Как определить скорость резания на токарном станке - Строительство домов и бань
47 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как определить скорость резания на токарном станке

Режимы резания при токарной обработке

При токарной обработке с заготовки за определенное число проходов снимается лишний металл, называемый припуском. В результате получается изделие заданной формы с требуемыми размерами и классом шероховатости поверхностей. В общем виде операция точения детали на токарном станке выглядит следующим образом: резец последовательно перемещается с заданной подачей вглубь металла вращающейся заготовки, при этом его режущая кромка за каждый оборот удаляет с заготовки заданную толщину металла.

Режимы резания при токарной обработке определяют на основании ряда технических показателей, среди которых самые значимые — это подача инструмента и частота вращения детали, закрепленной в шпинделе станка. Правильный выбор и применение режимов обработки гарантируют не только геометрическую точность и экономичность изготовления, но и сохранность детали, инструмента и оборудования, а также безопасность станочника.

Основные параметры

Одна из главных задач технологической подготовки производства при токарных работах — это определение рациональных режимов резания. При их расчете должны учитываться особенности обрабатываемого изделия и возможности станочного парка, а также наличие соответствующего инструмента, приспособлений и оснастки. Компоновка узлов и агрегатов токарного станка позволяет реализовать два определяющих вида движения, которые формируют заданную конфигурацию поверхностей детали: вращение заготовки (главное движение) и перемещение резца вглубь и вдоль поверхности детали (подача). Поэтому основными технологическими параметрами для токарного оборудования являются:

  • глубина резания;
  • подача и обороты шпинделя;
  • скорость резания.

Существует взаимовлияние режимов резания и основных элементов производственной экономики. Среди них самые значимые — это:

  • производительность оборудования;
  • качественные показатели производства;
  • стоимость выпускаемых изделий;
  • износ оборудования;
  • стойкость инструмента;
  • безопасность труда.

Понятие о режимах резания

Точение на предельных режимах повышает производительность токарного оборудования. Однако такая работа станков не всегда возможна и целесообразна, т.к. существуют ограничения в виде предельной мощности главного привода, жесткости и прочности обрабатываемых изделий, а также технологических параметров инструмента и оснастки.

Еще одним ограничением являются характеристики отдельных материалов. К примеру, титан и нержавеющая сталь для токарной обработки являются одними из наиболее сложных материалов и требуют особого подхода при определении параметров технологической операции.

При неправильном расчете или подборе технологических параметров работа на высоких скоростях может вызвать повышенную вибрацию и разбалансировку отдельных механизмов токарного станка. Это приводит к понижению точности и повторяемости размеров изделий. Кроме этого повышается риск поломки инструмента и выхода из строя станка.

Глубина

Припуск — это толщина металла, удаляемого токарным резцом с заготовки до достижения ею чистового размера. При обточке и расточке он удаляется поэтапно за заданное число резов. Толщина металла, удаляемого за единичный проход резца, в механообработке носит название глубина резания и измеряется в миллиметрах. В технологических расчетах и таблицах этот параметр обозначают буквой t.

При операциях обточки она равна 1/2 разности диаметров перед и после обточки детали и вычисляется по формуле:

где t – глубина резания; D — диаметр заготовки; d – заданный диаметр детали.

При операциях подрезки — это размер слоя металла, удаляемого с торца заготовки за единичный проход резца, а при проточке и отрезке — глубина канавки.

В идеальном случае на удаление припуска требуется один проход резца. Но в реальности токарный процесс, как правило, включает в себя черновой и чистовой этап обработки (а для поверхностей с повышенной точностью – и получистовой). При хороших характеристиках и форме заготовки обе эти операции выполняются за два-три прохода.

Подача

Подача при токарной обработке — это длина пути при поперечном перемещении режущей кромки резца, совершаемом ей за единичный оборот шпинделя. Ее измеряют в мм/об, в технологической документации обозначают буквой S и подбирают по технологическим справочникам. Величина подачи зависит от мощности главного привода, значения t, габаритов и физических свойств обрабатываемой заготовки. При точении она рассчитывается по формуле:

Производительность токарного оборудования напрямую связана с величиной подачи.

При операции точения подача на токарном станке должна устанавливаться на максимально возможное число, но с учетом технологических параметров станка и применяемого инструмента. При операциях по черновому точению она зависит от мощности главного привода и устойчивости детали. А при чистовом точении основным критерием является заданный класс шероховатость поверхности.

Скорость

Скорость резания при токарной обработке — это суммарная траектория режущей кромки резца за единицу времени. Ее размерность — в м/мин, а в таблицах и расчетах ее обозначают буквой v и подбирают по технологической документации или рассчитывают по формулам. В последнем случае расчет происходит в следующей последовательности:

  • вычисляется величина t;
  • по справочнику выбирается значение S;
  • определяется табличное значение vт;
  • рассчитывается уточненное значение vут (умножением на корректирующие коэффициенты);
  • с учетом скорости вращения шпинделя выбирается фактическое значение vф.

Этот параметр является одной из основных характеристик производительности металлорежущего оборудования и напрямую влияет на эксплуатационные режимы работы токарного станка, износ инструмента и качество обрабатываемой поверхности.

Выбор режима на практике

Расчет режимов резания при токарной обработке производится специалистами отдела главного технолога предприятия или технологического бюро цеха. Полученные результаты заносят в операционную карту, в которой приводится последовательность этапов, перечень инструмента и режимы изготовления требуемой детали на конкретном токарном станке. Заводские и цеховые технологи рассчитывают параметры технологического процесса и выбирают соответствующие инструмент и оснастку, используя конструкторские чертежи, эмпирические формулы и табличные показатели из технологических справочников. Но на практике реальные условия точения могут отличаться от нормативных по следующим причинам:

  • снижение точности оборудования в результате износа;
  • отклонения в геометрических размерах и физических характеристиках заготовки.
  • несоответствие характеристик материала расчетным.

Элементы резания при токарной обработке

Поэтому для уточнения расчетных технологических режимов применяют метод пробных проходов: точение небольших участков поверхности с подбором режимов и последующим замером геометрии и качества поверхности. Главные недостатки такой отладки технологического процесса — это возрастание трудозатрат и сверхнормативное использование производственных ресурсов. Поэтому его используют только в особых случаях:

  • единичное изготовление без операционной карты;
  • определение точности работы токарного оборудования перед запуском партии;
  • работа с неполноценными заготовками (брак и неточность размеров);
  • обточка литейных и кованых заготовок, не прошедших предварительную обдирку;
  • запуск в производство изделий из новых материалов.

При первом запуске в производство нового изделия, обрабатываемого на автоматизированном оборудовании, также производят пробное точение и подбирают вручную режимы резания. Токарный станок с ЧПУ выполняет все операции по программе, поэтому оператор не всегда может корректировать параметры его работы.

Кроме углеродистых сталей на токарном оборудовании обрабатывают такие металлы как легированная сталь, чугун, титан, сплавы алюминия, бронза и другие сплавы меди. Помимо этого, такую обработку используют для точения материалов с низкой температурой плавления и воспламенения, таких как пластики и дерево. При работе с пластмассами токарные станки чаще всего применяют при обработке деталей из фоторопласта, полистирола, полиуретана, оргстекла, текстолита, а также эпоксидных и карбомидовых композитов. Все перечисленные группы материалов имеют свои особенности расчета и практического применения режимов точения. Это хорошо видно на примере токарной обработки нержавейки — самого распространенного после углеродистой стали конструкционного материала.

Нержавеющая сталь характеризуется низкой теплопроводностью, вязкостью, коррозионной стойкостью, сохранением прочности и твердости при высоких температурах, а также неравномерным упрочнением. Кроме того, в состав некоторых сортов нержавеющей стали входят легирующие добавки повышенной твердости с абразивными характеристиками. Поэтому при работе с ней на практике применяют специальные режимы точения и методы охлаждения и смазки детали.

Обработка нержавейки ведется на повышенных оборотах при уменьшенной подаче. Высокая вязкость этого материала способствует созданию непрерывной вьющейся стружки.

Для решения этой проблемы применяют резцы со стружколомом. Для отвода тепла и смазки обрабатываемой поверхности в рабочую зону подается специальная СОЖ (смазочно-охлаждающей жидкости) на основе олеиновой кислоты. Это уменьшает нагрев заготовки и снижает износ резца. В последнее время все чаще применяют современные методы, которые также уменьшают износ инструмента: направление в рабочую зону ультразвуковых волн и подвод к металлу слаботочных импульсов.

Вычисление скорости резания

Время точения металла (tосн, основное время) — самая затратная составляющая в суммарном времени изготовления единичного изделия. Поэтому от скорости выполнения этой технологической операции напрямую зависит экономическая эффективность использования токарного оборудования. Правильный расчет скорости резания при токарной обработке важен не только с точки зрения стоимостных показателей производственной операции. Ошибки в расчете и применении этого параметра может привести не только к браку детали, но и к повреждению токарного оборудования, оснастки и инструмента. Далее приводится последовательность расчета этого показателя для самой распространенной операции — обточки цилиндрической поверхности.

Основные факторы, влияющие на скорость резания

Скорость резания v имеет размерность м/мин и в общем виде вычисляется по формуле:

где D — диаметр заготовки в мм; n — скорость шпинделя в об/мин.

Но на токарном оборудовании невозможно количественно задать v в качестве параметра управления. При работе на токарных станках предусмотрена регулировка только оборотов шпинделя и подачи инструмента, которые зависит не только от значения v, но и от ряда других факторов: материала детали, мощности главного привода, вида точения и характеристик режущего инструмента. Поэтому при расчете режимов в первую очередь определяют расчетные обороты шпинделя:

Читать еще:  Как проверить компрессию бензопилы в домашних условиях

На основании полученного результата по таблицам справочной литературе выбирают соответствующее значение v, которое зависит глубины точения, подачи, материала, типа резца и вида операции.

Для расчета теоретической глубины резания t на основании чертежа определяют размерные характеристики детали и заготовки, а затем с учетом геометрических параметров инструмента вычисляют ее по формуле:

где D — диаметр заготовки; d – конечный диаметр детали.

После вычисления величины t по справочникам определяют табличное значение подачи S в мм/об. В справочных таблицах учтены: вид материала (различные стали, бронза, чугун, титан, алюминиевые сплавы), тип точения (черновое, чистовое), параметры резца и геометрия его подхода к обрабатываемой поверхности. Затем по технологическим таблицам на основании полученных величин t и S определяют vτ — табличное значение скорости резания.

Далее vτ должна быть скорректирована в соответствии с реальными условиями точения, к которым относят: период стойкости и технические параметры резца, прочностные характеристики материала, физическое состояние обрабатываемых поверхностей, геометрия резания.

Корректировка vт осуществляется с помощью группы поправочных коэффициентов:

где vут — уточненная скорость резания; K1 — коэффициент, зависящий от времени работы резца; K2, K4 — коэффициенты, зависящие от технических параметров резца; K3 — коэффициент, зависящий от состояния обрабатываемой поверхности; K4 — коэффициент, зависящий от материала резца; K5 — коэффициент, зависящий от геометрии обработки.

После расчета vут вычисляют уточненную скорость вращения шпинделя nут по следующей формуле:

Значение nут должно лежать в диапазоне паспортных скоростей главного привода станка, которые приведены в заводской документации токарного оборудования. Если полученная в результате расчетов nут не имеет точного соответствия в таблицах станка, то необходимо применить ближайшее самое меньшее число.

Формулы для токарной обработки

На последнем этапе рассчитывают фактическую скорость резания vф:

Vф напрямую связана с мощностью главного двигателя станка. Поэтому она является основным параметром при выборе конкретного типа токарного станка для обработки требуемой детали.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Главные движения: скорость резания и подача при токарной обработке

И снова здравствуйте! Сегодня тема моего поста главные движения при токарной обработке такие как скорость резания и подача. Эти две составляющие режимов резания являются основополагающие при токарной обработке металла и других материалов.

p, blockquote 1,0,0,0,0 —>

p, blockquote 2,0,0,0,0 —>

p, blockquote 3,0,0,0,0 —>

Скорость резания и подача при токарной обработке.

p, blockquote 4,0,0,0,0 —>

Главное движение или скорость резания.

Если мы посмотрим на рисунок который приведен выше то увидим, что главное движение при токарной обработке тел вращения на токарном станке совершает именно заготовка. Она может вращаться как по часовой стрелке так и против. В основном как видим вращение направленно на резец, так как это обеспечивает срезание поверхностного слоя с заготовки и образования стружки.

p, blockquote 5,0,1,0,0 —>

Вращение заготовке придает шпиндель токарного станка и диапазон оборотов шпинделя (n) достаточно большой и может регулироваться в зависимости от диаметра детали ее материала и применяемого режущего инструмента. При точении в основном это токарные резцы различных видов и назначения.

p, blockquote 6,0,0,0,0 —>

Скорость резания при токарной обработке рассчитывается по формуле:

p, blockquote 7,0,0,0,0 —>

p, blockquote 8,0,0,0,0 —>

p, blockquote 9,0,0,0,0 —>

V — это само главное движение именуемое скорость резани.

p, blockquote 10,1,0,0,0 —>

П — это постоянная константа которая равняется 3,14

p, blockquote 11,0,0,0,0 —>

D — диаметр обрабатываемой детали (заготовки).

p, blockquote 12,0,0,0,0 —>

n — число оборотов шпинделя станка и зажатой в нем детали.

p, blockquote 13,0,0,0,0 —>

Движение подачи при токарной обработке.

Про движение подачи вы наверное уже поняли. ДА это перемещение режущего инструмента который закреплен в резцедержателе (для данного эскиза). Крепление резцов может быть и другим, но об этом позже . Для осуществления подачи на токарном станке используется специальная кинематическая схема шестерен. Если это простое точение то тут не важна синхронизация вращения обрабатываемой заготовки и режущего инструмента, но если вы решите нарезать резьбу то тут все будет по другому. Об этом поговорим в следующих статьях. Если не хотите пропустить их то подписывайтесь на обновления моего блога .

p, blockquote 14,0,0,0,0 —>

Формулы для расчета движения подачи на токарном станке выглядит по разному,ведь это может быть как подача на оборот так и минутная подача.

p, blockquote 15,0,0,1,0 —>

Подача на оборот — это расстояние которое проходит режущий инструмент в нашем случае резец за один оборот обрабатываемой детали. В зависимости от вида обработки определение может быть другим. Например при фрезеровании — это расстояние на которое перемещается заготовка относительно фрезы за один ее оборот.

p, blockquote 16,0,0,0,0 —>

Минутная подача — это расстояние которое проходит резец за одну минуту (что и логично из названия).

p, blockquote 17,0,0,0,0 —>

Скорость резания и подача. Заключение.

И так можно подвести итог. Сегодня мы с вами узнали про главные движения при токарной обработке такие как скорость резания и подача. Я не ставлю своей целью загрузить вас массой формул и тягомотных определений их вы можете найти в различных книгах про машиностроение и резание металлов, я хочу вам разъяснить основные понятия человеческим и понятным языком. Думаю у нас все получится .

На сегодня все. До скорой встречи друзья!

p, blockquote 19,0,0,0,0 —> p, blockquote 20,0,0,0,1 —>

Скорость резания

Расчёт скорости резания при точении и растачивании

Скорость главного движения резания (скорость резания) — это скорость рассматриваемой точки режущей кромки или заготовки в направлении главного движения резания.

Скорость резания рассчитывают по эмпирическим формулам, установленным для каждого вида обработки. Величина скорости резания определяется из условия сохранения периода стойкости режущего инструмента.

При продольном и поперечном точении, при растачивании скорость резания, м/мин, рассчитывают по формуле

, (1)

Cv; xv; yv; mv — эмпирические коэффициент и показатели степени, приведённые в табл.14 для «стандартных» условий обработки.

Под «стандартными» условиями понимают:

обработка стали 45, с s в = 750 МПа, без корки, режущим инструментом из твёрдого сплава Т15К6 и т.д.

— период стойкости режущего инструмента, мин;

— глубина резания, мм;

— подача, мм/об .

Реальные условия обработки зачастую существенно отличаются от «стандартных«. Поэтому, для получения значения скорости резания в реальных условиях, вводится поправочный коэффициент kv, учитывающий их отличие от «стандартных«.

(2)

— коэффициент, учитывающий влияние обрабатываемого материала (табл.7- 10);

— коэффициент, учитывающий состояние поверхности заготовки (табл.11);

— коэффициент, учитывающий влияние инструментального материала (табл. 12).

Скорость резания при отрезании, прорезании пазов и фасонном точении определяется по формуле

(3)

Определённая по формулам (1) и (3) скорость резания является расчетной и носит рекомендательный характер.

По расчётной скорости резания определяется требуемая частота вращения шпинделя станка, мин -1

, (4)

— диаметр обрабатываемой поверхности, мм.

По паспортным данным станка подбирается nст , ближайшее к расчётному, меньшее , паспортное значение частоты вращения шпинделя или (при выполнении лабораторных работ) ближайшее меньшее целое число, и определяется фактическая скорость резания, м/мин

(5)

Во всех дальнейших расчётах участвуют значения фактической скорости резания (Vф) и паспортное значение частоты вращения шпинделя станка(nст) .

Режимы резания при токарной обработке: описание, особенности выбора и технология

Для того чтобы обычную заготовку превратить в подходящую деталь для механизма, используют токарные, фрезерные, шлифовальные и прочие станки. Если фрезерные необходимы для изготовления более сложных деталей, например, зубчатых колес, нарезания шлицов, то токарные применяются для создания более простых деталей и придания им необходимой формы (конус, цилиндр, сфера). Режимы резания при токарной обработке очень важны, поскольку, например, для ломкого металла необходимо использовать меньшую скорость вращения шпинделя, чем для прочного.

Особенности токарной обработки

Для того чтобы выточить определённую деталь на токарном станке, как правило, используют резцы. Они бывают самых различных модификаций и классифицируются по виду обработки, направлению подачи и форме головки. Кроме того, резцы выполняются из различных материалов: легированная сталь, углеродистая, инструментальная, быстрорежущая, вольфрам, твердый сплав.

Выбор того или иного зависит от материала обрабатываемой детали, её формы и способа обтачивания. Режимы резания при токарной обработке обязательно учитывают эти все нюансы. При точении обрабатываемая деталь закрепляется в шпинделе, он выполняет главные вращательные движения. В суппорте устанавливается инструмент для обработки, и движения подачи совершаются непосредственно им. В зависимости от используемого станка можно обрабатывать как очень мелкие детали, так и крупные.

Читать еще:  Как варить толстый металл электросваркой

Основные элементы

Какие элементы режимов резания при токарной обработке могут быть использованы? Несмотря на то что точение – это не всегда очень легкая операция, основные его элементы – это скорость, подача, глубина, ширина и толщина. Все эти показатели зависят в первую очередь от материала обрабатываемой детали и размера. Для очень маленьких деталей, например, скорость резания выбирают наименьшую, поскольку даже 0,05 миллиметров, которые случайно срезали, могут привести к браку всей детали.

Кроме того, очень важными показателями, от которых зависит выбор режимов резания при токарной обработке, являются этапы, на которых она производится. Рассмотрим основные элементы и этапы металлорезания более детально.

Черновая, получистовая и чистовая обработка

Превращение заготовки в необходимую деталь – сложный и трудоемкий процесс. Он делится на определенные этапы: черновую, получистовую и чистовую обработку. Если деталь несложная, то промежуточный (получистовой) этап, как правило, не учитывается. На первом этапе (черновом) деталям придают необходимую форму и примерные размеры. При этом обязательно оставляют припуски на последующие этапы. Например, дана заготовка: D=70 мм и L= 115 мм. Из неё необходимо выточить деталь, первым размером которой будет D1 = 65 мм, L1 = 80 мм, а вторым – D2 = 40 мм, L2 = 20 мм.

Черновая обработка будет заключаться в следующем:

  1. Подрезать торец на 14 мм.
  2. Проточить диаметр по всей длине на 66 мм
  3. Проточить второй диаметр D2 = 41 мм на длину 20 мм.

На этом этапе мы видим, что деталь была обработана не полностью, но максимально приближена к её форме и размеру. А припуск на общую длину и на каждый из диаметров составил по 1 мм.

Чистовая обработка данной детали будет заключаться в следующем:

  1. Выполнить чистовое подрезание торца с необходимой шероховатостью.
  2. Проточить по длине 80 мм в диаметр 65 мм.
  3. Выполнить чистовое точение по длине 20 мм в диаметр 40 мм.

Как мы видим, чистовая обработка требует максимальной точности, по этой причине и скорость резания в ней будет меньше.

С чего начать расчет

Для того чтобы рассчитать режим резания, в первую очередь необходимо выбрать материал резца. Он будет зависеть от материала обрабатываемой детали, вида и этапа обработки. Кроме того, более практичными считаются резцы, в которых режущая часть съёмная. Иными словами, необходимо подобрать лишь материал режущей кромки и закрепить её в режущий инструмент. Самым выгодным режимом считается тот, при котором затраты на изготавливаемую деталь будут наименьшими. Соответственно, если выбрать не тот режущий инструмент, он, скорее всего, сломается, а это принесет убытки. Так как же определить необходимый инструмент и режимы резания при токарной обработке? Таблица, представленная ниже, поможет выбрать оптимальный резец.

Толщина срезаемого слоя

Как уже говорилось ранее, каждый из этапов обработки требует той или иной точности. Очень важными эти показатели являются именно при вычислении толщины срезаемого слоя. Режимы резания при токарной обработке гарантируют подбор самых оптимальных значений для вытачивания деталей. Если же ними пренебречь и не выполнить расчет, то можно сломать как режущий инструмент, так и саму деталь.

Итак, в первую очередь необходимо выбрать толщину срезаемого слоя. Когда резец проходит по металлу, он срезает определенную его часть. Толщина или глубина резания (t) – это расстояние, которое будет снимать резец за один проход. Важно учитывать, что для каждой последующей обработки необходимо выполнять расчет режима резания. Например, следует выполнить наружное точение детали D = 33,5 мм на диаметр D1=30,2 мм и внутренне растачивание отверстия d = 3,2 мм на d2 = 2 мм.

Для каждой из операций расчет режимов резания при токарной обработке будет индивидуальным. Для того чтобы рассчитать глубину резания, необходимо из диаметра после обработки вычесть диаметр заготовки и разделить на два. На нашем примере получится:

t = (33,5 — 30,2) / 2 = 1,65 мм

Если диаметры имеют слишком большую разницу, например 40 мм, то, как правило, её необходимо разделить на 2, и полученное число будет количеством проходов, а глубина будет соответствовать двум миллиметрам. При черновом точении можно выбирать глубину резания от 1 до 3 мм, а при чистовом – от 0,5 до 1 мм. Если же выполняется подрезание торцевой поверхности, то толщина снимаемого материала и будет глубиной резания.

Назначение величины подачи

Расчет режимов резания при токарной обработке невозможно представить без величины перемещения режущего инструмента за один оборот детали – подачи (S). Её выбор зависит от требуемой шероховатости и степени точности обрабатываемой детали, если это чистовая обработка. При черновой допустимо использовать максимальную подачу, исходя из прочности материала и жесткости её установки. Выбрать необходимую подачу можно при помощи таблицы ниже.

После того как S была выбрана, её необходимо уточнить в паспорте станка.

Скорость резания

Очень важными значениями, влияющими на режимы резания при токарной обработке, являются скорость резания (v) и частота вращения шпинделя (n). Для того чтобы вычислить первую величину используют формулу:

V = (π х D х n) / 1000,

где π – число Пи равное 3,12;

D – максимальный диаметр детали;

n – частота вращения шпинделя.

Если последняя величина остается неизменной, то скорость вращения будет тем больше, чем больше диаметр заготовки. Данная формула подходит, если известна скорость вращения шпинделя, в противном случае необходимо использовать формулу:

где t и S – уже рассчитанная глубина резания и подача, а Cv, Kv, T – коэффициенты, зависящие от механических свойств и структуры материала. Их значения можно взять в таблицах режимов резания.

Калькулятор режимов резания

Кто же может помочь выполнить расчет режимов резания при токарной обработке? Онлайн-программы на многих интернет-ресурсах справляются с данной задачей не хуже человека.

Существует возможность использовать утилиты как на стационарном компьютере, так и на телефоне. Они очень удобные и не требуют особых навыков. В поля необходимо ввести требуемые значения: подачу, глубину резания, материал заготовки и режущего инструмента, а также все необходимые размеры. Это позволит получить комплексный и быстрый расчет всех необходимых данных.

Скорость резания на токарном станке, ее автоматизированное определение и коррекция

Скорость резания на токарном станке — это скорость в направлении главного движения резания рассматриваемой точки заготовки или режущей кромки. Скорость резания возможно рассчитать по эмпирическим формулам, которые существуют для каждого вида обработки. Величина скорости резания находится из условия сохранения периода стойкости режущего инструмента. В статье представлен алгоритм для программы ЭВМ по определению допустимой скорости резания при заданных глубине резания и подаче на автоматизированном станочном оборудовании на основе методики для определения допустимой свойствами режущего инструмента скорости резания. Алгоритм позволяет производить для партии обрабатываемых деталей, изготовленных из конструкционных хромоникельмолибденовых сталей, автоматизированную коррекцию скорости и подачи резания при смене изношенного твердосплавного режущего инструмента новым с сохранением первоначально назначенной размерной стойкости режущего инструмента. В алгоритм заложены такие условия резания, при которых обработка ведется вне зоны наростообразования на скоростях выше 60 м/мин, тогда для получистовых и черновых режимов резания шероховатость поверхностного слоя обрабатываемых деталей после смены режущего инструмента остается в пределах заданного квалитета.

Как правило, на производстве при лезвийной обработки твердосплавным режущим инструментом со сменными многогранными пластинами деталей на станках с ЧПУ остается до конца не решенной алгоритмическая задача интенсификации режимов резания. Для решения этой задачи в статье предлагается актуальный алгоритм определения и коррекции допустимой скорости резания на токарном станке на основе модели. Алгоритм позволяет на начало обработки интенсифицировать выбираемый режим резания, чтобы обеспечить при заданных нормах износа задней грани инструмента большее количество обработанных деталей. В процессе обработки алгоритм позволяет при смене изношенного режущего инструмента новым производить автоматизированную коррекцию скорости и подачи резания, с сохранением первоначально назначенной стойкости режущего инструмента, причем шероховатость поверхностного слоя обрабатываемых деталей после смены инструмента остается в пределах первоначально заданных параметров.

Описание блок-схемы алгоритма определения допустимой скорости резания при заданных глубине резания и подаче на автоматизированном станочном оборудовании:

1. На рис. 1 представлена первая часть алгоритма, при выполнении которой происходит:

  • ввод исходных данных оператором: глубина резания t; подача S, предел прочности σв и предел текучести σt обрабатываемого материала; диаметр d детали и длина L обрабатываемой поверхности детали; геометрия инструмента; величина размерного износа h инструмента; количество деталей Nd в обрабатываемой партии (блок 1);
  • расчет основных параметров резания: сил резания и периода размерной стойкости инструмента в модели (блоки 2-16).

Для первой контактирующей пары (i) «сталь – твердый сплав» производится по способу А.Л. Плотникова кратковременная (4-5 с.) обработка на фиксированном режиме пробного прохода (Vф = 100 м/мин, Sф = 0.1 мм/об, tф = 1 мм), при этом измеряется величина термоЭДС Эпр(i), мВ. Производиться автоматический расчет сил резания, величины κ (каппа) и периода размерной стойкости инструмента в модели с учетом измеренной величины термоЭДС для контактирующей пары (i) при заданных глубине резания t, подаче S, линейном износе на задней грани инструмента hizn=h/tgα, где скорость резания V является изменяемой величиной. Определяется скорость резания на токарном станке V для контактирующей пары (i), которая соответствует размерной стойкости режущего инструмента, обеспечивающей обработку максимального количества деталей в партии. Определяется частота вращения шпинделя. Определяется основное технологическое время t0, которое равно продолжительности обработки одной заготовки. Определяется ресурс режущего инструмента, выражаемый числом KзТ заготовок, обработанных одним инструментом за назначенный период его стойкости Т. Определяется необходимое количество NРИ режущего инструмента для обработки всей партии деталей. Вывод в диалоговый режим информации (t, S, V, T, t0, NРИ, KзТ) для принятия оператором решения о продолжении обработки с выбранными параметрами. Утверждение оператором рассчитанных параметров. Обработка первой пары «деталь-инструмент» первым инструментом (блок 14) с однократным измерением термоЭДС рабочего прохода для этой пары и сохранением информации в памяти системы при обработке первой контактирующей пары (i) первым инструментом (j) на выбранных режимах резания (t, S, V).

Читать еще:  Как сделать загибочный станок своими руками

Рис. 1. Блок-схема алгоритма определения и коррекции скорости резания при заданных подаче и глубине резания на станках с ЧПУ. Часть I

2. На рис. 2 представлена вторая часть. С 17 по 30 блоки (кроме блоков 25-29) реализуется часть алгоритма, отвечающая за проверку на работоспособность и смену инструмента при износе предыдущего. С 31 по 39 блоки реализуется часть алгоритма, отвечающая за автоматическую корректировку скорости резания на токарном станке и подачи при смене режущего инструмента новым, при этом определяется значение термоЭДС Эраб(in) рабочего прохода для контактирующей пары (in) после смены инструмента по методу коррекции (блоки 31-32) и производиться автоматический пересчет сил резания (блок 33) и корректировка скорости резания, частоты вращения и подачи (блоки 34-38) с учетом рассчитанной величины термоЭДС Эраб(in) контактирующей пары (in) для периода размерной стойкости инструмента утвержденного оператором. В блоках 34-38, так же производится автоматическое сравнение алгоритмом рассчитанных сил с допустимыми силами для привода главного движения, привода подач и жесткости системы после автоматического пересчета модели, при отрицательном сравнении по п. 35 производится обработка детали (in) инструментом (jn) на режимах резания (t, S, V), которые были выбраны для первой контактирующей пары (i). При положительном сравнении продолжение обработки детали (in) следующим инструментом (jn) на скорректированных режимах резания (t, S(in), V(in)) (блок 39, рис. 2).

Рис. 2. Блок-схема алгоритма определения и коррекции скорости резания при заданных подаче и глубине резания на станках с ЧПУ. Часть II

Скорость резания и подача влияют на шероховатость обрабатываемой поверхности. Поэтому при коррекции скорости, особенно в сторону ее уменьшения, и подачи резания в сторону ее увеличения возможно негативное влияние на качество продукции.

Рис. 3. Блок-схема алгоритма определения остаточного ресурса инструмента. Часть III

Высота микронеровностей достигает наибольшего значения при скорости 20-25 м/мин и подаче резания равной и больше радиуса скругления вершины инструмента. При дальнейшем увеличении скорости резания, при прочих равных условиях, шероховатость поверхности постепенно уменьшается (рис. 4). Зона повышенной шероховатости связана с образованием нароста на режущей кромке инструмента, а также с возникающими при этом вибрациями технологической системы.

С увеличением скорости резания на токарном станке наростообразование прекращается и шероховатость уменьшается. На шероховатость поверхности влияют захват и отрыв слоев, расположенных под режущей кромкой инструмента (при обработке стальных заготовок). При скоростях резания выше 50-60 м/мин стружка отделяется от режущего инструмента плавно без вырывания частиц металла.

При использовании алгоритма предполагается, что обработка ведется вне зоны наростообразования. Таким образом, на получистовых и черновых режимах резания за пределами зоны наростообразования при скорости резания выше 60 м/мин, изменение скорости резания и подачи несущественно влияют на шероховатость поверхности и не могут вывести ее за пределы установленного квалитета.

Рис. 4. Влияние скорости резания на шероховатость обрабатываемой поверхности

Использование данного алгоритма позволяет рассчитывать полностью в автоматическом режиме допустимую скорость резания на токарном станке при заданных параметрах (глубина резания и подача) для партии обрабатываемых деталей, изготовленных из конструкционных хромоникельмолибденовых сталей и не только данных сталей, но и других сталей, причем при смене изношенного твердосплавного режущего инструмента новым алгоритм позволяет производить автоматизированную коррекцию скорости и подачи резания, с сохранением первоначально назначенной размерной стойкости режущего инструмента, при этом шероховатость поверхностного слоя обрабатываемых деталей после смены режущего инструмента остается в пределах заданного квалитета.

Расчет режимов резания при точении на токарных станках

На обработку точением на станках токарной группы приходится большинство технологических операций при обработке тел вращения. Для получения качественного результата при минимальных затратах рассчитываются и назначаются режимы резания.

Оптимальные режимы резания влияют на целостность и продолжительность работы режущего инструмента, а также на кинематические, динамические характеристики станков.

Характеристика режимов резания

Необходимые технологические параметры, используемые при токарной обработке металлов, берут свое начало в теории резания. Основные ее положения применяются конструкторами при проектировании режущих инструментов, металлорежущих станков и приспособлений.

Требуемые режимы обработки точением можно получить двумя способами. В первом случае режимы назначаются, для чего используются табличные данные. Данные регистрировались на протяжении длительного времени на разных этапах обработки различным инструментом.

Во втором случае режимы резания рассчитываются по эмпирическим формулам. Этот способ называется аналитическим методом. Считается, что аналитический метод дает более точные результаты в отличие от назначенных параметров.

На сегодняшний день разработчики программного обеспечения предлагают множество программ для расчета режимов обработки. Достаточно ввести в поля известные данные и программа самостоятельно выполнит расчеты и выдаст результат. Это значительно упрощает работу и снижает ее продолжительность.

Для изготовления детали с заданными размерами и необходимой чистотой поверхности необходим чертеж. На его основе разрабатывается технологический процесс обработки с подбором необходимого оборудования и инструмента.

Инструмент для точения: классификация

От качества и надежности токарных резцов в значительной степени зависит точность получаемых размеров и производительность обработки. Они должны обеспечивать:

  • получение требуемой формы;
  • размеры;
  • качество поверхности;
  • наибольшую производительность при минимальных силовых, а следовательно, энергетических затратах;
  • технологичность в изготовлении;
  • возможность восстановления режущих свойств;
  • минимальный расход дорогостоящих инструментальных материалов.

Классифицировать токарные резцы можно по способу обработки:

  • проходные;
  • подрезные;
  • отрезные;
  • прорезные;
  • галтельные;
  • резьбовые;
  • фасонные;
  • расточные.

По материалу режущей части выделяют:

  • инструментальные;
  • быстрорежущие;
  • твердосплавные:
    • однокарбидные (вольфрамовые);
    • двухкарбидные (титановольфрамовые);
    • трехкарбидные (титанотанталовольфрамовые);
  • минералокерамические;
  • алмазы.

По конструктивному исполнению токарные резцы бывают:

Выбор типа токарного резца зависит от типа обрабатываемой поверхности (наружная, внутренняя), твердости материала заготовки, типа обработки (черновая, получистовая, чистовая), геометрических параметров и материала режущей части, державки.

Схема расчета режимов

Расчет режимов резания при точении наружной цилиндрической поверхности по обыкновению ведут с определения удаляемого слоя. Глубина резания – это срезаемый слой металла за один рабочий проход. Определяется по формуле:

где D 1 – исходный размер, D 2 – получаемый размер.

Расчет глубины резания начинается после определения типа обработки. Черновым точением удаляется 60% припуска, свыше 2 мм. Получистовым точением удаляется 30% 1- 1,5 мм. А оставшиеся 10% 0,4- 0,8 мм остаются на чистовую обработку.

Подача – это расстояние, которое проходит инструмент за один оборот обрабатываемой заготовки. Для увеличения производительности подачи подбираются максимальными исходя из:

  • твердости пластины;
  • мощности привода;
  • жесткости системы СПИД.

На машиностроительных предприятиях подачи назначаются из таблиц. Так, для чернового точения твердых материалов подача не превышает 1,5 мм/об, а для мягких материалов не более 2,4 мм/об. Для получистового точения подача не превышает 1,0 мм/об.

От чистового точения во многом зависит шероховатость поверхности, поэтому максимальным значением будет S max = 0.25 мм/об. При обработке изделий с ударными нагрузками назначенное значение подачи умножается на понижающий коэффициент 0,85.

Скорость резания при токарной обработке вычисляется по формуле:

где Сv — коэффициент, применяемый к обрабатываемому материалу заготовки и инструменту, 1 (x), 2 (y), 3 (m) – показатели степеней, Т — стойкость инструмента, Kv — поправочный коэффициент резания.

Kv зависит от:

  • качества обрабатываемого материала;
  • материала режущей пластины инструмента;
  • поверхностного слоя заготовки.

После получения расчетного значения скорости резания определяется число оборотов шпинделя станка по формуле: n = (1000· V)/(π· D)

Полученное значение количества оборотов необходимо подобрать из стандартного ряда для станка, на котором производится обработка. Оно не должно отличаться от станочной сетки больше, чем на 5%. После чего производится уточнение скорости резания.

Далее, определяется эффективная мощность резания по формуле:

N э = (Pz · V)/(1020 · 60)

где Pz – тангенциальная сила резания, максимальная нагрузка при точении.

После определения необходимой мощности рассчитывается потребная мощность станка:

где µ — КПД станка, закладывается заводом-изготовителем.

Итоговое значение мощности должно быть меньше мощности электродвигателя главного движения. Это означает, что принятые и рассчитанные значения верны. В противном случае подачу и глубину резания необходимо уменьшить или подбирать станок необходимой мощности.

Ссылка на основную публикацию
Adblock
detector