Достоинства и недостатки сварки
Достоинство и недостатки, область применения сварки
История сварочного дела и основоположники сварки. Достоинства, недостатки и технологический процесс механического, термического и термомеханического способов сварки. Важность процесса сварки в производстве. Основные сферы применения сварки, её важность.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 17.12.2016 |
Размер файла | 20,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки РФ
ФГБОУ ВО «Сибирский государственный индустриальный университет»
Кафедра материаловедения, литейного и сварочного производства
Реферат по дисциплине
на тему: «Достоинство и недостатки, область применения сварки»
Выполнил: ст.гр. МЦМ-14
Проверил: к.т.н., доцент
1. История. Основоположники сварки
2. Достоинство и недостатки
3. Область применения сварки
Сварка плавлением осуществляется при нагреве сильным концентрированным источником тепла (электрической дугой, плазмой и др.) кромок свариваемых деталей, в результате чего кромки в месте соединения расплавляются, самопроизвольно сливаются, образуя общую сварочную ванну, в которой происходят некоторые физические и химические процессы. В своей работе я опишу все достоинства и недостатки сварки, а также постараюсь узнать всю область применения сварки.
1. История. Основоположники сварки
Электрическая дуга впервые была открыта в 1802 г. Профессором физики Санкт-Петербургской медико-хирургической академии В.В. Петровым. Описывая явления электрической дуги в книге под названием «Известия о гальвани-вольтовских опытах», профессор В.В. Петров указал на возможность использования электрической дуги для электроосвещения и плавления металлов.
А в 1882 г. Русский изобретатель Н.Н. Бенардос применил электрическую дугу для соединения металлов, в 1885 г. Он получил патент под названием «Способ соединения и разъединения металлов непосредственным действием электрического тока», используя для этого дугу, горящую между угольным электродом и металлом и питаемую электрической энергией от аккумуляторной батареи. Русский инженер-металлург и изобретатель Н.Г. Славянов в 1888 г. Разработал способ сварки металлическим электродом, в 1891 г. Он получил два патента под названием «Способ и аппараты для электрической отливки металлов» и «Способ электрического уплотнения металлических отливок». Н.Н. Бенардос предложил различные способы сварки наклонными металлическими электродами и устройства, в которых подача электрода в зону дуги выполнялась за счет давления пружины. Он также разработал разнообразные виды автоматических устройств для сварки угольным и металлическим электродами, являющимися прообразами современных сварочных автоматов и полуавтоматов. Оригинальное приспособление для автоматического регулирования длины дуги с помощью соленоида, предложенное Н.Н. Бенардосом, в 1900 г. Экспонировалось на Парижской всемирной выставке. Однако низкий уровень развития техники в России тех лет не позволял использовать и широко развивать столь гениальные идеи В.В. Петрова, Н.Н. Бенардоса и Н.Г. Славянова.
В настоящее время сварочное производство является самостоятельной отраслью машиностроительной промышленности и для его дальнейшего развития требуется решение целого ряда вопросов, таких, как разработка новых сварочных машин, аппаратов и материалов.
2. Достоинство и недостатки
Преимущества и недостатки сварки зависят от ее вида.
В настоящее время используется большое количество видов. Их можно объединить в группы:
· Механические. Слияние атомов материала происходит за счет превращения механической энергии в кинетическую, нагреву подвергается место стыка материала.
· Термические. Предметы разогреваются до той температуры, при которой становятся мягкими, а потом просто соединяются.
· Термомеханические. Объединяет предыдущие методы. Детали нагреваются, а соединяют их между собой с помощью давления.
Достоинства и недостатки механических видов
К ним относятся холодная, сварка трением и взрывом.
Плюсы холодного сваривания:
· очень хорошо подходит для заделки течи в трубах;
· происходит без нагрева поверхности изделий;
· не требуется особых навыков;
· после сваривания практически не остается грязи;
· можно провести самостоятельно в домашних условиях.
Самый значительный минус — при слиянии изделия очень сильно повреждаются. Например, ковка тоже относится к холодной сварке.
Преимущества сваривания трением:
· достаточно небольшая мощность;
· процесс проходит быстро;
· невысокая температура нагревания металла.
Недостатки: повреждение изделий вокруг шва; одна деталь должна быть округлой формы, а другая — плоской. Это нужно, для того чтобы первая ввинчивалась во вторую.
Достоинства сварки взрывом:
· температура металла повышается на короткое время;
· занимает мало времени.
Отрицательные свойства этого вида слияния деталей — взрывная волна, необходимо соблюдать нормы безопасности; можно провести только в специально отведенных для этого местах, в быту не применяется.
Плюсы и минусы термических способов
К ним относятся плазменная (газовая), электродуговая, электрошлаковая и другие. Первый вид — газ нагревается до очень высоких температур (максимум — 30000° С), металл плавится, его можно резать, гнуть, соединять. При втором способе используется тот же самый принцип металлообработки, что и при газовом сваривании, но максимальная температура дуги — 7000° С. Третий вид — нагрев происходит, за счет того что электрический ток раскаляет шлак, а потом и сам предмет.
Положительные характеристики газовой сварки:
· легко транспортировать оборудование для металлообработки;
· не повреждает металл и окружающие предметы;
· можно не только соединять детали, но и разделять их;
· не нужны электрические сети.
Недостатки этого вида:
· очень большая площадь разогрева предметов при очень высокой температуре;
· на одно соединение уходит достаточно много времени;
· высокий уровень опасности, специалист должен иметь высокую квалификацию и опыт работы.
Намного чаще используется дуговая сварка. Ее преимущества:
· подходит для слияния практически всех металлов;
· соединения очень прочные;
· универсальный вид, применяется и в промышленности, и в быту.
Отрицательные свойства — вредные условия труда, прочность и аккуратность места соединения изделий зависит от навыков исполнителя.
Преимущества электрошлакового сваривания заключается в том, что оно применяется для слияния предметов любой толщины. По сравнению с дуговой электропотребление намного меньше.
· нельзя бросать работу до полного слияния изделий;
· сваривать можно только, если предметы находятся в вертикальном положении, легкий наклон допускается;
· прочность стыков снижается, если температура окружающей среды ниже 0° С.
Этот способ соединения металлов применяется на заводах, фабриках и т. д.
Преимущества и недостатки термомеханических видов сваривания
Это диффузионная, контактная (автоматическая) сварка и другие способы. Первая представляет собой соединение предметов путем нагревания и механического давления на них, при этом они остаются в твердом состоянии. Вторая — разогрев изделий с помощью электричества и последующее их сжатие в единое целое.
Плюсы диффузного сваривания:
· возможно слияние разных металлов, при этом толщина деталей может не совпадать;
· швы получаются ровные, поэтому последующая обработка не понадобится;
· низкий расход энергии.
Минус этого вида в том, что для работы потребуются квалифицированные сварщики, имеющие навыки работы с подобным оборудованием.
Достоинства контактной сварки:
· прочное и аккуратное место стыка предметов;
· не вредит окружающей среде.
Отрицательные характеристики: непростое оборудование для проведения работ
3. Область применения сварки
Сварка — наиболее экономичный и эффективный способ неразъемного соединения металлов, при котором две или более металлические детали становятся единым целым. Важность процесса сварки переоценить очень сложно, так как во многих развитых странах более половины созданного ВВП так или иначе связано с его использованием. Сварка считается одним из важнейших процессов в производстве, она, как ни один другой процесс, требует применения знаний в различных областях науки. Существует большое разнообразие технологий создания сварного соединения, некоторые связаны с нагревом, другие не требуют высоких температур. Сварка применяется абсолютно везде: на производствах, в мастерских, гаражах, под водой и в космосе. Почти каждый предмет и механизм, используемый в повседневной жизни изготовлен с применением сварочного оборудования. Будь то кофейник, автомобиль или топливо для него, добытое при помощи сваренного бура, меняющие облик современного мира мосты и небоскребы — все это лишь малая часть вещей немыслимых без сварки. Сварка помогает существовать и эффективно работать целым индустриям. Невозможно представить современное строительство без кранов, агропромышленный комплекс без тракторов и комбайнов, добывающую промышленность без трубопроводов и железных дорог, транспорт без грузовиков, кораблей и самолетов и т.д. Современные технологии интенсивно проникают в сварочное дело, оборудование совершенствуется, его вес и габариты уменьшаются, аппараты оснащаются процессорами и позволяют делать работу качественнее и быстрее. 21 столетие открывает неплохие перспективы для сварки, она считается по прежнему проверенным способом соединения металлов, позволяющим добиваться отличного качества соединений при сравнительно низкой цене, а современные исследования и разработки лишь дополняют ее, позволяя выводить технологии сварки на качественно новый уровень. Иметь аппарат дома для проведения небольших работ становится распространенным явлением не только среди сварщиков профессионалов, но и среди людей, которым нравится работать своими руками. Все чаще люди искусства используют сварку при создании скульптур, инсталляций и прочих арт-объектов. Этот процесс перестал быть доступным только на производствах и в промышленности, современный рынок предлагает огромное количество моделей бытового и полупрофессионального оборудования. Область применения сварки огромна, процесс включает в себя множество технологий и способов, каждый из которых позволяет решать поставленные задачи наиболее эффективно
сварка использование процесс способ
Практически нет ни одной отрасли машиностроения, приборостроения и строительства, в которой не применялись бы сварка и резка металлов. С помощью сварки получают неразъемные соединения почти всех металлов и сплавов различной толщины — от сотых долей миллиметра до нескольких метров.
Область применения сварки безгранична но несмотря на научно-технического прогресс кроме достоинств сварки есть и недостатки, но я думаю, что со временим все минусы решаемы.
1. Виноградов В.С. Оборудование и технология дуговой автоматической и механизированной сварки, М: 1997 года;
2. Квагинидзе В.С. Технология металлов и сварка. Учебник для вузов.,- М.: Горная книга, 2004, 566 с.
3. Технология металлов и сварка. Учебник для вузов. Под ред. Полухина П. И.- М.: «Высшая школа», 1977, 464 с
Размещено на Allbest.ru
Подобные документы
Технология производства сварки. История развития сварочного производства. Специфика аргонно-дуговой сварки и сфера её использования. Применение, преимущества и недостатки аргонно-дуговой сварки. Сравнительная характеристика оборудования этого вида сварки.
реферат [635,2 K], добавлен 18.05.2012
История плазменной сварки, ее сущность и физические основы. Общая схема и технологические особенности плазменной сварки, Область применения, необходимое оборудование для производства сварочных швов. Преимущества и недостатки этого метода сварки.
реферат [307,5 K], добавлен 14.09.2015
Физическая сущность процесса сварки, её классификация. Сущность основных способов сварки плавлением и область их рационального применения. Основные способы сварки давлением. Источники питания для сварки. Влияние сварочных процессов на свариваемый металл.
курсовая работа [4,5 M], добавлен 16.07.2013
Сущность процесса и технология диффузионной сварки. Способы образования сварного шва. Схемы диффузионной сварки. Оборудование и вакуумные установки для осуществления диффузионной сварки. Преимущества и недостатки данной сварки, области ее применения.
презентация [2,3 M], добавлен 16.12.2016
Особенности контактной точечной сварки, ее достоинства и недостатки, основные параметры. Изменение параметров во времени. Схема шунтирования тока через ранее сваренную точку. Режимы точечной сварки низкоуглеродистых сталей. Подготовка деталей к сварке.
реферат [730,5 K], добавлен 22.04.2015
Сущность, особенности и области применения сварки под флюсом. Оборудование и материалы для сварки под флюсом. Технология автоматической дуговой сварки, ее главные достоинства и недостатки. Техника безопасности при выполнении работ по дуговой сварке.
реферат [897,7 K], добавлен 30.01.2011
Сущность, основные достоинства и недостатки ручной дуговой сварки покрытыми электродами. Сущность, достоинства и недостатки сварки в среде защитных газов плавящимся электродом. Выбор сварочных материалов. Сварочно-технологические свойства электродов.
курсовая работа [4,6 M], добавлен 22.03.2012
Применение сварки под слоем электропроводящего флюса для автоматической сварки. Преимущества метода сварки под флюсом, ограничения области применения. Типичные виды сварных швов. Автоматические установки для дуговой сварки и наплавки, режимы работы.
книга [670,7 K], добавлен 06.03.2010
Классификация и обозначение покрытых электродов для ручной дуговой сварки. Устройство сварочного трансформатора и выпрямителя. Выбор режима сварки. Техника ручной дуговой сварки. Порядок проведения работы. Процесс зажигания и строение электрической дуги.
лабораторная работа [1,1 M], добавлен 22.12.2009
Выбор и обоснование способов сварки и сварочных материалов, рода тока и полярности. Характеристика основного металла. Описание механизированного сборочно-сварочного приспособления. Расчет режимов для ручной дуговой и механизированной сварки в среде СО2.
курсовая работа [221,6 K], добавлен 20.01.2014
Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.
8. Достоинства и недостатки сварных соединений
Достоинства сварных соединений:• Возможность получения изделий больших размеров (корпуса судов и летательных аппаратов, железнодорожные вагоны, кузова автомобилей, трубопроводы, резервуары, фермы, мосты и др.). • Снижение массы по сравнению с литыми деталями до 30…50%, с клепанными – до 20%. Этого достигают благодаря в основном снижению толщин стенок и припусков на механическую обработку, а также отсутствию ослаб-ляющих отверстий и накладок при наклепе. • Снижение стоимости изготовления сложных деталей в условиях единичного и мелкосерийного производства. • Малая трудоемкость, невысокая стоимость оборудования, возможность автоматизации.
Недостатки сварных соединений:• Вероятность возникновения при сварке плавлением различных дефектов швов, снижающих прочность соеди-нения при переменных нагрузках. • Низкая прочность швов при электроконтактной сварке вследствие неправильного выбора параметров техно-логического процесса. • Необходимость проведения для всех сварных швов визуального контроля, а для сварных изделий ответствен-ного назначения неразрушающего инструментального или выборочно разрушающего контроля. • Возникновение остаточных напряжений (вследствие термических деформаций от неравномерного нагрева) снижает прочность и вызывает необходимость проведения в ряде случаев механической обработки после старения (изменение свойств металла во времени вследствие внутренних процессов). • Местный нагрев вызывает в зоне термического влияния вблизи шва изменение механических свойств метал-ла.
Классификация сварных соединений и швов
Термины и определения основных понятий в области сварки устанавливает ГОСТ 2601-84 (в ред. 1992 г.). Термины, установленные стандартом, обязательны для применения в документации всех видов, научно-технической, учебной и справочной литературе.
Сварное соединение— неразъемное соединение, выполненное сваркой. Сварное соединение (рис. 1.1) включает три образующиеся в результате сварки характерные зоны металла в изделии: зону сварного шва 1, зону сплавления 2, зону термического влияния 3, а также часть основного металла 4, прилегающую к зоне термического влияния.
Рис. 1.1. Сварное соединение
Сварной шов— участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла.
Металл шва— сплав, образованный расплавленным основным и наплавленным металлами или только переплавленным основным металлом.
Основной металл— металл подвергающихся сварке соединяемых частей.
Зона сплавления— зона, где находятся частично оплавленные зерна металла на границе основного металла и металла шва. Эта зона нагрева ниже температуры плавления. Нерасплавленные зерна в этой зоне разъединяются жидкими прослойками, связанными с жидким металлом сварочной ванны и в эти прослойки имеют возможность проникать элементы, введенные в ванну с дополнительным металлом или сварочными материалами. Поэтому химический состав этой зоны отличен от химического состава основного металла.
Зона термического влияния— участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева при сварке, наплавке или резке.
Тип сварного соединения определяет взаимное расположение свариваемых элементов. Различают: стыковые, угловые, тавровые, нахлесточные и торцовые сварные соединения.
Стыковое соединение— сварное соединение двух элементов, примыкающих друг к другу торцовыми поверхностями и расположенных в одной плоскости или на одной поверхности (рис. 1.2). Поверхности элементов могут быть несколько смещены при соединении листов разной толщины (см. рис. 1.2, б).
Рис. 1.2. Стыковые соединения
Угловое соединение— сварное соединение двух элементов, расположенных под углом и сваренных в месте примыкания их краев (рис. 1.3).
Рис. 1.3. Угловые соединения
Тавровое соединение— сварное соединение, в котором торец одного элемента примыкает под углом и приварен к боковой поверхности другого элемента (рис. 1.4).
Рис. 1.4. Тавровые соединения
Нахлесточное соединение— сварное соединение, в котором сваренные элементы расположены параллельно и частично перекрывают друг друга (рис. 1.5, а, б). Отсутствие опасности прожогов при сварке облегчает применение высокопроизводительных режимов сварки. Применение нахлесточных соединений облегчает сборку и сварку швов, выполняемых при монтаже конструкций (монтажных швов).
Торцовое соединение— сварное соединение, в котором боковые поверхности сваренных элементов примыкают друг к другу (рис. 1.5, е).
Рис. 1.5. Нахлесточные (а, б) и торцовое соединения (в)
Сварные швы подразделяют по разным признакам: по типу шва, по протяженности, по способу выполнения, по пространственному положению и по форме разделки кромок.
По типу сварные швы делят на стыковые, угловые и прорезные.
Стыковой шов— сварной шов стыкового соединения.Угловой шов— сварной шов углового, нахлестанного или таврового соединений.Прорезной шов(рис. 1.6) получается в результате полного проплавления верхнего, а иногда и последующих листов, и частичного проплавления нижнего листа (детали). Частным случаем прорезного шва является точечный или пробочный шов (электрозаклепка — при дуговой сварке) (рис. 1.6, г). Прорезные швы при приварке толстого листа (рис. 1.6, д) могут выполняться по заранее выполненным отверстиям в верхнем листе (при точечном шве) или прорези (при непрерывном шве).
Различают следующие характеристики сварного шва: ширину, выпуклость, вогнутость и корень шва.
Рис. 1.6. Прорезные швы
Ширина шва е — расстояние между видимыми линиями сплавления сварного шва (см. рис. 1.2, а). Выпуклость шва g определяется расстоянием между плоскостью, проходящей через видимые линии границы сварного шва с основным металлом и поверхностью сварного шва, измеренным в месте наибольшей выпуклости (см. рис. 1.2, а; 1.4, а). Вогнутость шва T определяется расстоянием между плоскостью, проходящей через видимые линии границы шва с основным металлом и поверхностью шва, измеренным в месте наибольшей вогнутости (см. рис. 1.2, в; 1.3, в). Вогнутость корня стыкового шва является дефектом обратной стороны одностороннего шва. Корень шва— часть сварного шва, наиболее удаленная от его лицевой поверхности (см. рис. 1.2, б; 1.4, а). По существу это обратная сторона шва, в которой различают ширину е1и высоту g1обратного валика (см. рис. 1.2, а).
Угловой шов имеет следующие размерные характеристики: катет, толщину, расчетную высоту. Катет углового швак определяется кратчайшим расстоянием от поверхности одной из свариваемых частей до границы углового шва на поверхности второй свариваемой части (см. рис. 1.3, в; 1.4, а). Катет задается в качестве параметра режима, который нужно выдерживать при сварке.Толщина углового шваа — наибольшее расстояние от поверхности углового шва до точки максимального проплавления основного металла (см. рис. 1.4, а). Для оценки прочности сварного соединения используют расчетную высоту углового шва — р (см. рис. 1.4, а). Для угловых швов более благоприятна вогнутая форма поверхности шва с плавным переходом к основному металлу (см. рис. 1.3, в).
По протяженности сварные швы подразделяют на непрерывные и прерывистые. Стыковые сварные швы, как правило, выполняют непрерывными. Угловые швы могут быть непрерывными (рис. 1.7, а) и прерывистыми (рис. 1.7, б), с шахматным (рис. 1.7, в) и цепным (рис. 1.7, г) расположением отрезков шва. Угловые швы могут быть выполнены и точечными швами (рис. 1.7, б, д).
Рис. 1.7. Угловые швы тавровых соединений
По способу выполнения различают сварку: одностороннюю и двустороннюю, однослойную и многослойную. Одностороннюю сварку стыкового сварного соединения выполняют со сквозным проплавлением кромок на подкладке или без подкладки (на весу). Двустороннюю сварку выполняют с зачисткой (удалением) корня шва (механической обработкой) перед сваркой обратной стороны сварного соединения или без зачистки корня шва. При двусторонней сварке зачастую приходится кантовать изделие или вести сварку в трудном потолочном положении.
Многослойный шовприменяют при сварке металла большой толщины, а также для уменьшения зоны термического влияния. Подслоем сварного шва(I—IV на рис. 1.8) понимают часть металла сварного шва, которая состоит из одного или нескольких валиков (1-5 на рис. 1.8), располагающихся на одном уровне поперечного сечения шва.Валик— металл сварного шва, наплавленный за один проход. Подпроходомпри сварке подразумевается однократное перемещение в одном направлении источника тепла при сварке или наплавке.
Рис. 1.8. Многослойный шов
По пространственному положению с учетом требований международных стандартов различают следующие сварные швы: горизонтальные (на вертикальной плоскости), вертикальные, потолочные и швы, сваренные в нижнем положении (рис. 1.9, 1.10). На рисунках даны русские и в скобках международные обозначения. Схемы сварки, стыков труб с горизонтальной, вертикальной или наклоненной осью показаны на рис. 1.10.
Рис. 1.9. Положение шва при сварке стыковых (а) и тавровых (б) соединений листов: HI — нижнее; Н2 — нижнее тавровых соединений; B1 — вертикальное (сварка низу вверх); B2 — вертикальное (сварка сверху вниз); Г — горизонтальное; П1 — потолочное; П2 — потолочное тавровых соединений
Рис. 1.10. Положение шва при сварке стыковых (а) и угловых (б) соединений труб: HI — нижнее при горизонтальном расположении осей труб (трубы), свариваемых (привариваемой) с поворотом; Н2 — нижнее при вертикальном расположении оси трубы, привариваемой без поворота или с поворотом; В1 — переменное при горизонтальном расположении осей труб (трубы), свариваемых (привариваемой) без поворота «на подъем»; В2 — переменное при горизонтальном расположении осей труб (трубы), свариваемых (привариваемой) без поворота «на спуск»; Г — горизонтальное при вертикальном расположении осей труб, свариваемых без поворота или с поворотом; Н45 — переменное при наклонном расположении осей труб (трубы), свариваемых (привариваемой) без поворота; П2 — потолочное при вертикальном расположении оси трубы, привариваемой без поворота или с поворотом
Расчет стыковых швов
В стыковом шве распределение напряжений по длине шва принимается равномерным; рабочая толщина шва принимается равной толщине стыкуемых элементов (и меньшей, если толщины различны). Поэтому напряжение в шве, расположенном перпендикулярно оси элемента (рис. 77, а):
где N—расчетное усилие (с коэффициентом перегрузки);
lш— расчетная длина шва, равная фактической длине, если места зажигания и тушения дуги выведены за пределы сечения элемента (что обычно имеет место, рис. 69); в противном случаеlш=l— 10мм, гдеl— ширина элемента;
R св —соответствующие расчетные сопротивления стыкового шва сжатию или растяжению.
Если расчетное сопротивление сварки R св меньше расчетного сопротивления основного металлаR и в стыкуемом элементе нет запасов в напряжениях, рабочее сечение шва может оказаться недостаточным; тогда для увеличения длины шва его приходится делать косым (рис. 77,б). Косые швы с наклоном реза 2:1, как правило, равнопрочные с основным металлом и потому не требуют проверки; однако в отдельных случаях, когда необходимо снижение напряжений, например при вибрационной нагрузке, приходится рассчитывать и косые швы. В этом случае, разложив действующие усилия на направления перпендикулярно оси шва и вдоль шва, находим напряжения:
Преимущества и недостатки различных видов сварки
Любой вид сварочных работ обладает своими достоинствами и недостатками по сравнению с другими.
К преимуществам газового способа сварки и резки относят дешевизну и простоту оборудования, дешевые расходные материалы (водород, пропан, метан, этилен, бензол, бензин, ацетилен), простой способ регулировки горения, возможность любого расположения горелки в пространстве, высокая технологичность, независимость от источников питания электрическим током.
Недостатками данного способа являются низкая эффективность нагрева металла, широкие швы и широкая зона термического воздействия на свариваемые конструкции, низкая производительность, трудности в автоматизации процесса.
Преимуществами электродугового метода сварки являются высокая технологичность, широкие возможности для механизации или автоматизации, меньшая зона термического влияния по сравнению с предыдущим способом сварки, простота регулирования процесса, сравнительно дешевые расходные материалы (сварочные электроды), высокая производительность процесса.
Недостатками являются необходимость использования специальных сварочных преобразователей (выпрямителей, инверторов) и сварочных трансформаторов, энергозависимость от электрической сети или генераторов, необходимость предварительной подготовки кромок (разделка, зачистка, фиксация деталей).
К преимуществам электрошлаковой сварки относят: возможность сварки толстостенных деталей, отсутствие необходимости предварительной подготовки свариваемых поверхностей, меньший расход флюса сравнительно с дуговой сваркой, возможность применения электродов различной формы, улучшенная макроструктура сварного шва, высокая производительность, меньший расход электроэнергии, небольшая зависимость зазора от толщины металла, возможность использования данного способа для переплавки стали из отходов с целью получения отливок, возможность регулировки процесса в широком диапазоне сварочных токов 0,2. 300 А/кв.мм по сечению сварочного электрода, хорошая защита сварочной ванны от влияния воздуха, возможность получения швов переменной толщины за один проход.
Недостатками являются: сварка только в вертикальном положении (угол отклонения от вертикали не более 30 градусов), перемешиваемость металла электродов с основным металлом, крупнозернистая структура металла шва, необходимость применения специальной технологической оснастки (формирующие устройства, планки, стартовые карманы и т. п.), невозможность прерывания сварки до окончания процесса, так как при этом образуются дефекты, которые невозможно устранить.
Преимущества электронно-лучевого способа сварки следующие: высокий коэффициент полезного действия (до 90%) перехода кинетической энергии ускоренных электронов в тепловую энергию и высокая удельная мощность луча, высокая температура в зоне сварки (до 6000 градусов по Цельсию). Выделение теплоты только в зоне сварки, хорошее проплавление глубоких швов, фокусировка луча достигает значений до 0,001 сантиметра, возможность использования электронного луча для различных видов работ — сверления, сварки, фрезерования практически любых материалов, широкий диапазон толщин обрабатываемых заготовок от 0,02 до 100 мм, высокая степень автоматизации.
К недостаткам относятся наличие специального оборудования и высококвалифицированного персонала, наличие рентгеновского излучения и необходимость защиты обслуживающего персонала, снижение срока службы электронного катода в результате его высокого нагрева (до 2400 градусов).
Преимущества плазменной сварки — это высокая степень концентрации теплоты, хорошая стабильность горения, возможность сварки деталей толщиной до 10 мм без предварительной подготовки кромок, возможность проведения работ на низких токах при микроплазменной сварке тонких деталей (толщина 0,01. 0,8 мм), возможность эффективной резки практически всех видов материалов, возможность проведения процесса напыления или наплавки при введении в плазменную дугу присадочных металлов (в том числе тугоплавких), возможность сваривания металлов с неметаллами, минимальная зона термического воздействия, возможность проведения работ с тугоплавкими и жаропрочными металлами, сниженный расход защитных газов по сравнению с дуговым способом, высокая технологичность процесса и возможность его автоматизации.
К недостаткам плазменного способа относятся высокочастотный шум с ультразвуком, оптическое излучение (инфракрасное, ультрафиолетовое, видимый спектр), вредная ионизация воздуха, выделение паров металла в процессе сварки, недолговечность сопла горелки вследствие сильного нагрева, необходимость специальной установки и высококвалифицированного обслуживающего персонала.
Преимущества лазерного способа сварки: высокая концентрация энергии, которая позволяет производить микросварку деталей толщиной до 50 микрон, возможность сварки термочувствительных деталей, возможность сварки в труднодоступных местах, возможность проведения сварки в вакууме и защитных газах, возможность подвода строго дозированной энергии в зону сварки, высокая промышленная стерильность процесса и отсутствие выделения вредных паров, высокая технологичность, высокая степень автоматизации, высокая производительность, возможность применения лазерного луча для резки, наплавки и прошивки отверстий.
Недостатками являются необходимость приобретения дорогостоящей установки, высокие требования к квалификации персонала, наличие вибраций и необходимость применения вибростойких платформ, необходимость защиты персонала от лазерного излучения аппаратуры.
К преимуществам термитной сварки относятся простота и низкая себестоимость, а недостатки — высокая гигроскопичность процесса, пожароопасность, взрывоопасность, невозможность управления процессом.
Достоинствами холодного способа сварки являются простота и доступность технологического оборудования, при этом не требуется высокая квалификация персонала, отсутствие вредных выделений, возможность сварки без нагрева, высокая степень механизации, небольшой расход энергии, высокая производительность процесса.
К недостаткам относятся наличие больших удельных давлений, небольшой диапазон толщин свариваемых деталей, невозможность сварки высокопрочных металлов.
Достоинства сварки взрывом: высокая скорость сваривания (миллисекунды), возможность изготовления биметаллических соединений, возможность плакирования деталей (покрытия слоем металла с особыми свойствами), возможность изготовления криволинейных и прямолинейных заготовок большой площади, возможность изготовления заготовок для ковки и штамповки, простота применяемого оборудования.
Недостатками являются необходимость защиты от детонации, наличие квалификации персонала по работе со взрывоопасными веществами, невозможность механизации и автоматизации.
Преимущества сварки трением — высокая производительность, стабильное качество соединения, возможность получения соединений из разнородных металлов, отсутствие вредных выделений, высокие энергетические показатели, высокая степень механизации и автоматизации, возможность применения в качестве основного оборудования универсальные токарные и сверлильные станки.
К недостаткам относят необходимость разработки технологического процесса для каждого вида металла и конфигурации детали, необходимость контроля момента сварки для своевременного прекращения сварочного процесса, необходимость создания осевого давления с помощью специального механизма.
Сварные соединения, Достоинства и недостатки.
Задачи раздела детали машин.
Детали машин — совокупность конструкционных элементов и их комбинаций, представляющая собой основу конструкции машины [1]. Деталью машины называют такую часть механизма, которая изготавливается без сборочных операций [2]. Детали машин является также научной и учебной дисциплиной, рассматривающей теорию, расчёт и конструирование машин.
Часто в это понятие входят узлы общего применения, например, подшипники, муфты, тормоза, механические передачи и т. п.
Детали (частично или полностью) объединяют в узлы (сборочные единицы).
Детали могут быть простыми (гайка, шпонка и т. п.) или сложными (коленчатый вал, корпус редуктора, станина станка и т. п.).
При расчетах деталей машин на прочность при постоянных или переменных напряжениях в качестве предельного напряжения принимают соответствующие пределы прочности и выносливости (при растяжении, сжатии, изгибе и кручении), а также коэффициенты запаса прочности по табличным данным. Для определения требуемых размеров детали выполняют проектный расчет по допускаемым напряжениям, а затем уточненный проверочный расчет по коэффициентам запаса прочности.
Требования к машинам и их деталям.
Основные требования к машинам и механизмам – облегчение труда; увеличение производительности и мощности машин; увеличение скоростей; повышение КПД; уменьшение веса и габаритов; надежность; долговечность; удобство и безопасность обслуживания.
Сварные соединения, Достоинства и недостатки.
Сварное соединение – неразъемное соединение, образуется путем сваривания материалов деталей в зоне стыка и не требует никаких вспомогательных элементов. Прочность соединения зависит от однородности и непрерывности материала сварного шва и окружающей его зоны. Достоинства сварных соединений:
• Возможность получения изделий больших размеров (корпуса судов и летательных аппаратов, железнодорожные вагоны, кузова автомобилей, трубопроводы, резервуары, фермы, мосты и др.).
• Снижение массы по сравнению с литыми деталями до 30…50%, с клепанными – до 20%. Этого достигают благодаря в основном снижению толщин стенок и припусков на механическую обработку, а также отсутствию ослаб-ляющих отверстий и накладок при наклепе.
• Снижение стоимости изготовления сложных деталей в условиях единичного и мелкосерийного производства.
• Малая трудоемкость, невысокая стоимость оборудования, возможность автоматизации.
Недостатки сварных соединений:
• Вероятность возникновения при сварке плавлением различных дефектов швов, снижающих прочность соеди-нения при переменных нагрузках.
• Низкая прочность швов при электроконтактной сварке вследствие неправильного выбора параметров техно-логического процесса.
• Необходимость проведения для всех сварных швов визуального контроля, а для сварных изделий ответствен-ного назначения неразрушающего инструментального или выборочно разрушающего контроля.
• Возникновение остаточных напряжений (вследствие термических деформаций от неравномерного нагрева) снижает прочность и вызывает необходимость проведения в ряде случаев механической обработки после старения (изменение свойств металла во времени вследствие внутренних процессов).
• Местный нагрев вызывает в зоне термического влияния вблизи шва изменение механических свойств металла.
4. Основные типы сварных соединений и их расчёт.
Все соединения элементов под сварку подразделяют на четыре основных вида: стыковое, угловое, тавровое, нахлесточное (Рис 1), а швы делят на два вида: стыковые и угловые. Расчет на прочность и устойчивость стоек, работающих при центральном сжатии, производится по формуле
(1)
5. Заклёпочные соединения. Достоинства и недостатки. Классификация. Заклёпочное соединение — неразъёмное соединение деталей при помощи заклёпок. Обеспечивает высокую стойкость в условиях ударных и вибрационных нагрузок.
Достоинства:
1.Высокая надежность соединения.
2.Удобство и надежность контроля качества шва.
3.Хорошая сопротивляемость вибрационным и ударным нагрузкам.
Недостатки:
1. Высокая стоимость, так как процесс получения заклепочного шва состоит из большого числа операций (разметка, продавливание или сверление отверстий, нагрев заклепок, их закладка, клепка) и требует применения дорогостоящего оборудования (станки, прессы, клепальные машины).
2. Большой расход материала, так как из-за ослабления деталей отверстиями под заклепки требуется увеличение площади сечений. Кроме того, необходимость применения накладок и прочих дополнительных элементов также приводит к увеличению расхода материала.
Применяют, в основном, в авиа- и судостроении, металлоконструкциях и других изделиях с внешними нагрузками,
6. Расчёт прочных заклёпочных соединений.
Расчет заклепочных соединений на срез;
τ = F/nAзакл
2. Расчет заклепочных соединений на смятие:
σ = F/ndб
Технология дуговой сварки. Виды электродуговой сварки.
Технология дуговой сварки. Виды электродуговой сварки.
Самый распространенный способ электродуговой сварки является способ сварки с помощью металлических электродов.
Схематический процесс электродуговой сварки и её виды изображены на рис. 1.
Виды электродуговой сварки.
Рис. 1. Виды дуговой электросварки:
а – сварка металлическим электродом:
1 – генератор; 2,3 – провод; 4 – металл; 5 – электрододержатель; 6 – электрод; 7 электрическая дуга.
б – сварка угольным электродом:
1 – электрическая дуга; 2 – электрод угольный; 3 – металл; 4 – присадочный пруток; 5 – держатель.
Технология ручной дуговой сварки.
Ток от генератора или трансформатора 1 по проводу 2 подводится к свариваемому металлу 4, а по проводу 3—к электрододержателю 5, в который зажимается электрод 6. Сварщик, приближая электрод к свариваемому металлу, замыкает цепь, возникает электрическая дуга 7. От тепла электрической дуги металл нагревается до температуры плавления и происходит слияние двух металлов. Расплавленный металл электрода служит присадочным материалом. Оказывать механические усилия на свариваемые детали при этом способе электросварки не требуется.
Преимущества и недостатки сварки постоянным и переменным током.
Электродуговая сварка выполняется как при переменном, так и постоянном токе.
Преимущества и недостатки постоянного тока.
Постоянный ток дает более устойчивую электрическую дугу и, благодаря неодинаковому выделению тепла на положительном и отрицательном полюсах, допускает более гибкую регулировку распределения тепла, применяя прямую (отрицательный полюс на электроде) или обратную (отрицательный полюс на детали) полярности. Это имеет большое значение при сварке цветных металлов, тонких листов металлов и некоторых марок специальных сталей. Оборудование для сварки на постоянном токе в 1,5 раза дороже оборудования для сварки на переменном токе.
Преимущества переменного тока.
Преимуществом сварки на переменном токе служат небольшие габариты, малый вес и сравнительно невысокая стоимость электросварочных трансформаторов, а также простота их эксплуатации и значительная экономичность.
Недостатки переменного тока.
К недостаткам сварки на переменном токе относятся трудность выполнения потолочной и вертикальной сварки и необходимость употребления более дорогих обмазных электродов. Качество сварки при использовании переменного и постоянного тока равноценно.
Сварка угольным электродом.
Другим способом электросварки является сварка угольным электродом.
Процесс сварки угольным электродом.
Процесс электросварки угольными электродами следующий (см. рис. 1, б). При сварке электрическая дуга 1 возникает между угольным или графитовым электродом 2 и свариваемой деталью 3. Шов получается при плавлении прутка 4, который называется присадочным прутком, он вводится со стороны в электрическую дугу. Для начала сварки электроды графитовые или угольные зажимаются в держатель 5. Одновременно происходит плавление электрической дугой кромок свариваемого металла. Такой способ сварки в промышленности применяется очень редко.
Значит, для угольного электрода присадочным материалом для заполнения шва будет пруток, который вводится со стороны в электрическую дугу, а при сварке металлическим электродом присадочным материалом будет металл самого электрода.
Преимущества электродуговой сварки перед газовой заключаются в том, что она в три-четыре раза дешевле газовой и безопасна от взрыва горючих газов.
Сварка трением
Сварка трением, или фрикционная сварка, была изобретена в 1956 году в СССР. Для нагрева металла используется тепло, выделяемое при интенсивном трении прижатых друг к другу деталей. Метод отличается простотой, экологичностью и малой энергоемкостью. Так можно сваривать даже разнородные металлы и сплавы, не соединяемые другими способами.
Принцип действия
Технология сварки с помощью трения стоит особняком среди прочих методов сварки. Для нагрева свариваемых деталей используется тепло, выделяемое при трении заготовок друг о друга.
Наиболее распространено использование трения вращения, при этом вращается одна из свариваемых заготовок либо вкладка (или накладка) между ними.
Заготовки сильно прижимают друг к другу, постепенно увеличивая силу прижима. В точке контакта деталей и происходит нагрев.
За счет трения и высокой температуры разрушаются окисные пленки и следы посторонних загрязнений. Поверхности заготовок притираются одна к другой, разрушаются микро выступы, поверхность выравнивается, и атомы металлов получают возможность вступать в близкое взаимодействие. Кристаллические связи возникают на короткое время и быстро разрываются за счет движения заготовок друг относительно друга.
Схема сварки трением
Процесс разделяется на следующие этапы:
- Снятие оксидных пленок.
- Нагрев поверхностей до температуры пластичности, создание и разрушение фрагментов кристаллических решеток
- Останов вращения, кристаллизация зоны контакта, образование сварного шва.
После того, как температура плавления достигнута, вращение останавливают и увеличивают силу прижима.
Технологическая схема сварки трением намного проще, чем электродуговая или газовая сварка.
Особенности процесса сварки
К особенностям сварки трением относят:
- Способность к свариванию разнородных материалов, например, сварить сталь алюминий. При этом не требуются присадочные материалы и сложное оборудование.
- Применимость для неразъемного соединения деталей из меди, свинца, титана без деформации заготовок.
- Максимальная эффективность достигается при работе с заготовками от 6 до 100 миллиметров диаметром.
- Незаменимость в создании сложных технологий и выпуске ковано-сварных, штампованно-сварных и сварочно — литых изделий.
- Способность соединять материалы с низко свариваемостью. Этим методом можно сварить заготовки, не свариваемые никакими другими методами, например, алюминиевые и стальные.
Схема производства сварки трением
Нагревание при сварке трением широко используется и для сваривания деталей из термопластичных пластиков.
Преимущества сварки трением
К важным преимуществам технологии сварки трением относят:
- Производительность. Весь сварочный процесс занимает от нескольких секунд до нескольких минут. Существенно меньше времени занимают также и подготовительно — завершающие операции. По этому параметру технология превосходит контактную электросварку.
- Эффективность использования энергии. Нагрев происходит очень быстро и в весьма ограниченной закрытой области, потери энергии на обогрев окружающего пространства ничтожны по сравнению с другими сварочными технологиями. Преимущество по энергозатратам может быть десятикратным.
- Отличное качество шва. При корректно подобранном технологическом режиме зона сварного шва и околошовные области станут практически идентичны по своему строению и характеристикам основному металлу. Кроме того, в шовном материале практически отсутствуют дефекты: пористость, каверны, трещины, посторонние включения.
- Высокая стабильность характеристик швов внутри партии деталей. Если точно выдерживать режим, параметры деталей будут отличаться на доли процента. Это позволяет контролировать качество выборочно и позволяет сэкономить много времени и средств. Если одна деталь из партии прошла разрушающий контроль, то можно принимать технически обоснованное решение о годности всей партии.
- Нет необходимости в предварительной механической зачистке поверхности зоны шва и околошовной области. Она выполняется на первом этапе технологического процесса. Поскольку на подготовительно — завершающие операции времени уходит больше, чем на собственно сварку, это преимущество дает возможность для весьма заметной экономии.
- Способность к свариванию разнородных металлов и сплавов. Успешно свариваются такие пары металлов, которые просто невозможно сварить другими методами: стальные сплавы с алюминиевыми, алюминиевые с медными, сталь с титаном и т.д.
- Экологичность технологии. Сведены к минимуму как загрязнение окружающей среды, так и вредные факторы воздействия на здоровье людей: высокое напряжение, брызги расплавленного металла, ультрафиолетовое излучение, пожароопасность и другие.
Кроме того, сварка трением легко поддается механизации и автоматизации. Это особенно важно при крупносерийном и массовом производстве. Несколько несложных повторяющихся операций легко алгоритмизируются и могут выполняться по программе без участия человека.
Недостатки сварки трением
Как и у любой реально действующей технологии, фрикционному свариванию присущ и ряд недостатков:
- Применимость к ограниченному набору форм заготовок. Хотя бы одна из них должна иметь форму тела вращения. Способ не подходит для сваривания протяженных прямых и криволинейных швов, оболочек сложной формы, монтажа строительных конструкций, корпусов механизмов и транспортных средств. Однако в машиностроении более 75% деталей имеют круглое сечение или более сложную форму тел вращения.
- Громоздкое оборудование. Универсальный или специализированный станок требует стационарной установки, подведения электропитания. Это делает невозможным применение метода в полевых условиях.
- Ограниченный размер детали. Длина привариваемой детали ограничена вылетом бабки станка, диаметр — вылетом кулачков патрона.
- Радиальная деформация текстуры в зоне шва и в околошовных областях. При сильных динамических нагрузках возможна концентрация усталостных напряжений и возникновение микротрещин и других дефектов. Снижается также и коррозионная стойкость. Чтобы избежать ‘этих явлений, на заготовке оставляют грат. Дополнительная трудоемкость затрачивается на снятие грата по конструктивным требованиям.
Недостатки, ограничивающие использование метода, не позволяют считать фрикционную сварку универсальной технологией. Однако в сфере своей применимости она обладает значительными преимуществами перед другими методами.
Виды сварки трением
За полвека были разработаны и активно применяются несколько разновидностей фрикционного сваривания деталей. Они обладают своими особенностями, делающими их эффективными в своей области использования.
Сварка с перемешиванием
Технология была разработана и начала применяться в конце ХХ века. Суть метода заключается в использовании вращающегося штыря с заплечиками. Штырь изготавливают из тугоплавкого сплава высокой прочности. Вращаясь и нагревая металл, он проникает в него по линии контакта заготовок. За счет вращательного движения, в которое вовлекаются поверхностные слои размягченного нагревом металла заготовок, происходит перемешивание этих слоев. Так обеспечивается равномерность структуры и характеристик шовного материала.
Сварка трением с перемешиванием
Радиальная сварка
Применяется для соединения труб. В месте стыка на трубы с минимальным зазором надевают металлическое кольцо, которое вращается вокруг них. За счет трения вращения происходит нагрев торцов соединяемых труб. Кольцо обычно изготавливают из того же сплава, что и свариваемые трубы.
Радиальная сварка трением
Штифтовая сварка
Технология разработана для проведения ремонтов. В ремонтируемой детали сверлят отверстие, в него вводят стержень из такого же сплава, что и сама деталь. В ходе вращения штифта выделяется большое количество тепла, нагревающего металл. Это один из немногих мобильных способов сварки трением.
Штифтовая сварка трением
Линейная сварка
В отличие от остальных технологий, использующих трение, в этой вращение не применяется. Детали двигаются друг относительно друга прямолинейно, возвратно – поступательно и нагреваются до необходимой температуры. В этот момент движение прекращают и сильно прижимают заготовки друг к другу. Излишки металла в состоянии пластичности частично выдавливается из зоны сварки, образуется сварочный шов. Существует вариант технологии, при котором обе свариваемые детали неподвижны, а зоне шва о них трется инструмент специальной формы.
Линейная сварка трением
Область применения
Технология находит наиболее широкое применение в машиностроении, прежде всего — в инструментальном производстве. Используется она и при сборке внутрикорпусных изделий атомных реакторов. Соединение трением заготовок из алюминиевых и магниевых сплавов популярно в электротехнике, электронике и аэрокосмической отрасли. Используется технология и в транспортном машиностроении. Радиальный метод применяется в производстве техники для добывающих и перерабатывающих отраслей.
Сравнительно недавно фрикционная сварка стала использоваться в кораблестроении и пищевом машиностроении.
Технология демонстрирует эффективность и тенденцию к вытеснению традиционных методов сваривания в таких областях, как:
- для замены паяных и клепаных соединений;
- для замены контактной электросварки;
- для восстановления изделий и сложного инструмента;
- для приваривания заготовок к подготовленным поверхностям.
Отдельно следует отметить, что использование технологии дает особые преимущества там, где выдвинуты высокие требования к экологичность производственного процесса. Высокая энергоэффективность, отсутствие брызг расплавленного металла, вредных испарений и продуктов сгорания, ультрафиолетового излучения и минимальная пожароопасность делают метод особенно выгодным.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.