металла и стержня электрода продлится чуть дольше, вместо дуги произойдет так называемое «залипание». В этом случае надо электрод рывком наклонить в сторону и отломать, а затем повторить попытку получить дугу, уменьшив время касания.

Если произошло залипание, на электроде обычно образуется козырек из окалины, который необходимо удалить, сделав резкий удар по поверхности. Такой выступ мешает получить сварочную дугу. Иногда приходится брать новый электрод, если получить дугу после нескольких попыток не выходит. Этот момент вызывает определенные трудности у начинающих сварщиков, поэтому существует второй способ – «чирканье».

Читать еще:  Как сваривают алюминий аргоном

Этому методу, который напоминает зажигание спички, отдают предпочтение даже многие опытные сварщики. Движение получается плавным, нет необходимости резкой смены его направления, поэтому залипания не происходит, сварочная дуга возникает без проблем. Единственным недостатком способа «чирканье» является невозможность его применения в ограниченном пространстве – может не хватить места для размаха.

Рекомендовано к прочтению

Когда получить сварочную дугу не получается обоими способами, проверяется правильность установки стержня и осматривается место сварки на предмет наличия слишком толстого слоя покрытия.

Положение электрода при сварке металлических поверхностей также имеет большое значение. От этого зависит качество полученного шва. Сварщики работают в разнообразных условиях, поэтому электрод может располагаться в самых разных вариантах. И все же существует три основных положения стержня, при которых процесс сварки происходит наиболее эффективно.

  • Первый вариант – «углом вперед». Стержень устанавливается под углом 30–60° к вертикали, и движение начинается вперед, в сторону от сварщика. Этот способ удобен для горизонтальных, вертикальных и потолочных швов, при сварке стыков труб.
  • Второй вариант – «под прямым углом». Электрод располагается перпендикулярно свариваемым поверхностям. К этому способу прибегают в случае невозможности наклонить электрод, в местах с ограниченным доступом. Такая техника сварки намного сложнее традиционного метода «под углом».
  • Третий вариант – «углом назад». Угол наклона составляет те же 30–60° к вертикали, но движение электрода производится к сварщику. Этот вариант используют при сварке угловых, стыковых и швов на небольших участках.

При сварке всеми тремя способами необходимо сохранять зазор между электродом и металлом около 5 мм, учитывая тот фактор, что стержень будет постепенно выгорать, и его надо будет двигать к поверхности шва.

Когда электрод выставлен под нужным углом и на нужном расстоянии, можно начинать процесс сварки – наплавление валика. Процесс заключается в совершении колебательных движений, «подгребающих» металл к центру сварочной дуги. При правильной технике получается крепкий, слегка волнистый шов.

Если сварочный стык сделан не до конца, а стержень электрода выгорел, необходимо приостановить работу для замены электрода. После этого надо зажечь дугу на расстоянии 10–12 мм от углубления в конце шва (кратера), расположить электрод так, чтобы расплавленный металл старого и нового электродов смешался, и закончить сварку.

У каждого опытного мастера складывается своя техника – движения могут быть поступательные, продольные, поперечные, но результатом должен быть прочный шов заданной формы.

Также важную роль в процессе сварки имеет его правильное завершение. Сварочная дуга не должна обрываться в конце шва, необходимо отступить несколько миллиметров назад в уже созданный шов, а затем быстро убрать электрод от кратера.

Можно завершить сварку по-другому. Альтернативный способ называется «заварка кратера». При достижении конца шва дуга обрывается и сразу зажигается в центре кратера, затем электрод смещается к краю и передвигается на конец шва. Создается необходимая высота стыка, затем разрывают сварочную дугу.

Как подготовить детали, чтобы минимизировать недостатки дуговой сварки

  • Особенности разметки заготовок.

Перед сварочными работами проводится подготовительный этап, необходимый для того, чтобы правильно разметить заготовки изделий, так как профили металла могут отличаться от размеров частей свариваемого изделия. Поэтому сначала на материале делается разметка в соответствии со спецификацией требуемого изделия, а затем профиль подрезается.

Разметку можно делать посредством ручной, оптической, мерной резки.

При ручной разметке используют линейку, штангенциркуль или шаблон из алюминия или профиля, если надо разметить несколько одинаковых заготовок. Ручной способ имеет низкую производительность работы за счет своей трудоемкости.

Для оптической разметки предназначены разметно-маркировочные машины. Они отличаются высокой скоростью– до 10 метров в минуту. Такой машине задается программа под нужные параметры заготовки, разметка наносится с помощью пневматического крена.

При использовании технологии мерной резки специальные станки программируются под заданную конфигурацию заготовок, и производится резка изделия без предварительной разметки.

После разметки производится резка заготовок, и от качества исполнения этого этапа работы зависит успех сварки. Этот процесс может быть механическим и термическим.

В процессе механической резки задействованы ручные и механические инструменты.

При термической резке происходит плавление металла по уже сделанной разметке. Этот процесс производится вручную, с помощью кислородного резака, дуговой сварки, плазматрона или с применением станков и аппаратов, работающих в автоматическом и полуавтоматическом режиме. Термическая резка позволяет разрезать металлические заготовки в различных направлениях, а также криволинейно.

  • Зачистка изделия.

После резки необходимо обработать поверхности заготовок – зачистить от механических загрязнений и химических пленок. Присутствие даже маленьких частичек посторонних элементов может стать причиной растрескивания конструкции, пористости, напряжения металла и ухудшения качества сварного шва.

Нужно также убрать с поверхности металла оксидную пленку, образующуюся при контакте с кислородом. Она обладает жаростойкостью и не позволяет произвести качественную сварку. Удаление ее производят вручную с помощью болгарки или щетки для металла.

При серийном производстве для удаления пленки используют пескоструйные и дробеструйные установки. Для обработки деталей из цветного металла часто используют химический способ очистки – заготовки погружаются в емкость со специальным химическим составом на определенное время.

  • Подготовка кромок под сварку.

Предварительной обработки требуют также кромки изделий, особенно если они имеют большую толщину. Их зачищают и придают нужную конфигурацию. Края могут быть плоские, V-образные и Х-образные. Плоские бывают при сварке тонких изделий, V-образные и Х-образные делают при соединении толстых заготовок. Кромки не требуют обработки при толщине изделия не более 3 мм.

Процесс подготовки кромок для сварки может содержать операции по обработке угла разделки, ширины зазора, регулировке длины откоса. Особенно важна предварительная подготовка краев у труб различной толщины для создания качественного и прочного соединения. Для этого подбирается правильный откос, делающий переход между двумя деталями плавным. Такой способ снимает напряжение нагрузки во время эксплуатации готового изделия.

Кромки труб можно подрезать холодным способом с использованием ручных инструментов или режущих станков, а также термическим способом. Для последнего используются ручные и автоматические горелки.

Холодный способ позволяет производить более качественную конечную сборку изделия, точность которой в несколько раз превосходит сборку после термической обработки. Достаточно часто после термической резки требуются дополнительные действия по приданию фаске нужных размеров и формы, что особенно важно при сварочных работах с трубопроводами.

  • Сборка изделий под сварку.

Этот этап является последним подготовительным шагом перед процессом сварки. Он нужен для фиксации отдельных деталей конструкции определенным образом, чтобы после сварки они остались в заданном положении. Для более качественного шва нередко приходится не просто расположить детали рядом или закрепить специальным устройством, но выполнить точечную приварку в нескольких местах. Подобное закрепление позволяет расположить заготовку в таком положении, в котором максимально удобно исполняется горизонтальный шов. Кроме того, вся конструкция надежно фиксируется и не теряет форму.

Сборка производится после окончания процесса подготовки поверхности металла для сварки. Необходимо предусмотреть свободный доступ к местам соединения деталей, в которых планируются сварочные работы. Все части изделия надежно скрепляются во избежание деформации в процессе сварки.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Автоматическая сварка под флюсом VS полуавтоматическая сварка

Сварка считается удобным и практичным способом соединения металлов. Со времени изобретения она стала неизменным спутником подавляющего большинства производственных или строительных процессов. Каждый из ее видов имеет свои сильные и слабые стороны.

Автоматическая сварка под флюсом

При использовании такой сварки весь процесс автоматизирован. Он выполняется с помощью подвесного устройства или самоходного сварочного трактора. Автоматы самостоятельно зажигают сварочную дугу, регулируют ее параметры и гасят при необходимости, обеспечивают подачу флюса и проволоки, а также перемещают горелку вдоль шва.

Весь процесс сварки происходит под слоем флюса, расходного материала, предназначенного для защиты сварочной ванны от контактов с воздухом, а также раскисления и легирования расплавленного металла. После сгорания флюс формирует легкоотделимую шлаковую корку. Она замедляет кристаллизацию металла и создает необходимые условия для выхода из сварочной ванны растворенных газов. Это позволяет минимизировать количество дефектов в швах.

Основные принципы автоматической сварки были сформулированы еще в конце XIX века. Однако практические основы таких устройств были заложены известным советским изобретателем Д.А. Дульчевским значительно позже, в 1927 году. Именно он и стал создателем первого в мире сварочного автомата.

Преимущества

Автоматическая сварка имеет ряд особенностей:

  • Фактически весь процесс соединения металлов происходит в идеальных условиях. Их создает газовый пузырь, стенками которого является флюс. Это снижает потери металла на разбрызгивание, испарение и окисление до 2-5 % (при использовании ручной дуговой сварки аналогичный показатель доходит до 30 %).
  • Автоматическая сварка позволяет максимально увеличить производительность труда по сравнению с ручной дуговой. Фактически этот параметр вырастает в 10 раз. Такой результат дает работа на сварочных токах до 2000 А. В итоге увеличивается глубина проплавления и появляется возможность соединения деталей толщиной до 12 мм (в случае односторонних стыковых швов) без разделки их кромок.
  • После выполнения автоматической сварки нет необходимости в очистке металла от брызг. Это снижает общую трудоемкость работ.
  • Такой вид соединения металлов обеспечивает постоянные геометрические размеры, форму и химический состав швов.
  • Сварочная ванна надежно защищена от контактов с воздухом. В дополнение к этому шлаковая корка замедляет кристаллизацию металла. В результате вероятность образования дефектов в швах минимизируется.
  • При выполнении автоматической сварки дуга зажигается и горит под слоем флюса, а выделение пыли и вредных газов незначительно, поэтому сварщику необязательно использовать индивидуальную защиту для глаз и лица.
  • Еще одним существенным достоинством этого вида соединения металлов является снижение энергозатратности на 40 % по сравнению с ручной дуговой сваркой. Это возможно благодаря рационализации всего процесса.
Читать еще:  Выбор ручного фрезера по дереву форум

Недостатки

Имея такой солидный перечень достоинств, автоматическая сварка не лишена и недостатков:

  • Главным из них является высокая текучесть расплавленного флюса и металла. В результате сварочные работы можно выполнять только в нижнем положении. Максимальное отклонение шва от горизонтали не должно превышать 10-15°. Это накладывает ограничение на использование автоматической сварки для соединения труб диаметром менее 150 мм.
  • Такой способ соединения металлов не отличается высокой маневренностью. Он подходит только для получения прямолинейных или кольцевых швов. По этой же причине его нельзя использовать в труднодоступных местах.
  • При выполнении автоматической сварки важно не допускать увеличенных зазоров между кромками деталей. Это может привести к вытеканию флюса и расплавленного металла и образованию дефектов в швах.
  • Горение дуги под слоем флюса не позволяет визуально контролировать или корректировать процесс сварки.
  • Несмотря на отсутствие необходимости использовать индивидуальную защиту, автоматическая сварка наносит определенный вред здоровью из-за выделения вредных газов.
  • Обязательное использование флюса повышает себестоимость сварки.

Сфера применения

Автоматическая сварка используется для работы с различными металлами и сплавами толщиной 1,5-150 мм. Ее применение возможно только в заводских условиях. Она востребована при постройке судов и железнодорожных вагонов, для изготовления различных резервуаров большого объема и соединения труб диаметром более 150 мм. Наиболее активное применение оборудование для автоматической сварки находит в серийном производстве крупногабаритных изделий для формирования прямолинейных или кольцевых швов.

Полуавтоматическая сварка

В случае полуавтоматической сварки механизирован только один процесс: подача электрода. Все остальные операции выполняются оператором вручную. В качестве электрода используется сварочная проволока в кассетах. Для защиты сварочной зоны от контактов с воздухом применяются активные (углекислый) или инертные газы (аргон, гелий).

Выполнение полуавтоматической сварки

Процесс применения полуавтоматической сварки для промышленных целей впервые был разработан Центральным научно-исследовательским институтом технологии и машиностроения в 50-х годах ХХ века.

Преимущества

Полуавтоматическая сварка тоже имеет ряд преимуществ:

  • Она отличается очень малой зоной термического воздействия, поэтому позволяет варить без прожогов детали толщиной до 0,5 мм.
  • Электрод и сварочная ванна визуально доступны, поэтому в процесс сварки можно вовремя вносить необходимые коррективы.
  • С помощью полуавтоматов допускается варить разнотолщинные детали.
  • Такой способ соединения металлов подходит для выполнения швов в любых пространственных положениях, включая труднодоступные места.
  • Производительность полуавтоматической сварки примерно в три раза выше, чем ручной. При этом потери металла от разбрызгивания и испарения тоже минимальны.
  • Активный или инертные газы обеспечивают надежную защиту швов от воздействия воздуха. Количество дефектов в них минимально.
  • Такой способ соединения металлов позволяет выполнять без скоса кромок стыковые швы для деталей толщиной до 8 мм и тавровые швы для деталей толщиной до 30 мм.
  • Наиболее популярный для полуавтоматической сварки углекислый газ стоит значительно дешевле флюса, используемого при автоматической сварке.
  • В процессе выполнения работ не образуется шлаковая корка, так что зачистку швов выполнять не надо. Это особенно полезно при сварке в несколько проходов.
  • Комплект оборудования для полуавтоматической сварки компактней и проще, чем для автоматической.

Недостатки

Одновременно следует выделить определенные недостатки полуавтоматической сварки:

  • В данном случае дуга не скрыта под слоем флюса, поэтому сварщик подвергается интенсивному излучению. Выполнять такие работы без средств защиты нельзя.
  • Применяемый углекислый газ тяжелее воздуха, он способен скапливаться в рабочей зоне. Для безопасной работы требуется качественная вентиляция.
  • При отказе от углекислого газа разбрызгивание металла резко возрастает.
  • Применение полуавтоматической сварки ограничено закрытыми помещениями. Для открытого воздуха она не подходит. В этом случае газовая защита будет сдуваться, вследствие чего пострадает качество сварных швов.

Сфера применения

Полуавтоматическая сварка используется для соединения деталей толщиной 0,5-100 мм. Она может применяться как в заводских условиях, так и в частных домохозяйствах. Главным отличием полуавтоматической сварки от автоматической является возможность сварки швов любой геометрической формы во всех пространственных положениях. По этой причине она востребована при мелкосерийном и серийном изготовлении различных сложных металлоконструкций.

Автоматическая сварка в сварочном мире подобна гоночному автомобилю

Полуавтоматическая сварка похожа на езду по трассе со сложным профилем

Выводы

Оба вида сварочного оборудования используются в промышленном производстве. При этом автоматическая сварка является более производительной, но подходит только для выполнения прямолинейных или кольцевых швов при изготовлении крупных изделий из металла. Полуавтоматическая сварка в три раза уступает автоматической по производительности, но с ее помощью можно варить любые швы. Она особенно полезна при сборке сложных по форме металлоконструкций.

Особенности и преимущества автоматической сварки

Автоматическая сварка имеет еще одно название, которое раскрывает ее суть – электродуговая сварка под флюсом.

Это одна из самых популярных технологий соединений металлических деталей в промышленности в течение долгого времени. Причина тому – долговременность сварочных швов и простота исполнения. Флюсовые смеси применяются для лучшего сцепления соединяемых поверхностей.

Лучшая в своем роде

Это автоматический вид сварки с механизированным способом выполнения рабочего процесса. Физический процесс простой и понятный: специальная электрическая дуга плавится под действием высокой температуры.

В результате пламя горения направляется на так называемый сварочный объект – проволоку, которая расположена в направлении самого шва. Дуга горит под прикрытием мощного гранулированного одеяла – флюсовой смеси. Благодаря высокой температуре они начинают плавиться в сварной ванне.

Вокруг нее формируется специальная эластичная пленка, которая является отличной защитой металла и электрической дуги от проникновения воздуха, и образования главного врага хорошего шва – оксидной пленки.

После процесса в период остывания флюсовые гранулированные смеси превращается в шлак, который покрывает новый сварочный шов, и который необходимо удалить самым простым образом – механическим.

Если работа полуавтоматического вида, мастеру необходимо принимать довольно активное участие в процессе: держать и направлять присадочную проволоку, которая подается автоматически. Вдобавок нужно следить за поведением электрода: направление его движения и скорость перемещения и угол наклона.

Если же применяются полностью автоматическая сварка, то скорость и направление движения электрода выполняет автомат. Для данного метода нужны ровные свариваемые поверхности и швы углового типа.

В последнее время чрезвычайно популярна тандемная технология работы с металлами, в которой применяются оба метода, которые проводятся параллельно друг к другу в одной и той же свариваемой плоскости заготовки.

Такое сочетание значительно повышает качество шва за счет оптимальной величины сварочной ванны и быстрого поджига электрической дуги.

Чем хороша электродуговая сварка под флюсом

Во-первых, тратится мало флюсовой смеси – иными словами экономятся ресурсы без потери качества шва. Это происходит благодаря эффективной конструкции с отличным сцеплением металлов.

В дополнение играет роль еще один фактор: это аккуратное и очень тонкое покрытие остаточного сварочного шва защитным слоем шлака, который защищает его от негативного влияния оксидов, образующихся из воздуха. Для соединения, к примеру, труб это самый оптимальный вариант сварки без каких-либо сомнений.

Преимуществ у этой технологии много, перечислять их легко и приятно:

  • Хорошая скорость в работе, что дает неплохую производительность общего процесса.
  • Отличная экономия расходных материалов: металл электродов теряется всего на 2%.
  • Технология не вызывает образования брызг из металла, что приводит к экономии также и основного металла.
  • Участок соединения поверхностей хорошо прикрыт от негативного воздействия воздуха и окружающей среды.
  • Минимальное образование оксидов благодаря использованию флюсов.
  • Великолепная мелкочешуйчатая структура и эстетика сварочного шва вследствие ровного пламени дуги в течение всей сварки.
  • Роль главного защитника от вредных воздействий играет флюс, поэтому нет надобности в дополнительных защитных устройствах и способах.
  • Интенсивное охлаждение металла после процесса ведет к образованию устойчивого соединения.
  • Это довольно простой метод для исполнения, ему не нужно специально учиться.

Без минусов не обойтись

Недостатков у способа намного меньше, некоторые из них можно расценивать как технические особенности:

  • Что уж говорить, автоматическая сварка – метод недешевый и поэтому доступный далеко не для каждого.
  • Непростое определение верного расположения материала для фиксации из-за технических характеристик процесса.
  • Небезвредный способ для человека, который его выполняет.
  • Часто нужно оборудование, которое имеется только на промышленных предприятиях. Эта особенность делает методику редким гостем в кустарных мастерских.

Где применяется автоматическая сварка?

Метод чудесный с точки зрения универсальности и эффективности, поэтому применяться может где угодно: от домашних мастерских до крупных промышленных предприятий, включая сварку труб разного калибра и назначения.

Его можно использовать в следующих видах работ:

  • монтаж сложных конструкций;
  • соединение металлов с большой площадью поверхности для сцепки;
  • соединение каких угодно металлов или сплавов вплоть до соединения разнородных по составу заготовок.

В свое время, когда начали применять защиту в виде флюса, в промышленности произошла почти революция в самом хорошем смысле слова. Сначала флюсы шли при работе только с низкоуглеродистой сталью.

Применение расширялось и сейчас широко используются в следующих случаях:

  • сварка сложных вертикальных швов с принудительным или свободным формированием шва;
  • монтаж труб разного калибра, включая большие диаметры;
  • соединение кольцевых швов со сложным рабочим процессом по удержанию сварочной ванны и растекания металла, с ручным подвариванием, на станках с ЧПУ.

Оборудование и инструменты

Сварочных автоматов для данного метода на рынке великое множество с самыми разными характеристиками и назначением. Самые лучшие и удобные из них – это модели, в характеристиках которых присутствует способность поддерживать подачу проволоки.

При выборе оптимальной модели для своей работы нужно учитывать еще один факт: если у вас уменьшится длина электрической дуги, другие параметры наоборот увеличатся: повысится скорость плавления металлов, увеличится сила сварочного тока.

При таких условиях нужен специальный источник питания с определенными вольтамперными свойствами.

В случае снижения скорости подачи электродов, в аппаратах для автоматической сварки головки с регулятором напряжения мгновенно перестроятся и изменят длину дуги. В этом случае вольтамперные параметры должны пропорционально уменьшиться.

Если у вас аппарат, в которых скорость подачи электродов не меняется, все равно придется поработать, чтобы найти оптимальное значение сварочного тока. Напряжение в электрической дуге также придется настраивать вручную и опытным способом, меняя настройки внешнего источника питания.

Ссылка на основную публикацию
Adblock
detector