419 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема повышения преобразователя 12в на 220в

Обзор схем преобразователей напряжения с 12 В на 220 В

Преобразователи напряжения с 12 В на 220 В интересны всем, кто много ездит и проводит немало времени в машине. Приходится запитывать и заряжать ноутбук, коммуникатор, беспроводные наушники, сотовый телефон, порой нужен даже автомобильный холодильник (лучше, конечно, на 12 вольт, такие продаются). Такой преобразователь можно подключать к прикуривателю либо к аккумулятору. Подключать стоит к аккумулятору напрямую, поскольку в прикуривателе тоненькие провода, а при зарядке потребляется много тока. Для ноутбуков стоит иметь DC-DC инвертор, нет смысла преобразовывать 12 В в 220 В, включать в инвертор блок питания ноутбука, который опять 220 В преобразует в 19 В (питание ноутбука примерно такое). Но это вводная, перейдем к практике.

Простые маломощные схемы преобразователей на отечественной элементной базе

Надежная, но маломощная схема

Преимущества:

  • схема проверена, не подведёт;
  • если не нужна мощность, а зарядить телефон, и фонарики — то, что нужно;
  • не каждый блок бесперебойного питания будет работать в таком режиме.

Недостатки:

  • малая мощность (50 Вт);
  • моральная старость.

Как работает схема преобразователя

В схеме три функциональные узла: задающий мультивибратор (вырабатывает импульсы 50 Гц, инвертор на выходе), двухтактный транзисторный ключевой усилитель мощности, повышающий трансформатор.

В основе мультивибратора — микросхема D1 (D1.1 + D1.2). Номиналы R1, С1 задают частоту мультивибратора. Инвертор — выход D1.4 микросхемы. Транзисторы VT3, VT4 усиливают мощность импульсов, которые принимает низковольтная обмотка транса Т1. Импульсным током низковольтной обмотки в высоковольтной обмотке наводится напряжение 220 В, его форма близка к синусоидальной. Повышающая обмотка и конденсатор С4 образуют контур, настроенный на частоту 50 Гц, это улучшает форму напряжения на выходе.

Микросхему К561ЛН2 можно заменить другими инверторами — микросхемами К561ЛА7, К561ЛЕ5. Серия К176 в этой схеме не рекомендуется.

Транзистор КТ973 может иметь любой буквенный индекс.

Транзистор КТ805, возможная замена – КТ819, буквенные индексы любые.

Повышающим трансформатором могут быть любые сетевые трансформаторы с мощностью 50-100 Вт, с первичной обмоткой 220 В, а две вторичные — 10-15 В в каждой (можно одну, имеющую в середине отвод на 20-30 В). При этом нужно помнить об обратном включении трансформатора!.

Транзисторам VT4 и VT3 нужны радиаторы для надежного теплоотвода

Источник: РадиоКонструктор №5/1999, стр. 27

Простая схема мощностью 110-130 Вт (75 Герц)

Преимущества:

  • простая сборка;
  • надежен, не боится перегрузок и КЗ;
  • копеечная стоимость.

Недостатки: тяжелый и громоздкий.

В основе этой конструкции — схема простейшего преобразователя напряжения DC/AC, при соблюдении всех параметров налаживание не требуется, можно обойтись только паяльником. После подачи питания схема запускается сразу, не требует настройки (естественно, нужно замерить выходное напряжение). Используется общий коллектор, все транзисторы можно установить на один радиатор, изолирующие прокладки не нужны. Монтаж навесной.
Вариант 1:

  • резисторы — 5-10 Ом, 0.5 Вт;
  • резисторы силовой части — 5-10 Ом, 2 Вт;
  • конденсатор на выходе инвертора — 0.3-0.8 мкФ 400 В (не электролитический и не полярный);
  • транзисторы Т1 и Т2 — почти любые РпР структуры (КТ835, КТ837, КТ818, П213, П214, П215, П216, П217) или другие, близкие к ним по параметрам;
  • транзисторы Т3-Т6. Т10 — также РпР структуры (П210, П213-П217, КТ835Б, КТ837, КТ818, КТ818ГМ.

От выбора типа транзисторов силовой части инвертора будет зависеть выходная мощность инвертора. Лучший вариант — полевые транзисторы, но нужно заменить резисторы на более высокое сопротивление, подходящее под тип отобранного транзистора.

Задающий генератор собран на транзисторах Т1-Т2, 2-х резисторах и трансформаторе Тр1.

  • обмотки 1 и 4 – по 10 витков;
  • обмотки 2 и 3 – по 30 витков;
  • обмотки 5 и 6 – по 10 витков.

Все обмотки можно мотать проводом любой марки диаметром 0.4-0.5мм. Для лучшей синхронизации каналов желательно обмотки 1 и 4, 2 и 3, 5 и 6 мотать бифилярно, т.е. по 2 провода вместе.

Трансформатор ТР1 – ш-образный на железе с площадью сечения сердечника не менее 4см (если сечение окажется недостаточным,то задающий генератор запустится на высоких частотах,от 800Гц до 10-12Кгц,о чём подскажет высокочастотный писк трансформатора). Можно взять из чб лампового телевизора трансформатор ТВ-3Ш,он небольшого размера.

В зависимости от применяемых транзисторов и типа трансформатора частота и напряжение на обмотках 5 и 6 может измениться. Нормальным для работы силовой части инвертора будет напряжение 7-10 В.

При сборке задающего генератора номиналы элементов обоих каналов должны быть строго идентичны для обеспечения синхронной работы всего инвертора. Особое внимание нужно уделить правильной фазировке обмоток 1, 2, 3 и 4. Начала всех обмоток обозначены точками.

  • обмотка 3 намотана проводом диаметром 0,5-0.8мм,содержит 600 витков;
  • обмотки 1-2 – проводом диаметром 2мм, по 24 витка;

Можно использовать готовый сетевой трансформатор, имеющий 2 выхода по 12 вольт, просто подключив его «наоборот». Но в этом случае, возможно, придётся корректировать число витков вторичной обмотки 3. Выходная мощность будет зависеть от типа транзисторов, их количества и габаритной мощности трансформатора. Ну и номиналы элементов обоих каналов должны быть идентичны.

Осциллограмма импульсов инвертора на выходе:

Простой маломощный на двух транзисторах

Отечественная комплектация использована в следующей очень простой и надежной схеме преобразователя напряжения 12 В в 220 В (разрабатывалась для энергосберегающей лампы). Схема не требует наладки, в ней 2 транзистора, конденсатор, два резистора и трансформатор.

Транзисторы подобраны для минимального тока потребления (КТ814 и КТ940), под них определены сопротивления и емкость, номиналы которых указаны на схеме.

Эта конструкция оптимальна для питания энергосберегающей лампы 8,9,11 Вт, потребление тока колеблется от 0.5 до 0.54 А.

Трансформатор сделан из ферритовых чашек диаметром 35 мм, высотой 20мм. Вначале наматывается первичная обмотка — 14 витков, провод диаметром 0,5 мм, после намотки она оборачивается изолентой в один слой. Вторичная обмотка — провод диаметром 0.2 мм, 220 витков, поверху также обмотка изолентой в один слой. Затем каркас с намоткой помещается в ферритовые чашки и садится на болтик.

Ниже показаны фотографии.

Намотанные катушки индуктивности.

Преобразователь питает энергосберегающую лампу.

Для просмотра схем более мощных преобразователей щелкните на цифре 2.

Схемы устройств большей мощности

Преобразователь мощностью до 400 Вт

Схема состоит из задающего генератора (микросхема А1 — КР1211ЕУ1, зарубежного аналога не имеет — это задающий генератор с двумя выходами: прямым и инверсным, соответственно 4 и 6), двух ключей (полевики VT1 и VT2), трансформатора Т1 (повышающего).

Вывод 1, когда на него подается высокий уровень сигнала, останавливает генератор, в этой реализации не использован, в схеме на него подается сигнал постоянного низкого уровня.

Частота генерации определяется R1 – C1, надежный запуск генератора обеспечивают R2 – C2. Стабилизатор (элементы R3, VD1, C3, стабилизация 8-10 В) питает микросхему.

На выходе — двухтактный каскад: два мощных полевых транзистора IRL2505 (при нагрузке до 200 Вт радиаторы не требуются, если возможна большая нагрузка — радиаторы обязательны).

Трансформатором может быть какой-угодно сетевой с двумя обмоткми на 12 В требуемой мощности, лучше тороидальный, можно другой, но должно соблюдаться следующее условие: по мощности трансформатор должен превышать предполагаемую нагрузку в 2 (это если тороидальный сердечник) – 2.5 раза. Пример: если нагрузкой будут 100 Вт – нужна мощность 250 Вт, если тороидальный — 200 Вт.

Конденсатором С6 (он сглаживает импульс) — может быть К-73-17 либо подобный, напряжением 400 В или выше. Когда мощность потребления большая, ток с 12 В может превышать 40 А, вот почему на сечение и длину шины питания необходимо обратить внимание.

Мощный преобразователь напряжения с 12 В на 220 В

Предназначен для нагрузки до 1000 Вт, требующей переменного напряжения 220В. Использованы старые транзисторы П216, которые радиолюбители еще могут найти в своем хозяйстве.

В качестве задающего генератора здесь используются транзисторы VT1, VT2 и трансформатор Т1 – задается частота 200 Гц. Вторичная обмотка Т1 сигнал через конденсаторы отправляет к электродам тиристоров VD1, VD2, которые создают импульсное напряжение в первой обмотке трансформатора Т2.

Неполярный конденсатор С4 (его емкость) подобран так, что его напряжение поочередно закрывает тиристоры. Резистором R3 защищаются цепи 12 В от перегрузки во время открывания тиристора.

У трансформатора Т1:

  • у сердечника – пластина Ш16Х10;
  • в обмотке 1 – 40+40 витков ПЭЛ 0.8;
  • в обмотке 2 – 10+10 витков ПЭЛ 0.3;
  • в обмотке 3 – 20+20 витков ПЭЛ 0.3.

В трансформаторе Т2:

  • в сердечнике – пластина Ш50Х60;
  • в обмотке 1 – 40+40 витков проводом 3 мм в диаметре;
  • в обмотке 2 – 460 витков, провод ПЭЛ 0.8.

Использование тиристоров КУ202 позволит собрать подобный преобразователь меньшей мощности.

Также можно применить новые кремниевые транзисторы, в этом случае требуется корректировка режима постоянного тока.

Схема инвертора мощностью 300 Вт

Ниже приведена уменьшенная схема, полноразмерная схема для более комфортного просмотра здесь.

Достоинства:

  • беспроблемная работа при нагрузке до 300 Вт;
  • возможна нагрузка до 650 Вт (при сильном нагреве проводов и падении напряжения до 190 В).

Недостатки:

  • сложность, требуется импортная комплектация;
  • более высокая стоимость.

Трансформатором может послужить импульсный блок питания (нерабочий советский телевизор в самый раз). Нужно перемотать, сточить зазор на феррите (если из двух таких трансформаторов взять по одной половинке феррита, ничего точить не придется).

В трансформаторе преобразователя возможно использование двух колец, оба 40х25х11, склеенных вместе. Первичная – та же, что в ТПИ-3, вторичная – на 60 витков.

Первичная – в двух обмотках 3 повода на 0.8 у плеча – в одном плече 5 витков и во втором плече 5 витков.

Вторичная – два провода на 0.8. При наматывании используется метод проверки. Вначале половину вторичной — два провода 0.8 + изоляция, затем первичную два плеча, опять изоляция, еще раз вторичная – ее подгоняем для нужного вольтажа (230 В).

В качестве корпуса лучше использовать компьютерный блок питания АТХ, в нем есть кулер, который лучше оставить и применить для охлаждения при повышенной нагрузке.. Ниже показаны фотографии сделанного устройства.

Сверхпростой преобразователь 12-220 Вольт 50Гц 300Ватт

В последнее время очень часто наблюдаю, что все больше и больше людей увлекаются сборкой самодельных инверторов. Поскольку заинтересованы начинающие радиолюбители, я решил вспомнить о схеме, которую опубликовал на нашем сайте год назад. Сегодня я решил переделать схему увеличивая выходную мощность и детально пояснить процесс сборки.

Скажу сразу — это самый простой преобразователь 12-220 с учетом выходной мощности схемы. В качестве задающего генератора задействован старый и добрый мультивибратор. Разумеется, такое решение многим уступает современным высокоточным генераторам на микросхемах, но давайте не забудем, что я стремился максимально упростить схему так, чтобы в итоге получился инвертор, который будет доступен широкой публике. Мультивибратор — не есть плохо, он работает более надежно, чем некоторые микросхемы, не так критичен к входным напряжениям, работает при суровых погодных условиях (вспомним TL494, которую нужно подогревать, при минусовых температурах).

Читать еще:  Кнопка с фиксацией обозначение на схеме гост

Трансформатор использован готовый, от UPS, габариты сердечника позволяют снять 300 ватт выходной мощности. Трансформатор имеет две первичные обмотки на 7 Вольт (каждое плечо) и сетевую обмотку на 220 Вольт. По идее, подойдут любые трансформаторы от бесперебойников.

Диаметр провода первичной обмотки где-то 2,5мм, как раз то, что нужно.

Основные характеристики схемы

Номинал входного напряжения — 3,5-18 Вольт
Выходное напряжение 220Вольт +/-10%
Частота на выходе — 57 Гц
Форма выходных импульсов — Прямоугольная
Максимальная мощность — 250-300 Ватт.

Недостатки

Долго думал какие у схемы недостатки, на счет КПД, оно на 5-10% ниже аналогичных промышленных устройств.
Схема не имеет никаких защит на входе и на выходе, при КЗ и перегрузке полевые ключи будут перегреваться до тех пор, пока не выйдут из строя.
Из за формы импульсов, трансформатор издает некий шум, но это вполне нормально для таких схем.

Достоинства

Простота, доступность, затраты, 50 Гц на выходе, компактные размеры платы, легкий ремонт, возможность работы в суровых погодных условиях, широкий допуск используемых компонентов — все эти достоинства делают схему универсальной и доступной для самостоятельного повторения.

Китайский инвертор на 250-300 ватт, можно купить где-то за 30-40$, на этот инвертор я потратил 5$ — купил только полевые транзисторы, все остальное найдется на чердаке думаю у каждого.

Элементная база

В обвязке минимальное количество компонентов. Транзисторы IRFZ44 можно с успехом заменить на IRFZ40/46/48 или на более мощные — IRF3205/IRL3705, они не критичны.

Транзисторы мультивибратора TIP41 (КТ819) можно заменить на КТ805, КТ815, КТ817 и т.п.

С успехом подключал к этому инвертору телевизор, пылесос и другие бытовые устройства, работает неплохо, если устройство имеет встроенный импульсный БП, то вы не заметите разницы в работе от сети и от преобразователя, в случае запитки дрели — запускается с неким звуком, но работает довольно хорошо.

Плата была нарисована вручную обыкновенным маникюром

В итоге инвертор понравился на столько, что решил поместить в корпус от компьютерного блока питания.
Реализована также функция REM, для включения схемы нужно всего лишь подключить провод REM на плюсовую шину, тогда поступит питание на генератор и схема начнет работать.


С такой схемы вполне реально снять и большую мощность (500-600 Ватт, может и больше), в дальнейшем попробую увеличить мощность, так, что следующая статья не за горами, до новых встреч.

Ну очень простой инвертор 12В/220В

Сегодня мы рассмотрим, как сделать инвертор своими руками. Здесь нет никакой сложной электроники, набор компонентов очень маленький, а схема понятная любому новичку. Всего-то вам понадобится соединить несколько резисторов, транзисторов и трансформатор. Заинтриговал? Тогда переходим к изучению инструкции!

Материалы и инструменты, которые использовал автор:

Список материалов:
— трансформатор 12-0-12В на 5А;
— аккумулятор на 12В;
— два алюминиевых радиатора;
— два транзистора TIP3055;
— два резистора 100 Ом/10 Ватт;
— два резистора 15 Ом/10 Ватт;
— провода;
— фанера, ламинат (или прочее для изготовления корпуса);
— розетка;
— термопаста;
— пластиковые стяжки;
— винтики с гайками и пр.





Процесс изготовления инвертора:

Шаг первый. Ознакомьтесь со схемой
Ознакомьтесь со схемой подключения всех элементов. Есть как электронная подробная схема, так и простая, интуитивно понятная, куда и какие провода подключать.















Шаг седьмой. Дальнейшее подключение
Берем еще один кусок провода, у автора он розового цвета. Припаяйте его к центральному контакту трансформатора, через него на трансформатор будет подаваться плюс от аккумулятора.

Еще вам понадобится кусок белого провода, это будет минус от аккумулятора, его нужно припаять желтому проводу, то есть перемычке, установленной ранее.



















Корпус можно собирать, для этих целей автор использовал горячий клей. Что касается верхней крышки, то в ней нужно вырезать посадочное место под розетку. У автора материал мягкий, он вырезает окно с помощью канцелярского ножа. Если окно подходящего размера, розетка должна зафиксироваться надежно. С обратной стороны ее можно дополнительно укрепить горячим клеем или эпоксидкой.

Пришло время установить крышку, ее крепим на саморезах, чтобы иметь доступ к внутренностям инвертора.









Инвертор готов, можно проверять! Лампочки горят без труда, а что будет с более серьезной электроникой? Автор пробует запитать от своего детища сетевой маршрутизатор и он работает без проблем! Теперь вы не останетесь без WI-FI, даже если выключат свет.

На этом все, удачи и берегите себя! Не забывайте при сборке, что генерируется напряжение 220В, а это опасно для жизни!

Делаем простейший преобразователь 12В — 220В своими руками

Можно вспомнить много случаев, когда пригодился бы преобразователь из 12 вольт постоянного тока в 220 вольт переменного – например, приехав на дачу на автомобиле, можно вечером включить освещение или запитать от аккумулятора насос для полива. Также такой инвертор – неотъемлемая часть ветряных генераторов.

Купить готовое устройство не составит проблем – в автомагазинах можно найти автомобильные инверторы (импульсные преобразователи напряжения) различной мощности и цены.

Однако, цена подобного устройства средней мощности (300-500 Вт) составляет несколько тысяч рублей, а надежность многих китайских инверторов достаточно спорна. Изготовление своими руками простого преобразователя – это не только способ ощутимо сэкономить, но и возможность улучшить свои знания в электронике. В случае отказа же ремонт самодельной схемы окажется ощутимо проще.

Распространенные схемы

Простой импульсный преобразователь

Схема этого устройства очень проста, а большинство деталей могут быть извлечены из ненужного блока питания компьютера. Конечно, у нее есть и ощутимый недостаток – получаемое на выходе трансформатора напряжение 220 вольт далеко по форме от синусоидального и имеет частоту значительно больше, чем принятые 50 Гц. Напрямую подключать к нему электродвигатели или чувствительную электронику нельзя.

Для того, чтобы иметь возможность подключать к этому инвертору содержащую импульсные блоки питания технику (например, блок питания ноутбука), применено интересное решение – на выходе трансформатора установлен выпрямитель со сглаживающими конденсаторами. Правда, работать подключенный адаптер сможет только в одном положении розетки, когда полярность выходного напряжения совпадет с направлением встроенного в адаптер выпрямителя. Простые потребители типа ламп накаливания или паяльника можно подключать непосредственно к выходу трансформатора TR1.

Основа приведенной схемы – это ШИМ-контроллер TL494, наиболее распространенный в таких устройствах. Частоту работы преобразователя задают резистор R1 и конденсатор C2, их номиналы можно брать несколько отличающимися от указанных без заметного изменения в работе схемы.

Для большей эффективности схема преобразователя включает в себя два плеча на силовых полевых транзисторах Q1 и Q2. Эти транзисторы нужно разместить на алюминиевых радиаторах, если предполагается использовать общий радиатор – устанавливайте транзисторы через изоляционные прокладки. Вместо указанных на схеме IRFZ44 можно использовать близкие по параметрам IRFZ46 или IRFZ48.

Выходной дроссель наматывается на ферритовом кольце от дросселя, также извлекаемого из компьютерного блока питания. Первичная обмотка мотается проводом диаметром 0,6 мм и имеет 10 витков с отводом от середины. Поверх нее наматывается вторичная обмотка, содержащая 80 витков. Также можно взять выходной трансформатор из сломанного источника бесперебойного питания.

Вместо высокочастотных диодов D1 и D2 можно взять диоды типов FR107, FR207.

Так как схема очень проста, после включения при правильном монтаже она начнет работать сразу и не потребует никакой настройки. Отдавать в нагрузку она сможет ток до 2,5 А, но оптимальным режимом работы будет ток не более 1,5 А – а это более 300 Вт мощности.

Готовый инвертор такой мощности стоил бы порядка трех-четырех тысяч рублей.

Схема преобразователя с выходом переменного тока

Эта схема выполнена на отечественных комплектующих и достаточно стара, но это не делает ее менее эффективной. Главное ее достоинство – это получение на выходе полноценного переменного тока с напряжением 220 вольт и частотой 50 Гц.

Здесь генератор колебаний выполнен на микросхеме К561ТМ2, представляющей собой сдвоенный D-триггер. Она является полным аналогом зарубежной микросхемы CD4013 и может быть заменена ей без изменений в схеме.

Преобразователь также имеет два силовых плеча на биполярных транзисторах КТ827А. Их главный недостаток по сравнению с современными полевыми – это большее сопротивление в открытом состоянии, из-за чего нагрев при той же коммутируемой мощности у них сильнее.

Так как преобразователь работает на низкой частоте, трансформатор должен иметь мощный стальной сердечник. Автор схемы предлагает использовать распространенный советский сетевой трансформатор ТС-180.

Как и другие инверторы на основе простых ШИМ-схем, этот преобразователь имеет на выходе достаточно отличающуюся от синусоидальной форму напряжения, но это несколько сглаживается большой индуктивностью обмоток трансформатора и выходным конденсатором С7. Также из-за этого трансформатор во время работы может издавать ощутимый гул – это не является признаком неисправности схемы.

Простой инвертор на транзисторах

Этот преобразователь работает по тому же принципу, что и перечисленные выше схемы, но генератор прямоугольных импульсов (мультивибратор) в нем построен на биполярных транзисторах.

Особенность этой схемы в том, что она сохраняет работоспособность даже на сильно разряженном аккумуляторе: диапазон входных напряжений составляет 3,5…18 вольт. Но, так как в ней отсутствует какая-либо стабилизация выходного напряжения, при разрядке аккумулятора будет одновременно пропорционально падать и напряжение на нагрузке.

Так как эта схема также является низкочастотной, трансформатор потребуется аналогичный используемому в инверторе на основе К561ТМ2.

Усовершенствования схем инверторов

Приведенные в статье устройства крайне просты и по ряду функций не могут сравниться с заводскими аналогами. Для улучшения их характеристик можно прибегнуть к несложным переделкам, которые к тому же позволят лучше понять принципы работы импульсных преобразователей.

Увеличение выходной мощности

Все описанные устройства работают по одному принципу: через ключевой элемент (выходной транзистор плеча) первичная обмотка трансформатора соединяется с входом питания на время, заданное частотой и скважностью задающего генератора. При этом генерируются импульсы магнитного поля, возбуждающие во вторичной обмотке трансформатора синфазные импульсы с напряжением, равным напряжению в первичной обмотке, умноженному на отношение числа витков в обмотках.

Следовательно, ток, протекающий через выходной транзистор, равен току нагрузки, помноженному на обратное соотношение витков (коэффициент трансформации). Именно максимальный ток, который может пропускать через себя транзистор, и определяет максимальную мощность преобразователя.

Существуют два способа увеличения мощности инвертора: либо применить более мощный транзистор, либо применить параллельное включение нескольких менее мощных транзисторов в одном плече. Для самодельного преобразователя второй способ предпочтительнее, так как позволяет не только применить более дешевые детали, но и сохраняет работоспособность преобразователя при отказе одного из транзисторов. В отсутствие встроенной защиты от перегрузок такое решение значительно повысит надежность самодельного прибора. Уменьшится и нагрев транзисторов при их работе на прежней нагрузке.

Читать еще:  Схема подключения лампочки с 2 мест

На примере последней схемы это будет выглядеть так:

Автоматическое отключение при разряде аккумулятора

Отсутствие в схеме преобразователя устройства, автоматически отключающего его при критическом падении напряжения питания, может серьезно подвести Вас, если оставить такой инвертор подключенным к аккумулятору автомобиля. Дополнить самодельный инвертор автоматическим контролем будет крайне полезно.

Простейший автоматический выключатель нагрузки можно сделать из автомобильного реле:

Как известно, каждое реле имеет определенное напряжение, при котором замыкаются его контакты. Подбором сопротивления резистора R1 (оно будет составлять около 10% от сопротивления обмотки реле) настраивается момент, когда реле разорвет контакты и прекратит подачу тока на инвертор.

ПРИМЕР: Возьмем реле с напряжением срабатывания (Uр) 9 вольт и сопротивлением обмотки (Rо) 330 ом. Чтобы оно срабатывало при напряжении выше 11 вольт (Umin) , последовательно с обмоткой нужно включить резистор с сопротивлением Rн, рассчитываемым из условия равенства Uр/Rо=(UminUр)/Rн. В нашем случае потребуется резистор на 73 ома, ближайший стандартный номинал – 68 ом.

Конечно, это устройство крайне примитивно и является скорее разминкой для ума. Для более стабильной работы его нужно дополнить несложной схемой управления, которая поддерживает порог отключения гораздо точнее:

Мощные повышающие инверторы напряжения (12V в 220V)

Повышающие трансформаторные преобразователи напряжения на транзисторах широко используются в нестационарных и полевых условиях для замены сети 220 В 50 Гц для питания сетевой аппаратуры и приборов.

Такие преобразователи должны обеспечивать выходную мощность от единиц до сотен ватт при питании от аккумуляторов или генераторов постоянного тока напряжением от 6 до 24 В.

Обычно в качестве преобразователей напряжения повышенного напряжения используют автогенераторные преобразователи или трансформаторные преобразователи с внешним возбуждением.

Двухтактный трансформаторный преобразователь напряжения

Пример двухтактного трансформаторного автогенератора, преобразующего постоянное напряжение 12 6 в переменное 220 В, показан на рис. 1.

Преобразователь работает на повышенной частоте преобразования — 500 Гц (под нагрузкой) и 700 Гц на холостом ходу. КПД преобразователя около 75%. Такой преобразователь можно использовать, преимущественно, для питания активной нагрузки, например, паяльника, осветительной лампы. Его выходная мощность — до 40 Вт.

Резистор R1 является ограничителем базового тока. Цепь R2, С1 создает запускающий импульс тока в момент включения питания генератора. Дроссель L1 ДПМ-0,4 снижает вероятность самовозбуждения преобразователя на повышенной частоте (более 10 кГц).

Для трансформатора Т1 использован магнитопровод трансформатора кадровой развертки (ТВК). Все его обмотки перемотаны. Обмотки I и II содержат по 30 витков провода ПЭВ 0,6. 0,8. Обмотка III содержит 20 витков провода ПЭВ 0,16. 0,2; обмотка IV — 1000 витков такого же провода. Намотка обмоток I и II ведется одновременно в два провода виток к витку.

Рис. 1. Схема преобразователя напряжения средней мощности, выход 220В.

Обмотка III наматывается также виток к витку. Обмотка IV — внавал равномерно по каркасу.

Преобразователь напряжения 12В аккумулятора в 220В

Повышающий трансформаторный преобразователь напряжения аккумулятора (рис. 2) позволяет получить на выходе напряжение 220 В 50 Гц, потребляя при напряжении 12 В ток 5 А.

Рис. 2. Схема мощного преобразователя напряжения аккумулятора 12В в 220В.

В основе устройства — задающий генератор прямоугольных импульсов, выполненный по схеме мультивибратора, типовая схема которого может быть выполнена как на транзисторах, так и на микросхеме.

Рабочая частота этого генератора должна быть 50 Гц. Поскольку выходная мощность задающего генератора невелика, к выходам мультивибратора подключены двухкаскадные усилители мощности, позволяющие получить усиление по мощности до 1000 раз.

На выходе усилителя включен повышающий низкочастотный трансформатор Т1. Диоды VD1 и VD2 защищают выходные транзисторы преобразователя при их работе на индуктивную нагрузку.

В качестве трансформатора Т1 можно использовать унифицированные трансформаторы типа ТАН или ТПП. Транзисторы VT1 и VT4 допустимо заменить на КТ819ГМ (с радиаторами); VT2 и ѴТЗ — КТ814, КТ816, КТ837; диоды VD1 и VD2 — Д226.

Преобразователь напряжения 12В в 220В на 100Ватт

Преобразователь постоянного напряжения 12В в переменное 220 В (рис. 10.3) может обеспечить выходную мощность 100 Вт.

Рис. 3. Схема преобразователя напряжения (12В в 220В) мощностью 100 Вт.

На преобразователь подается постоянное напряжение 12 В от аккумулятора. Его задающий генератор формирует два пара-фазных напряжения с частотой 50 Гц (частота промышленной сети). Напряжения с задающего генератора подаются на два однотипных импульсных усилителя, которые коммутируют напряжение на первичной обмотке трансформатора Т1. Со вторичной обмотки трансформатора Т1 переменное напряжение 220 В частотой 50 Гц поступает в нагрузку.

Задающий генератор (на рисунке 1 — типовая схема узла ) на основе симметричного мультивибратора отличается использованием диодов, включенных в базовые цепи транзисторов. За счет нелинейности ВАХ диодов выходные импульсы мультивибратора имеют незначительные выбросы.

К выходам задающего генератора подключены два однотипных трехкаскадных усилителя. На вторичной обмотке Т1 получается переменное напряжение 220 В.

Силовой трансформатор Т1 намотан на Ш-образном магнитопроводе сечением 12 см2. Первичная обмотка содержит две половины по 240 витков провода ПЭЛ 0,65 мм. Вторичная обмотка имеет 4400 витков провода ПЭЛ 0,25 мм. Выходные транзисторы ѴТ1 и ѴТ6 установлены на радиаторы площадью по 100 см2.

Для защиты выходных транзисторов следует использовать высокочастотные диоды VD1 и VD2 типа КД213, КД2997. Транзисторы ѴТ1 и ѴТ6 можно заменить на КТ819ГМ (с радиаторами); ѴТ2 и ѴТ5 — КТ805, ѴТЗ и ѴТ4 — КТ208.

Преобразователь напряжения на 220В, 50Гц

Схема простого преобразователя напряжения, позволяющего при питании от автомобильного аккумулятора 12 В получить на выходе напряжение 220 В 50 Гц, показана на рис. 4. Максимальная выходная мощность преобразователя — 100 Вт, КПД — до 50%.

Рис. 4. Схема простого преобразователя напряжения на 220 В 50 Гц.

Задающий генератор выполнен по схеме традиционного симметричного мультивибратора, выполненного на транзисторах ѴТ2 и ѴТЗ (КТ815). Выходные каскады преобразователя собраны на составных транзисторах ѴТ1 и ѴТ4 (КТ825). Эти транзисторы установлены без изолирующих прокладок на общий радиатор.

Устройство потребляет от аккумулятора ток до 20 А. В качестве силового использован готовый сетевой трансформатор на 100 Вт (сечение центральной части железного сердечника — около 10 см2).

У него должны быть две вторичные обмотки, рассчитанные на 8В/10 А каждая. Для того, чтобы частота работы задающего генератора была равна 50 Гц, подбирают номиналы резисторов R3 и R4.

Повышающий инвертор напряжения мощностью 200Ватт

Преобразователь напряжения повышенной мощности работает от аккумуляторной батареи (рис. 5) и позволяет получить на выходе переменное напряжение 220 В частотой 50 Гц. Мощность нагрузки может достигать 200 Вт.

Трансформатор Т1 намотан на ленточном магнитопроводе ШЛ12х20. Первичная обмотка содержит 500 витков ПЭВ-2 0,21, отвод от середины. Обмотки управления имеют по 30 витков того же провода диаметром 0,4 мм.

Рис. 5. Схема инвертора напряжения повышенной мощности, на 200Ватт.

Трансформатор Т2 — также на ленточном магнитопроводе ШЛ32х38. Первичная обмотка содержит 96 витков провода ПЭВ-2 2,5, отвод от середины. Вторичная обмотка имеет 920 витков провода ПЭВ-2 диаметром 0,56 мм.

Выходные транзисторы устанавливаются на радиаторах площадью по 200 см2. Сильноточные токовводы должны иметь сечение не менее 4 мм2. Работа преобразователя проверялась от аккумулятора 6СТ60.

Преобразователь напряжения для электробритвы

Для питания электробритвы от автомобильной бортовой сети с постоянным напряжением 12 В предназначено следующее устройство (рис. 6). Оно потребляет под нагрузкой ток около 2,5 А.

В преобразователе задающий генератор на триггере DD1.1 вырабатывает частоту 100 Гц. Потом делитель частоты на триггере DD1.2 уменьшает ее в 2 раза, а предварительный усилитель на транзисторах VT1, VT2 раскачивает усилитель мощности на транзисторах ѴТЗ, ѴТ4, нагруженный на трансформатор Т1.

Задающий генератор обладает стабильностью частоты не хуже 5% при изменении питающего напряжения от 6 до 15 Б. Делитель частоты одновременно играет роль симметрирующей ступени, позволяя улучшить форму выходного напряжения преобразователя.

Микросхема DD1 К561ТМ2 (564ТМ2) и транзисторы предварительного усилителя питаются через фильтр R9, СЗ и С4. Вторичная обмотка трансформатора Т1 с конденсатором С5 и нагрузкой образуют колебательный контур с резонансной частотой около 50 Гц.

Рис. 6. Схема преобразователя напряжения для питания электробритвы.

Трансформатор Т1 можно изготовить на основе любого сетевого трансформатора мощностью 30. 50 Вт. Все ранее существовавшие вторичные обмотки с трансформатора удаляют (сетевая будет служить новой вторичной обмоткой), а вместо них наматывают проводом ПЭЛ или ПЭВ-2 диаметром 1,25 мм две полуобмотки, каждая с числом витков, соответствующим коэффициенту трансформации около 20 по отношению к оставленной обмотке на 220 В.

Если число витков высоковольтной обмотки неизвестно, количество витков низковольтной обмотки определяют экспериментально, подбором числа витков до получения на выходе преобразователя напряжения 220 В. Емкость конденсатора С5 подбирают из условия получения максимального выходного напряжения при подключенной нагрузке.

Схема преобразователя (рис. 6) была упрощена В. Каравкиным . Усовершенствования коснулись только задающего генератора, схема которого показана на рис. 7. Этот генератор работает на частоте 50 Гц.

Рис. 7. Вариант схемы задающего генератора для преобразователя напряжения.

Транзисторный инвертор напряжения 12В — 220В, 100Ватт

Преобразователь постоянного напряжения 12 6 в переменное 220 В (рис. 8) при подключении к автомобильному аккумулятору емкостью 44 А-ч может питать 100-ваттную нагрузку в течение 2. 3 часов.

Рис. 8. Схема транзисторного преобразователя напряжения 12В в 220В на мощность 100 Вт.

Задающий генератор на симметричном мультивибраторе (VT1 и VT2) нагружен на мощные парафазные ключи (ѴТЗ — ѴТ8), коммутирующие ток в первичной обмотке повышающего трансформатора Т1. Мощные транзисторы ѴТ5 и ѴТ8 защищены от перенапряжений при работе без нагрузки диодами VD3 и VD4.

Трансформатор выполнен на магнитопроводе ШЗбхЗб, низковольтные обмотки I’ и I” имеют по 28 витков провода ПЭЛ диаметром 2,1 мм, а повышающая обмотка II — 600 витков ПЭЛ диаметром 0,6 мм, причем сначала наматывают W2, а поверх нее двойным проводом (с целью достижения симметрии полуобмоток) W1. При налаживании с помощью резистора R5 добиваются минимальных искажений формы выходного напряжения.

Преобразователь напряжения мощностью 300 Вт

Схема преобразователя напряжения на 300 Вт показана на рис. 10.9. Задающий генератор преобразователя собран на однопереходном транзисторе VT1, резисторах R1 — R3 и конденсаторе С2.

Частоту генерируемых им импульсов, равную 100 Гц, D-триггер на микросхеме DD1 К561ТМ2 делит на 2. При этом на выходах триггера формируются парафазные импульсы, следующие с частотой 50 Гц.

Читать еще:  Схема зарядки для шуруповерта 18в

Они через буферные элементы — инверторы КМОП-микросхемы К561ЛН2 управляют ключевыми транзисторами (блок 1), включенными по схеме двухтактного усилителя мощности. Нагрузкой этого каскада служит трансформатор Т1, повышающий импульсное напряжение до 220 В.

Рис. 9. Схема преобразователя напряжения 12В в 220В мощностью 300 Вт.

Трансформатор Т1 выполнен на магнитопроводе ПЛ25х100х20. Обмотки I и II содержат по 11 витков из алюминиевой шины сечением 3×2 мм, обмотка III выполнена проводом ПБД диаметром 1,2 мм и имеет 704 витка.

Приступая к налаживанию устройства плюсовой проводник источника питания отключают от точки соединения обмоток I и II трансформатора Т1 и, пользуясь осциллографом, проверяют частоту и амплитуду импульсов на базах транзисторов. Амплитуда импульсов должна быть около 2 Б, а их частоту следования, равную 50 Гц, устанавливают резистором R1.

Каждый из выходных транзисторов установлен на теплоотводе с площадью около 200 см2 Резисторы в коллекторных цепях транзисторов изготовлены из нихромового провода диаметром 1,2 мм (10 витков на оправке диаметром 4 мм). Если их включить

в эмиттерные цепи транзисторов, то транзисторы каждого п/іеча можно будет установить на общий теплоотвод. Нагрузку к преобразователю допускается подключать только после того, как на схему будет подано питание.

Стабилизированный инвертор напряжения из доступных деталей

Все рассмотренные ранее повышающие преобразователи имели нерегулируемое и нестабилизированное выходное напряжение. На рис. 10 показан простой повышающий преобразователь, к достоинствам которого можно отнести:

  • стабилизированное выходное напряжение;
  • возможность регулировки величины выходного напряжения в значительных пределах;
  • применение широко распространенных элементов;
  • использование в качестве Т1 типового трансформатора ТН-46-127/220-50 без каких-либо переделок.

Рис. 10. Схема повышающего преобразователя 9. 12,6 В/220 В, 18 Вт с регулируемым стабилизированным выходным напряжением переменного тока.

Преобразователь выполнен на транзисторах ѴТ4 и ѴТ5 по классической схеме Ройера. Его питание осуществляется от регулируемого стабилизатора напряжения на транзисторах ѴТ1 — ѴТЗ.

Следует иметь в виду, что транзисторы ѴТЗ — ѴТ5 обязательно должны быть установлены на теплоотводящих пластинах. Составной стабилитрон VD1 — VD2 (КС147А и КС133А) можно заменить на КС182. Максимальный ток нагрузки — до 100 мА.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

Сборка самодельного преобразователя с 12В на 220В

Для подключения электрического прибора в домашнюю сеть хватит одного сетевого фильтра или блока бесперебойного питания. Эти приборы уберегут технику от скачков напряжения. Но как быть в случае сильного провисания напряжения в сети, либо в том случае, если электросеть предполагает использования более высокого ил низкого вольтажа. Для таких ситуаций можно собрать самодельный преобразователь электрического тока с 12В на 220В. Чтобы его сделать, необходимо разобраться в базовых принципах работы данного устройства.

Преобразователи и их типы

Преобразователем называют устройство, которое способно повышать или понижать напряжение электрической цепи. Так можно изменить вольтаж цепи с 220В на 380В, и наоборот. Рассмотрим принцип построения преобразователя с 12В на 220В.

Данные устройства можно разбить на несколько классов/типов, в зависимости от их функционального предназначения:

  • Выпрямители. Работают по принципу преобразования переменного в постоянный ток.
  • Инверторы. Работают в обратном порядке, преобразовывая постоянный ток в переменный.
  • Преобразователи частоты. Изменяют частотные характеристики тока в цепи.
  • Преобразователи напряжения. Изменяют напряжения в большую или меньшую сторону. Среди них различают:
    • Импульсные блоки питания.
    • Источники бесперебойного питания (ИБП).
    • Трансформаторы напряжения.

Также все устройства делятся на две группы — по принципу управления:

Распространенные схемы

Чтобы преобразовать напряжение одного уровня в другое, используют импульсные преобразователи с установленными индуктивными накопителями энергии. Исходя из этого, различают три типа схем преобразования:

Во всех перечисленных схемах используются электрические компоненты:

  1. Основной коммутирующий компонент.
  2. Источник питания.
  3. Конденсатор фильтра, который подключают параллельно сопротивлению нагрузки.
  4. Индуктивный накопитель энергии (дроссель, катушка индуктивности).
  5. Диод для блокировки.

Комбинирование данных элементов в определенной последовательности позволяет построить любую из вышеперечисленных схем.

Простой импульсный преобразователь

Самый элементарный преобразователь можно собрать из ненужных деталей от старого системного блока компьютера. Существенный недостаток данной схемы — выходное напряжение 220В далеко от идеала по своей форме синусоиды, имеет частоту, превышающую стандартные 50 Гц. Не рекомендуется подключать к такому аппарату чувствительную электронику.

В данной схеме применено интересное техническое решение. Для подключения к преобразователю техники с импульсными блоками питания (например, ноутбук) используют выпрямители со сглаживающими конденсаторами на выходе из устройства. Единственный минус — адаптер будет работать только в случае совпадения полярности выходного напряжения розетки с напряжением выпрямителя, встроенного в адаптер.

Для простых потребителей энергии подключение можно осуществить напрямую к выходу трансформатора TR1. Рассмотрим основные компоненты данной схемы:

  • Резистор R1 и конденсатор C2 — задают частоту работы преобразователя.
  • ШИМ-контролер TL494. Основа всей схемы.
  • Силовые полевые транзисторы Q1 и Q2 — используются для большей эффективности. Размещаются на алюминиевых радиаторах.
  • Транзисторы IRFZ44 можно заменить близким по характеристикам IRFZ46 или IRFZ48.
  • Диоды D1 и D2 также можно заменить на FR107, FR207.

Если в схеме предполагается использование одного общего радиатора, необходимо установить транзисторы через изоляционные прокладки. По схеме, выходной дроссель наматывают на ферритовое кольцо от дросселя, которое также извлекают из блока питания компьютера. Первичную обмотку изготавливают из провода 0,6 мм. Она должна иметь 10 витков с отводом от середины. Поверх нее наматывают вторичную обмотку, состоящую из 80 витков. Выходной трансформатор можно также изъять из ненужного ИБП.

Схема очень проста. При правильной сборке она начинает работать сразу, не требует точной настройки. Отдавать в нагрузку она сможет ток до 2,5 А, но оптимальным режимом работы будет ток не более 1,5 А — а это более 300 Вт мощности.

ИНТЕРЕСНО: В магазине подобный преобразователь стоит в районе 3-4 тысяч рублей.

Схема преобразователя с выходом переменного тока

Данная схема известна еще радиолюбителям СССР. Однако это не делает ее неэффективной. Наоборот, она очень хорошо себя зарекомендовала, а главный ее плюс — получение стабильного переменного тока с напряжением 220В и частотой 50 Гц.

В качестве генератора колебаний выступает микросхема К561ТМ2, представляющая из себя D-тригер сдвоенного типа. Этот элемент можно заменить зарубежным аналогом CD4013.

Сам преобразователь имеет два силовых плеча, построенных на биполярных транзисторах КТ827А. Они имеют один существенный недостаток по сравнению с новыми полевыми транзисторами — данные компоненты сильно нагреваются в открытом состоянии, что происходит из-за высоких показателей сопротивления. Преобразователь работает на низкой частоте, поэтому в трансформаторе используют мощный стальной сердечник.

В данной схеме используется старый сетевой трансформатор TC-180. Он, как и остальные инверторы на основе несложных ШИМ-схем, выдает значительно отличающуюся синусоидальную форму напряжения. Однако этот недостаток немного сглаживается большой индуктивностью обмоток трансформатора и выходным конденсатором С7.

ВАЖНО: Иногда трансформатор может издавать ощутимый гул во время работы. Это говорит о неполадках в работе схемы.

Простой инвертор на транзисторах

Эта схема не сильно отличается от представленных выше. Основное отличие — использование генератора прямоугольных импульсов, построенного на биполярных транзисторах.

Главное преимущество данной схемы заключается в способности преобразователя сохранять работоспособность даже на сильно посаженном аккумуляторе. При этом диапазон входного напряжения может находиться в пределах от 3.5 до 18В. Но есть и минусы подобного инвертора. Так как в схеме отсутствует какой-либо стабилизатор на выходе, то возможны просадки напряжения, например, при разрядке аккумулятора. Так как данная схема также является низкочастотной, трансформатор для нее подбирают, аналогичный установленного в инверторе на основе микросхемы К561ТМ2.

Усовершенствования схем инверторов

Указанные выше схемы не идут в сравнение с заводскими изделиями. Они просты и слабо функциональны. Для улучшения их характеристик можно прибегнуть к довольно несложным переделкам, повышающим показатели устройства.

ВНИМАНИЕ: Любой монтаж электрики и электроники производится при отключенном источнике питания. Перед проверкой схемы прозвоните все входы и выходы мультиметром — это позволит избежать неприятных последствий.

Увеличение выходной мощности

Рассмотренные выше схемы базируются на одной основе — первичная обмотка трансформатора подключается через ключевой компонент (выходной транзистор плеча). Она соединяется с входом источника питания на время, заданное частотой и скважностью задающего генератора. При этом генерируются импульсы магнитного поля, возбуждающие во вторичной обмотке трансформатора синфазные импульсы с напряжением, равным напряжению в первичной обмотке, умноженному на отношение числа витков в обмотках.

Соответственно, ток проходит через выходной транзистор. При этом он равен току нагрузки, помноженному на обратное соотношение витков (коэффициент трансформации). Получается, что тот максимальный ток, который может пропускать через себя транзистор, задает максимальную мощность преобразователя.

Для увеличения выходной мощности используют два метода:

  • Установка более мощного транзистора.
  • Использование параллельного подключения нескольких маломощных транзисторов в одно плечо.

Для самодельного преобразователя предпочтительней использование второго способа, так как он позволяет сохранять работоспособность устройства при выходе из строя одного из транзисторов. К тому же, подобные транзисторы стоят меньших денег.

При условии отсутствии внутренней защиты от перегрузки, данный способ значительно повышает живучесть преобразователя. Также уменьшается общий нагрев внутренних компонентов при работе на прежней нагрузке.

Автоматическое отключение при разряде аккумулятора

Указанные схемы имеют один существенный недостаток. В них не предусмотрен компонент, который сможет автоматически отключить преобразователь в случае критического падения напряжения. Но решить данную проблему довольно просто. Достаточно установить обычной автомобильное реле в качестве автоматического выключателя.

Реле имеет собственное критическое напряжение, при котором происходит замыкание его контактов. При помощи подбора сопротивления резистора R1, которое будет составлять примерно 10% от сопротивления обмотки реле, настраивают момент разрыва контактов. Этот вариант продемонстрирован на схеме.

Данный вариант довольно примитивен. Для стабилизации работы преобразователь дополняют простой схемой управления, поддерживающей порог отключения намного лучше и точнее. Настройка порога срабатывания в этом случае рассчитывается методом подбора резистора R3.

Обнаружение неисправностей инвертора

Описанные выше схемы часто имеют два специфических дефекта:

  1. Отсутствие напряжения на выходе трансформатора.
  2. Малое напряжение на выходе трансформатора.

Рассмотрим способы диагностики данных неисправностей:

  • Отказ в работе всех плечей преобразователя или отказ ШИМ-генератора. Проверить поломку можно при помощи диода. Рабочий ШИМ будет показывать пульсацию на диоде при подключении его к затворам транзисторов. Также стоит проверить целостность обмотки трансформатора «на обрыв» при наличии управляющего сигнала.
  • Сильная просадка в напряжении — главный признак того, что одно силовое плечо престало работать. Найти поломку не сложно. На отказавшем транзисторе будет холодный радиатор. Для починки потребуется заменить ключ инвертора.

Заключение

Сделать преобразователь в домашних условиях не сложно. Главное — соблюдать последовательность соединений и грамотно подбирать компоненты. Лучше всего собирать преобразователь со встроенными механизмами защиты, которые обезопасят устройство при падении напряжения в аккумуляторе.

Ссылка на основную публикацию
Adblock
detector