690 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Обозначение уклона и конусности на чертежах

Уклоны и конусности

Поверхности многих деталей имеют различные уклоны. Плоские поверхности деталей, расположенные наклонно, на чертежах часто обозначаются величиной уклона. В задании «Проекционное черчение» именно так и задано ребро жесткости или тонкая стенка детали.

Уклон характеризует отклонение прямой линии или плоскости от горизонтального или вертикального направления. Для построения уклона 1:1 на сторонах прямого угла откладывают произвольные, но равные единичные отрезки. Очевидно, что уклон 1:1 соответствует углу 45º. Как видно из рис. 34,а, уклон есть отношение катетов: противолежащего к прилежащему, что может быть определено как тангенс угла наклона α прямой. Тогда, чтобы, например, построить уклон 1:7 (рис. 34,б), в направлении уклона откладывают семь отрезков, а в перпендикулярном направлении — один отрезок.

Величину наклона обозначают на чертеже в соответствии с ГОСТ 2.307-68 условным знаком с числовым значением. Уклон указывают с помощью линии-выноски, на полке которой наносят знак уклона и его величину. Расположение знака уклона должно соответствовать определенной линии: одна из прямых знака должна быть горизонтальной, а другая — наклонена примерно под углом 30º в ту же сторону, что и сама линия уклона (рис. 34,б). Вершина знака должна быть направлена в сторону уклона. Знак и размерное число располагают параллельно направлению, по отношению к которому задан уклон. На чертеже уклоны указывают либо в процентах, либо дробью в виде отношения двух чисел.

(а)(б)

Многие детали содержат коническую поверхность. На чертежах конических деталей размеры могут быть проставлены различно: диаметры большего и меньшего оснований усеченного конуса и его длина, угол конуса или величина конусности.

Конусность — это отношение диаметра основания конуса к его высоте. Для усе­ченного конуса это отношение разности диаметров двух поперечных сечений конуса к расстоянию между ними (рис. 35,а). Конусность равна удвоенному уклону образующей конуса к его оси. Так же как и уклон, она обозначается условным зна­ком, проставляемым перед её числовым обозначением. Условный знак изобража­ет­ся в виде треугольника с вершиной, направленной в сторону вершины конуса. Конус­ность (согласно ГОСТ 2.307-68) задается на чертежах отношением двух чисел (рис. 35), процентами или десятичной дробью.

(б)
(а)(в)

Знак и цифры, указывающие величину конусности, располагают на чертежах параллельно оси конического элемента. Они могут быть расположены над осью, как на рис. 35,б, или полке, как на рис. 35,в. В последнем случае полка соединяется с обра­зующей конуса с помощью линии-выноски, заканчивающейся стрелкой. В кони­чес­ких соединениях, показанных на рис. 36, указание конусности обязательно, так как задание размеров D, d, H из-за трудностей изготовления применяют редко. При построении очертаний конуса, задаваемого конусностью, высотой и одним из диаметров, второй диаметр вычисляют по формуле, приведенной на рис. 35,а. Конусности общего назначения стандартизованы ГОСТ 8593-81.

2. Пример выполнения РГР

На рис. 37 приведен пример варианта задания на выполнение расчетно-графической работы «Проекционное черчение», а также наглядное изображение заданной детали с вырезом.

Выполненный по этому заданию чертеж детали в трех проекциях с правильно оформленными размерами показан на рис. 38. Этот при­мер поможет студентам разобраться в их задании, начать выполнение графичес­кой работы и избежать многочисленных ошибок при ее оформлении.

Напомним, что в задании имеются только две проекции детали, поэтому и размеры распределены на двух изображениях. Однако при оформлении чертежа следует наносить размеры равномерно на всех трех проекциях.

В заключение следует отметить, что количество изображений детали (видов, разрезов, сечений) должно быть наименьшим, но обеспечивающим полное пред­став­ление о её конструкции при применении установленных всоответствующих стан­дар­тах условных обозначений, знаков и надписей.

Литература

1. Попова Г.Н., Алексеева С.Ю. Машиностроительное черчение: Справочник. -Л.: Машиностроение, Ленингр. отделение, 1986.

2. Левицкий В.С. Машиностроительное черчение. — М.: Высшая школа, 1988.

3. Гордон В.О., Семенцов-Огиевский Н.А. Курс начертательной геометрии. — М.: Наука, 1994.

4. Фролов С.А. Начертательная геометрия. — М.: Машиностроение, 1978.

Приложение. Варианты задания на расчетно-графическую работу

Варианты задания на расчетно-графическую работу по теме «Проекционное черчение» приведены в табл. П1. Правила выбора варианта задания определяются преподавателем.

Таблица П1. Варианты задания на РГР по теме «Проекционное черчение»

№ вар.№ рис.аbс№ вар.№ рис.аbс
П1П7
П2П8
П3П9
П4П10
П5П11
П6П12
П7П1
П8П2
П9П3
П10П4
П11П5
П12П6
П1П7
П2П8
П3П9
П4П10
П5П11
П6П12

Рис. П1Рис. П2Рис. П3
Рис. П4Рис. П5Рис. П6
Рис. П7Рис. П8Рис. П9
Рис. П10Рис. П11Рис. П12

[1] Для вертикальных разрезов указанное требование должно выполняться также в случаях, если секущая плоскость не параллельна фронтальной или профильной плоскости проекции

[2] Условие симметричности изображений необходимо, но не достаточно для совмещения половины вида и половины разреза (подробнее см. подраздел 1.2.3).

Дата добавления: 2014-11-06 ; Просмотров: 3430 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Обозначение уклона и конусности

Уклон, величина, характеризующая наклон одной прямой линии к другой. Выражают дробью или в %.

— угол направлен в сторону уклона

6.2 Конусность

Конусность ( С ) – это отношение диаметра основания конуса к его высоте. Для усеченного конуса

Вопросы для самоконтроля.

Что такое уклон?

Что такое конусность?

Сопряжение линий и лекальные кривые

Сопряжения применяются во многих деталях машин для плавного перехода линий.

Для построения сопряжений необходимо уметь строить касательную в данной точке окружности (рисунок 7.1 а) проводить из внешней точки прямую, касательную к окружности (рисунок 7.1 б). Помнить, что центры окружностей, соприкасающихся внешним образом, находятся на расстоянии суммы их радиусов (рисунок 7.1 в), а внутренним – на расстоянии их радиусов (рисунок 7.1 г), причем точка касания (сопряжения) всегда лежит на прямой, проходящей через их центры.

Изложенное позволяет легко уяснить последовательность решений задач на сопряжения, приведенных ни рисунке 7.2. ∂, е, ж, и, к.

Лекальные кривые обводят при помощи лекал. Наиболее часто применяют в технике следующее:

7.1 Эллипс. Эллипсом называется замкнутая кривая, для которой сумма расстояний от любой точки до двух точек – фокусов эллипса – есть величина постоянная. Для построения эллипса проводят две концентрические окружности, диаметры которых равны осям эллипса (рисунок 7.3). Эти окружности делят на несколько равных частей (12-16). Через точки деления на большей окружности проводят вертикальные линии, через соответствующие точки деления на малой окружности – горизонтальные линии. Пересечение этих линий даст точки эллипса I, II, III

7.2Парабола. Параболой называется кривая, каждая точка которой расположена на одинаковом расстоянии от заданной прямой, носящей название директрисы, и точки, называемой фокусом параболы.

Даны вершина параболы О, одна из точек параболы D и направление оси ОС (рисунок 7.4). На отрезках ОС и СD строят прямоугольник, стороны этого прямоугольника ОВ и ВD делят на произвольное одинаковое число равных частей и нумеруют точки деления согласно рис. Вершину О соединяют с точками деления стороны ВD, а из точек деления отрезка ОВ проводят прямые, параллельные оси. Пересечение прямых, проходящих через точки с одинаковыми номерами, определяет ряд точек параболы (другие способы построения параболы см. в рекомендуемой литературе).

Читать еще:  Формы лезвий ножей чертежи

7.3 Циклоида. Траектория точки А, принадлежащей окружности, перекатываемой без скольжения по прямой, называется циклоидой (рисунок 7.5). Для ее построения от исходного положения точки А на направляющей прямой отк5ладывают отрезок АА1, равный длине данной окружности – 2πR. Окружность и отрезок АА1 делят на одинаковое число равных частей.

Восставляя перпендикуляры из точек деления прямой АА1 до пересечения с прямой, проходящей через центр данной окружности параллельно АА1, намечают ряд последовательных положений центра перекатываемой окружности О1, О2, О3,…, О8. Описывая из этих центров окружности радиуса R, отмечают точки пересечения с ними прямых, проходящих параллельно АА1 через точки деления окружности 1, 2, 3, 4 и т.д.

В пересечении горизонтальной прямой, проходящей через точку 1, с окружностью, описанной из центра О1, находится одна из точек циклоиды; в пересечении прямой, проходящей через точку 2, с окружностью, проведенной из центра О2, находится другая точка циклоиды и т.д. Соединяя полученные точки плавной кривой, получаем циклоиду.

Синусоида. Для построения синусоиды делят окружность заданного радиуса на равные части (6, 8, 12, и т.д.) и на продолжении осевой линии от условного начала – точки А – проводят отрезок прямой АВ, равный 2πR. Затем прямую делят на такое же число равных частей, как и окружность (6, 8, 12 и т. Д.). Из точек окружности 1,2, 3, …, 12 проводят прямые линии параллельно выбранной прямой до пересечения с соответствующими перпендикулярами, восстановленными или опущенными из точек деления прямой.Полученные точки пересечения (1 / , 2 / , 3 / , …, 12 / ) и будут точками синусоиды с периодом колебания, равным 2πR.

π

7.5 Эвольвента (развертка круга). Эвольвентой называется траектория, описываемая каждой точкой прямой линии, перекатываемой по окружности без скольжения.

В машиностроении по эвольвенте очерчивают профиль головок зубьев зубчатых колес.

Для построения эвольвенты окружность предварительно делят на произвольное число n равных частей; в точках деления проводят касательные к окружности, направленные в одну сторону. На касательной, проведенной через последнюю точку деления, откладывают отрезок, равный длине окружности 2πR, и делят его на то же число n равных частей. Откладывая на первой касательной одно деление, равное , на второй – два, на третьей – три и т.д., получают ряд точек I, II, III,IV и т.д., которые соединяют по лекалу

Вопросы для самоконтроля.

На каких двух положениях геометрии основано построение сопряжений?

Конусность

Конусность — отношение разности диаметров двух поперечных сечений кругового конуса к расстоянию между ними.

Конусность имеет двойной Уклон: k=2i Конусность на чертеже может быть указана в градусной мере, в радианах и в процентах. Заданы конусность пробки крана 1:5, диаметр D=BC=20 мм, длина l=35 мм.

Необходимо построить очертание пробки крана одним из двух способов: Первый способ. Из формулы k=2i находим i=1:10. Отмечаем точки BC и строим треугольник DKP так, чтобы KP_BK=1:10. Продолжив BP до пересечения с осью конуса, получим вершину конуса S. Точку S соединяем с точкой C. Отложив по оси пробки от BC отрезок l=35 мм и проведя через конец этого отрезка прямую, перпендикулярную к оси , получим диаметр d=EF=13 мм торца пробки; Второй способ. Из формулы k=(D-d)/l находим d=EF=20-35/5=13 мм; Величина угла при вершине конуса:

здесь угол φ представлен в радианах.

где L — расстояние от большого сечения до вершины S конуса, а отношение: D/(2L) = tgφ Пусть задана конусность например 1 : 2,5 откуда i=1:5 и tgφ=0,2 тогда перевод ее в градусы выполняется по формулам:

Конусность стандартизована. ГОСТ 8593-81 устанавливает нормальные конусности и углы конусов

Обозна- чениеконусаКонус-ностьУголконусаУголуклона
Ряд 1Ряд 2Угл. ед.Рад.Угл. ед.Рад.
1:5001:5000,00200006`52,5″0,00200003`26,25″0,0010000
1:2001:2000,005000017`11,3″0,00500008`25,65″0,0025000
1:1001:1000,010000034`22,6″0,010000017`11,3″0,0050000
1:501:500,02000001°8`45,2″0,019999634`22,6″0,0099998
1:301:300,03333331°54`34,9″0,033330457`17,45″0,0166652
1:201:200,05000002°51`51,1″0,04998961°25`55,55″0,0249948
1:151:150,06666673°49`5,9″0,06664201°54`32,95″0,0333210
1:121:120,08333334°46`18,8″0,08328522°23`9,4″0,0416426
1:101:100,10000005°43`29,3″0,09991682°51`44,65″0,0499584
1:81:80,12500007°9`9,6″0,12483763°34`34,8″0,0624188
1:71:70,14285718°10`16,4″0,14261484°5`8,2″0,0713074
1:61:60,16666679°31`38,2″0,16628244°45`49,1″0,0831412
1:51:50,200000011°25`16,3″0,19933745°42`38,15″0,0996687
1:41:40,250000014°15`0,1″0,24871007°7`30,05″0,1243550
1:31:30,333333318°55`28,7″0,33029729°27`44,35″0,1651486
30°1:1,8660250,535898530°0,523598815°0,2617994
45°1:1,2071070,828426945°0,785398222°30`0,3926991
60°1:0,8660251,154701060°1,047197630°0,5235988
75°1:0,6516131,534653275°1,308997037°30`0,6544985
90°1:0,5000002,000000090°1,570796445°0,7853982
120°1:0,2886753,4641032120°2,094395260°1,0471976

Конусности и углы конусов должны соответствовать указанным на чертеже и в таблице. При выборе конусностей или углов конусов ряд 1 следует предпочитать ряду 2.

Конусность поверхности

обозначается на чертеже: — надписью Конусность с указанием ее величины; — указывающей на нее стрелкой с полкой где пишется: — Конусность с указанием ее величины; — знак конусности и ее величина.

Построение и обозначение уклонов и конусности

Уклоном называют величину, характеризующую наклон одной прямой линии к другой прямой, т.е. отношение катета ВС к катету АВ в прямоугольном треугольнике ABC (рис. 1.16). Уклон представляет собой тангенс угла а, образованного гипотенузой АС с катетом АВ. Если катет ВС равен единице любой длины, то при уклоне 1: 5 катет В А будет равен пяти таким же единицам. Уклон может выражаться в процентах. Гипотенуза прямоугольного треугольника ABC с катетами ВС длиной 10 мм и АВ длиной 100 мм или катетами ВС длиной 5 мм и АВ длиной 50 мм будет иметь уклон 10%.

На чертеже перед размерным числом, определяющим уклон, наносят условный знак « » (ГОСТ 2.307—68), острый угол которого направляют в сторону уклона (см. рис. 1.16).

Геометрические уклоны строят на чертежах деталей определенного профиля (сортамента) или на чертежах деталей, изготавливаемых литьем. По­строение контура детали (рис. 1.17, а), верхнее основание которой имеет уклон 10%, начинают с вычерчивания линии АС с заданным уклоном (рис. 1.17, б) — гипотенузы прямоугольного треугольника с катетами АВ длиной 50 мм и ВС длиной 5 мм. Через точку D проводят линию, параллельную линии АС. Полученная линия DE будет иметь уклон 10 %, как и прямая АС.

Конические элементы деталей выполняют с заданной конусностью. Конусность — это отношение диаметра конуса к его высоте (рис. 1.18, а). Очертание конуса с конусностью 1: 3 показано на рис. 1.18, б.

Для усеченного конуса (рис. 1.18, в) конусность — это отношение разности диаметров к его высоте. Пример выполнения контура детали, имеющей форму усеченного конуса и заданную конусность 1:7, показан на рис. 1.18, г.

Из трех размеров, характеризующих конусность, было задано два: диаметр большего основания конуса и длина усеченного конуса, т. е. расстояние между центрами его оснований. По формуле (D — d)/L = 1:7 определяем величину меньшего диаметра: 7d = 140, следовательно, d = 20 мм. Из трех размеров, характеризующих конусность, на чертеже проставляют два и условный знак конусности. Знак конусности « » (ГОСТ 2.307 — 68) имеет вид равнобедренного треугольника, острый угол которого направлен в сторону вершины конуса (см. рис. 1.18, в, г). Знак конуса и конусность в виде соотношения наносят над осевой линией или на полке линии-выноски (рис. 1.19).

Читать еще:  Шаговый двигатель принцип работы схема

Нормальные конусности и углы конусов устанавливает ГОСТ 8593 — 81, а ГОСТ 25548 — 82 устанавливает термины и определения. Ниже приведены стандартные нормальные конусности, применяемые в машиностроении: 1:3; 1:4; 1:5; 1:6; 1:7; 1:8; 1:10; 1: 12; 1:15; 1 : 20; 1 : 30; 1 : 50; 1 : 100; 1 : 200; 1 : 500.

Сопряжения

Сопряжение — это плавный переход одной линии в другую. Общая точка этих линий называется точкой сопряжения, или перехода. Точка перехода двух дуг окружностей лежит на линии их центров. Точка касания прямой и окружности — основание перпендикуляра, опущенного из центра окружности на прямую.

Сопряжение двух сторон угла дугой окружности заданного радиуса. Центр сопряжения двух сторон угла дугой заданного радиуса находится на равных расстояниях от заданных прямых. На расстоянии, равном радиусу дуги R, проводят две прямые, параллельные сторонам острого (рис. 1.20, а) и тупого (рис. 1.20, б) углов. Точка О пересечения этих прямых — центр сопряжения дуги радиуса R. Точки сопряжения дуг с заданными прямыми — основания перпендикуляров (точки М и N), опущенных из центра О на эти прямые.

При выполнении сопряжения сторон прямого угла дутой заданного радиуса центр сопряжения строят с помощью циркуля. Из вершины прямого угла на его сторонах дугами, равными радиусу сопряжения, делают засечки — точки М и N. Из этих точек, как из центров, проводят дуги того же радиуса до пересечения в точке О — центре сопряжения. Из центра О описывают дугу окружности MN.

studopedia.org — Студопедия.Орг — 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.001 с) .

ПОСТРОЕНИЕ УКЛОНОВ И КОНУСНОСТИ

Уклоны .Величина наклона одной прямой по отношению к другой прямой называется уклоном. Уклон выражается тангенсом угла α между этими прямыми.

Рис. 1

Уклоны обычно выражают отношением двух чисел, например 1:3, из которых числитель можно графически изобразить как один из катетов АС прямоугольного треугольника, а знаменатель — как другой катет АВ этого же треугольника .Уклон может быть выражен в процентах, например 25% .

На чертежах обозначение уклона наносят на полке линии-выноски, упирающейся в линию уклона. Полка линии-выноски параллельна линии направления, по отношению к которой задан уклон. Перед числовым значением уклона наносят знак. Вершина угла знака направлена в сторону уклона, а нижняя линия знака параллельна полке линии-выноски. (Рис.1)

Построение уклона. Дан отрезок АВ и на нем точка С. Надо провести прямую с уклоном 1:5 к линии АВ через заданную на ней точку С. От точки С откладывают пять равных отрезков произвольного размера. На перпендикуляре, проведенном из точки 5 к прямой АВ, откладывают один отрезок того же размера, получают точку D. Прямая проведенная через точки С и D будет иметь уклон 1:5 к прямой АВ.(рис.2)

Рис.2

Конусность (рис.3)

Конусностью называется отношение диаметра D основания прямого кругового конуса к его высоте Н.

Для усеченного конуса конусность выражается отношением разности диаметров D и d нормальных сечений кругового конуса к расстоянию между ними . Обозначение конусности наносится на линии-выноске со стрелкой. Перед размерным числом, характеризующим конусность, наносят знак, острый угол которого должен быть направлен в сторону вершины конуса. (рис.3 )

Рис.3

ДЕЛЕНИЕ ОКРУЖНОСТИ НА РАВНЫЕ ЧАСТИ

РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ РАБОТЫ.

Начертите 8 окружностей радиусом 20 мм.

1.2..I Деление на 4 равные части. (рис.4а.). Проведите в окружности 2 взаимно перпендикулярные оси. Эти оси делят окружность на 4 равные части. Соедините точки А,В,С,D) сплошной основной линией, получите вписанный квадрат.
1.2.2.Деление на 8 равных частей(рис.4б).

Разделите полученные 4 дуги пополам, проведя циркулем засечки радиусом 20-30 мм из концов этих дуг. Соединяя точки пересечения засечек с центром окружности,, вы разделите окружность на 8 равных частей. Соедините полученные 8 точек, получите вписанный восьмиугольник.
1.2.З.Деление на 3 равные части (рис.4 в).

Радиусом 20мм проведите дугу с центром в точке D. Засеките на окружности точки 1 и 2 и соедините их с точкой С.

1.2.4.Деление на 6 равных частей (рис.4 г).

Приняв за центры концы диаметра, сделайте циркулем радиусом 20мм засечки на окружности (точки 1,2,3,4). Соедините их и точки А и В , получите правильный шестиугольник.

1.2.5.Деление на 12 равных частей (рис.4 д.)

Приняв за центры концы двух взаимно перпендикулярных диаметров (точки А,В,С,Д)), сделайте радиусом 20мм 8 засечек на окружности. Полученные 12 точек соедините.

Рис.4

1.2.6. Деление на 7 равных частей (рис.4 е).

Приняв за центр один из концов диаметра (точку С), проведите дугу радиусом 20 мм до пересечения с окружностью. Точки пересечения соедините отрезком прямой . Половина этого отрезка (EF) примерно равна стороне вписанного семиугольника. Радиусом FE сделайте поочередно 7 засечек на окружности, начав с точки С. Полученные 7 точек соедините.

1.2.7.Деление на 5 равных частей (рис.4 ж).

Приняв за центр один из концов диаметра (точку В), проведите дугу радиусом 20мм до пересечения с окружностью и точки пересечения соедините прямой. Приняв за центр точку пересечения прямой с :горизонтальным диаметром (точку Е), проведите дугу через точку С до пересечения с этим диаметром. Точку пересечения F соедините с точкой С. Отрезок СF будет примерно равен стороне вписанного пятиугольника ; ОF — стороне вписанного десятиугольника. Радиусом СF поочередно сделайте 5 засечек на окружности, начиная с точки С. Полученные 5 точек соедините.

1.2.8.Деление на 10 равных частей (рис.4з).

Радиусом ОF сделайте поочередно 10 засечек на окружности, полученные точки соедините.

СОПРЯЖЕНИЯ

1.3.1.Сопряжение двух прямых (рис.5.)

Даны две параллельные прямые АВ и СD (рис 5 в) , задан размер EF .Разделите отрезок EF пополам, и из точки О проведите дугу радиусом R=EF/2, соединяя точки Е и F

Рис5

1.3.2.Сопряжения углов (рис.5 а, б).

Даны две прямые , пересекающиеся под углом ( прямым, острым или тупым), и радиус сопряжения Е..

Проведите по два перпендикуляра к двум сторонам углаи отложите на них отрезки ,равные R.. Через полученные точки проведите прямые параллельно сторонам угла.. О — точка пересечения этих двух прямых -есть центр сопряжения. Из точки О опустите перпендикуляры на стороны угла. Точки пересечения перпендикуляров и сторон угла соедините дугой радиусом R с центром в точке О.

1.3.3.Сопряжение прямой сокружностью (рис.6а.) Дана прямая, окружность радиусом R и радиус сопряжения R1.. Проведите прямую, параллельную заданной , на расстоянии R1. Из центра окружности О радиусом R2= R + R1 сделайте на прямой засечку О1 . Через О и О1 проведите прямую, получите на окружности точку К. Из точки О1 проведите О1К1 перпендикулярно заданной прямой. Из центра сопряжения О1 проведите дугу радиусом R1, соединяя точки К1 и К. Это внешнее сопряжение

Рис.6

Внутреннее сопряжение. (рис.6 б).

Дана прямая, окружность радиусом R и радиус сопряжения R1.. Проведите построение аналогично предыдущему, учитывая , что в данном случае

1.3.4.Сопряжение двух окружностей.

Внешнее сопряжение (рис.7а).

Даны две окружности радиусом R1, и R2 и радиус сопряжения R.

Рис.7

Проведите дуги из центра О1 радиусом R.+ R 1 , из О2 — радиусом R.+ R 2. Точка их пересечения О3 -центр сопряжения.

Внутреннее сопряжение(рис.7б)

Даны две окружности радиусом R1и R2 и радиус сопряжения R. Проведите дуги : из точки О1 радиусом R- R1, из точки О2 радиусом R-R2. Точка их пересечения О3 -центр сопряжения.

Смешанное сопряжение (рис.7 в).

Читать еще:  Местный вид на чертеже это

Даны две окружности радиусом R1 и R2,ирадиус сопряжения R.

Проведите дуги : из центра О1 радиусом R.-R1, из центра О2 радиусом R+R2. Точка пересечения дуг О3- центр сопряжения.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Обозначение конусности на чертежах гост

Конуслат. conus – геометрическое тело, образованное вращением прямоугольного треугольника около одного из его катетов.

На чертежах с коническими поверхностями иногда указывается конусность c размерными числами в виде соотношения, перед которыми устанавливается знак в виде остроугольного треугольника « ». Знак конусности с размерными числами наносятся над осевой линией или на полке линии-выноски.

Обозначение конусности на чертежах

Отношение диаметра основания конуса к его высоте называется конусностью.

Конусность определяется по следующей формуле:

Например, если известны размеры D = 30 мм , d = 20 мм и L = 70 мм , то

Если известны конусность С , диаметр одного из оснований конуса d и длина конуса L , можно определить второй диаметр конуса. Например, С = 1:7 , d = 20 мм и L = 70 мм

Конусность – это отношение разности диаметров двух поперечных сечений конуса к расстоянию между ними (рис. 1.4)

Для обозначения конусности на чертеже применяется знак (рис. 1.5) по ГОСТ 2.304-81 (размеры знака даны для шрифта № 5). Знак наносится перед размерным числом, характеризующим конусность, острый угол знака должен быть направлен в сторону вершины конуса (рис. 1.6).

Примечание . Ряд 1 следует предпочитать ряду 2.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ИНЖЕНЕРНОЙ ГРАФИКЕ

Графическая работа №3

сформировать у студентов навыки выполнения чертежей предметов с использованием геометрических построений.

чертежная бумага формата А3 (297х420), карандаши различной мягкости, набор чертежных инструментов (циркуль, измеритель, линейка, угольник, транспортир и т. п.), задание.

[1] Боголюбов С.К. Инженерная графика – М.: Машиностроение, 2009

[2] Боголюбов С.К. Индивидуальные задания по курсу черчения – М.: Высшая школа, 2009

Задание по теме: «Геометрические построения» включает в себя следующие графические задачи:

задача №1. построение профиля проката, содержащего уклон;

задача №2. изображение детали с элементами конусности;

задача №3. построение синусоиды.

Графическая работа выполняется на листе формата А3 (297 х 420 мм).

Лист содержит рамку, ограничиваю­щую поле чертежа, и основную надпись по ГОСТ 2.104-68. В за­висимости от размеров, указанных в задании, выбирается мас­штаб чертежа. При этом допускается применять 2 масштаба — один указывается в основной надписи, второй — над изображени­ем детали.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Теоретическая часть

При изготовлении профилей прокатной стали, боковые полки выполняют так, что плоскости, ограничивающие их, не параллельны, а расположены под некоторым углом между собой.

В технике часто применяются конические детали. При вычерчивании чертежей многих деталей приходится выполнять ряд геометрических построений, и в этой связи рассмотрим следующие понятия: уклоны и конусность.

УКЛОН ГОСТ 8908-81

Прямые наклонные элементы, расположенные под углом относительно базовой линии создают уклон, для отображения которого перед размерными числами наносят знак « > », причём его острый угол должен быть направлен в сторону уклона. Обозначения наносятся в непосредственной близости к наклонной линии или на полке линии-выноски.

Размерные числа уклона выражаются в отношении чисел, или в процентах.

Уклон i отрезка ВС относительно отрезка ВА определяют отношением катетов прямоугольного треугольника ABC.

Для построения прямой ВС с заданной величиной уклона к горизонтальной прямой, например 1:4, необходимо от точки A влево отложить отрезок AВ, равный четырем единицам длины, а вверх — отрезок АС, равный одной единице длины. Точки С и В соединяют прямой, которая дает направление искомого уклона.

i =AC AB= tgα

Если уклон задается в процентах, например, 20 %, то линия уклона строится так же, как гипотенуза прямоугольного треугольника. Длину одного из катетов принимают равной 100 %, а другого – 20 %. Очевидно, что уклон 20 % есть иначе уклон 1:5.

КОНУСНОСТЬ ГОСТ 2.307-68

Конусность — это отношение диаметра D основания конуса к его высоте L. K=D/L

Для конуса это отношение разности диаметров двух поперечных сечений конуса к расстоянию между ними.

Конусность равна удвоенному уклону образующей конуса к его оси. Так же как и уклон, она обозначается условным знаком, проставляемым перед её числовым обозначением. Условный знак изображается в виде треугольника с вершиной, направленной в сторону вершины конуса. Конусность задается на чертежах отношением двух чисел, процентами или десятичной дробью.

Знак и цифры, указывающие величину конусности, располагают на чертежах параллельно оси конического элемента. Они могут быть расположены над осью или полке, как на. В последнем случае полка соединяется с образующей конуса с помощью линии-выноски, заканчивающейся стрелкой. В конических соединениях, указание конусности обязательно, так как задание размеров D, d, H из-за трудностей изготовления применяют редко. При построении очертаний конуса, задаваемого конусностью, высотой и одним из диаметров, второй диаметр вычисляют по формуле. Конусности общего назначения стандартизованы ГОСТ 8593-81.

Последовательность выполнения графической работы:

Для выполнения этой работы необходимо изучить основные положения ГОСТ 2.301, ГОСТ 2.304 — 2.307, данные в сборниках стандар­тов ЕСКД и рекомендуемой литературе, ознакомиться с примером выполнения чертежа, изучить рекомендации по выполнению чертежей и методические указания к данной теме. Приступить к выполнению графической работы Построение очертаний пробки и двутавра позволяет получить навыки в проведении линий, построении сопряжений, уклонов, конусностей, нанесении размеров, написании текста.

Порядок выполнения листа:

1. определить задание согласно своему варианту;

2. выбрать масштаб;

3. формат А3 расположить горизонтально;

4. выполнить внутреннюю рамку и основную надпись;

5. внимательно изучитьгеометрические фигуры, подлежащие вычерчиванию и выполнить разметку листа, определив место для изображения каждой задачи;

6. разметить на листе габаритные рамки двух деталей и положение осевых и центровых линий локальной кривой;

7. выполнить построения каждого изображения в тонких линиях по заданным параметрам;

8. проверить построения;

9. выполнить обводку чертежа, рамки и граф основной надписи, сохранив все вспомогательные линии;

10. провести выноски и размерные линии, нанести размеры;

11.Подписать изображения и указать при необходимости их масштаб, заполнить основную надпись.

При работе особое внимание следует уделить аккуратно­сти и точности геометрических построений!

Пример выполненного задания

диаметр окружности — 60 мм
№ вариантаДиаметр окружности№ вариантаДиаметр окружности№ вариантаДиаметр окружности
Вариант №1
Вариант №2
Вариант №3
Вариант №4
Вариант №5
Вариант №6
Вариант №7
Вариант №8
Вариант №9
Вариант №10
Вариант №11
Вариант №12
Вариант №13
Вариант №14
Вариант №15

Вопросы для самопроверки

1. Что называется уклоном, конусностью?

2. Как обозначаются уклон и конусность на чертеже?

3. Как обозначают конические фаски на чертежах?

4. Нарисуйте линию обрыва круглого металлического прутка.

5. Как обозначают уклон и конусность на чертежах?

6. Назовите семь лекальных кривых.

7. В чем различие между лекальными и циркульными кривыми?

8. С помощью каких инструментов производят обводку эллипсов и овалов?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 8624 — | 7077 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Ссылка на основную публикацию
Adblock
detector