Компьютерные блоки питания схемы принцип работы ремонт - Строительство домов и бань
44 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Компьютерные блоки питания схемы принцип работы ремонт

PhiX › Блог › РЕМОНТ КОМПЬЮТЕРНЫХ БЛОКОВ ПИТАНИЯ

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

Ремонт блока питания компьютера своими руками

Если блок питания вашего компьютера вышел из строя, не спешите расстраиваться, как показывает практика, в большинстве случаев ремонт может быть выполнен своими силами. Прежде чем перейти непосредственно к методике, рассмотрим структурную схему БП и приведем перечень возможных неисправностей, это существенно упростит задачу.

Структурная схема

На рисунке показано изображение структурной схемы типичной для импульсных БП системных блоков.

Устройство импульсного БП ATX

Указанные обозначения:

  • А – блок сетевого фильтра;
  • В – выпрямитель низкочастотного типа со сглаживающим фильтром;
  • С – каскад вспомогательного преобразователя;
  • D – выпрямитель;
  • E – блок управления;
  • F – ШИМ-контроллер;
  • G – каскад основного преобразователя;
  • H – выпрямитель высокочастотного типа, снабженный сглаживающим фильтром;
  • J – система охлаждения БП (вентилятор);
  • L – блок контроля выходных напряжений;
  • К – защита от перегрузки.
  • +5_SB – дежурный режим питания;
  • P.G. – информационный сигнал, иногда обозначается как PWR_OK (необходим для старта материнской платы);
  • PS_On – сигнал управляющий запуском БП.

Распиновка основного коннектора БП

Для проведения ремонта нам также понадобится знать распиновку главного штекера БП (main power connector), она показана ниже.

Штекеры БП: А – старого образца (20pin), В – нового (24pin)

Для запуска блока питания необходимо провод зеленого цвета (PS_ON#) соединить с любым нулевым черного цвета. Сделать это можно при помощи обычной перемычки. Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной.

Нагрузка на БП

Необходимо предупредить, что включение импульсных БП без нагрузки существенно сокращает их срок службы и даже может стать причиной поломки. Поэтому мы рекомендуем собрать простой блок нагрузок, его схема показана на рисунке.

Схема блока нагрузки

Схему желательно собирать на резисторах марки ПЭВ-10, их номиналы: R1 – 10 Ом, R2 и R3 – 3,3 Ом, R4 и R5 – 1,2 Ом. Охлаждение для сопротивлений можно выполнить из алюминиевого швеллера.

Подключать в качестве нагрузки при диагностике материнскую плату или, как советуют некоторые «умельцы», HDD и СD привод нежелательно, поскольку неисправный БП может вывести их из строя.

Перечень возможных неисправностей

Перечислим наиболее распространенные неисправности, характерные для импульсных БП системных блоков:

  • перегорает сетевой предохранитель;
  • +5_SB (дежурное напряжение) отсутствует, а также больше или меньше допустимого;
  • напряжения на выходе блока питания (+12 В, +5 В, 3,3 В) не соответствуют норме или отсутствуют;
  • нет сигнала P.G. (PW_OK);
  • БП не включается дистанционно;
  • не вращается вентилятор охлаждения.

Методика проверки (инструкция)

После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов (потемнение, изменившийся цвет, нарушение целостности). Заметим, что в большинстве случаев замена сгоревшей детали не решит проблему, потребуется проверка обвязки.

Читать еще:  Как сделать тиски самостоятельно чертежи и фото

Визуальный осмотр позволяет обнаружить «сгоревшие» радиоэлементы

Если таковы не обнаружены, переходим к следующему алгоритму действий:

  • проверяем предохранитель. Не стоит доверять визуальному осмотру, а лучше использовать мультиметр в режиме прозвонки. Причиной, по которой выгорел предохранитель, может быть пробой диодного моста, ключевого транзистора или неисправность блока, отвечающего за дежурный режим;

Установленный на плате предохранитель

  • проверка дискового термистора. Его сопротивление не должно превышать 10Ом, если он неисправен, ставить вместо него перемычку крайне не советуем. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста;

Дисковый термистор (обозначен красным)

  • тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. При обнаружении неисправности следует подвергнуть проверке установленные на входе конденсаторы и ключевые транзисторы. Поступившее на них в результате пробоя моста переменное напряжение , с большой вероятностью, вывело эти радиодетали из строя;

Выпрямительные диоды (обведены красным)

  • проверка входных конденсаторов электролитического типа начинается с осмотра. Геометрия корпуса этих деталей не должна быть нарушена. После этого измеряется емкость. Нормальным считается, если она не меньше заявленной, а расхождение между двумя конденсаторами в пределах 5%. Также проверке должны быть подвергнуты запаянные параллельно входным электролитам варисторы и выравнивающие сопротивления;

Входные электролиты (обозначены красным)

  • тестирование ключевых (силовых) транзисторов. При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор (методика такая же, как при проверке диодов).

Показано размещение силовых транзисторов

Если найден неисправный транзистор, то прежде, чем впаивать новый, необходимо протестировать всю его обвязку, состоящую из диодов, низкоомных сопротивлений и электролитических конденсаторов. Последние рекомендуем поменять на новые, у которых большая емкость. Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ;

  • Проверка выходных диодных сборок (диоды шоттки) при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность – КЗ;

Отмеченные на плате диодные сборки

  • проверка выходных конденсаторов электролитического типа. Как правило, их неисправность может быть обнаружена путем визуального осмотра. Она проявляется в виде изменения геометрии корпуса радиодетали, а также следов от протекания электролита.

Не редки случаи, когда внешне нормальный конденсатор при проверке оказывается негодным. Поэтому лучше их протестировать мультиметром, у которого есть функция измерения емкости, или использовать для этого специальный прибор.

Видео: правильный ремонт блока питания ATX.
https://www.youtube.com/watch?v=AAMU8R36qyE

Заметим, что нерабочие выходные конденсаторы – самая распространенная неисправность в компьютерных блоках питания. В 80% случаев после их замены работоспособность БП восстанавливается;

Конденсаторы с нарушенной геометрией корпуса

  • проводится измерение сопротивления между выходами и нулем, для +5, +12, -5 и -12 вольт этот показатель должен быть в пределах, от 100 до 250 Ом, а для +3,3 В в диапазоне 5-15 Ом.

Доработка БП

В заключение дадим несколько советов по доработке БП, что позволит сделать его работу более стабильной:

  • во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);
  • диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;
  • выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;
  • бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;
  • если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.

Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.

Очень интересно прочитать:

Ремонт компьютерного блока питания — пошаговые фото и видео

Как только мы коснулись земли и фиолетового провода, мультиметр издал показал нули на дисплее. Короткое замыкание, однозначно.

Ремонта блока питания — поиск схемы и замена стабилитрона

Далее ищем схему на этот блок питания. В Сети мы нашли схему Power Man 300 Ватт. Отличия в схеме лишь в порядковых номерах радиодеталей на плате. Если уметь анализировать печатную плату на соответствие схеме, это не будет большой проблемой.

Вот сама схема на Power Man 300W. Щелкните по ней для увеличения в натуральный размер.

Как мы видим, дежурное питание (дежурка) обозначается как +5VSB:

Прямо от него идет стабилитрон номиналом в 6,3 Вольта на землю. А как вы помните, стабилитрон — это тот же самый диод, но подключается в схемах наоборот. У стабилитрона используется обратная ветвь ВАХ. Если бы стабилитрон был живой, то у нас провод +5VSB не коротил бы на массу. Предполагаем, что стабилитрон сгорел и PN переход разрушен.

  • Смотрите также, как собрать простой тестер для проверки стабилитрона

Что происходит при сгорании разных радиодеталей с физической точки зрения? Во-первых, изменяется их сопротивление. У резисторов оно становится бесконечным или, иначе говоря, уходит в обрыв. У конденсаторов оно иногда становится очень маленьким или, иначе говоря, уходит в короткое замыкание. С полупроводниками возможны оба этих варианта — как короткое замыкание, так и обрыв.

В нашем случае мы можем проверить это только одним способом, выпаяв одну или сразу обе ножки стабилитрона, как наиболее вероятного виновника короткого замыкания. Далее будем проверять пропало ли короткое замыкание между дежуркой и массой или нет. Почему так происходит?

Вспоминаем простые подсказки:

    При последовательном соединении работает правило больше большего. Иначе говоря, общее сопротивление цепи больше, чем сопротивление большего из резисторов.

  • При параллельном соединении работает обратное правило, меньше меньшего. Иначе говоря, итоговое сопротивление будет меньше, чем сопротивление резистора меньшего из номиналов.
  • Можно взять произвольные значения сопротивлений резисторов, самостоятельно посчитать и убедиться в этом. Попробуем логически поразмыслить, если у нас одно из сопротивлений параллельно подключенных радиодеталей будет равно нулю, какие показания мы увидим на экране мультиметра? Правильно, тоже равное нулю.

    Читать еще:  Схема осциллятора оссд 300

    До тех пор, пока мы не устраним это короткое замыкание путем выпаивания одной из ножек детали, которую мы считаем проблемной, мы не сможем определить, в какой детали у нас короткое замыкание. Дело все в том, что при звуковой прозвонке все детали, параллельно соединенные с деталью в коротком замыкании, будут у нас звониться накоротко с общим проводом!

    Пробуем выпаять стабилитрон. В ходе работы он просто развалился надвое.

    Проверяем, устранилось ли у нас короткое замыкание по цепям дежурки и массы, либо нет. Действительно, короткое замыкание пропало. Запаиваем новый стабилитрон.

    После первого включения блока питания новый стабилитрон начал пускать дым. Здесь надо бы вспомнить одно из главных правил ремонтника:

    Перекусываем сгоревший стабилитрон бокорезами и снова включаем блок питания. Так и есть, дежурка завышена: 8,5 Вольт. Конечно в этот момент мы забеспокоились о ШИМ контроллере. Однако после скачивания даташита на микросхему было выявлено, что предельное напряжение питания для ШИМ контроллера равно 16 Вольт.

    Наше предположение оказалось неверным, дело не в стабилитроне. Идём дальше.

    Ремонт блока питания пошагово — проверка и замена конденсаторов

    Проблема завышенного напряжения дежурки заключается в банальном увеличении ESR электролитических конденсаторов в цепях питания. Ищем эти конденсаторы на схеме и проверяем их. Нам понадобится ESR метр.

    Проверяю первый конденсатор в цепи дежурного питания.

    ESR в пределах нормы. Проверяем второй.

    Ждем, когда на экране мультиметра появится какое-либо значение, но ничего не меняется.

    По крайней мере, один из виновников проблемы найден. Перепаиваем конденсатор на точно такой же по номиналу и рабочему напряжению, взятый с донорской платы блока питания. Здесь остановимся подробнее.

    Итак, включаем блок питания и снова замеряем напряжение на дежурке. Наученные горьким опытом уже не торопимся ставить новый защитный стабилитрон и замеряем напряжение на дежурке, относительно земли. Напряжение 12 вольт и раздается высокочастотный свист.

    Далее мы попробовали поменять конденсатор емкостью 10 мкФ. Это одна из типичных неисправностей данного блока питания

    Замеряем ESR на конденсаторе.

    Результат, как и в первом случае: прибор зашкаливает.

    Некоторые говорят, мол зачем собирать какие-то приборы, типа вздувшиеся нерабочие конденсаторы итак видно — они припухшие или вскрывшиеся розочкой.

    С одной стороны, мы согласны с этим. Но это касается только конденсаторов большого номинала. Конденсаторы относительно небольших номиналов не вздуваются. В их верхней части нет насечек, по которым они могли бы раскрыться. Поэтому их просто невозможно определить на работоспособность визуально. Остается только менять их на заведомо рабочие.

    Итак, мы нашли второй нужный конденсатор и на всякий случай измерили его ESR. Оно оказалось в норме. После впаивания второго конденсатора в плату, включаем блок питания клавишным выключателем и измеряем дежурное напряжение. То, что и требовалось — 5,02 вольта.

    Измеряем все остальные напряжения на разъеме блока питания. Все соответствуют норме. Отклонения рабочих напряжений менее 5 %. Осталось впаять стабилитрон на 6,3 Вольта.

    К слову, мы долго думали, почему стабилитрон именно на 6,3 Вольта, когда напряжение дежурки равно +5 Вольт? Логичнее было бы поставить на 5,5 вольт или аналогичный, если бы он стоял для стабилизации напряжения на дежурке. Скорее всего этот стабилитрон стоит здесь как защитный, чтобы в случае повышения напряжения на дежурке выше 6,3 Вольт, он сгорел и замкнул накоротко цепь дежурки, отключив тем самым блок питания и сохранив материнскую плату от сгорания.

    Вторая функция этого стабилитрона, скорее всего, защита ШИМ-контроллера от поступления на него завышенного напряжения. Так как дежурка соединена с питанием микросхемы через достаточно низкоомный резистор, на 20 ножку питания микросхемы ШИМ поступает почти то же самое напряжение, что и на дежурке.

    Ремонт блока питания компьютера — выводы

    Итак, какие можно сделать выводы из этого ремонта:

      Все параллельно подключенные детали при измерении влияют друг на друга. Их значения активных сопротивлений считаются по правилу параллельного соединения резисторов. В случае короткого замыкания на одной из параллельно подключенных радиодеталей такое же короткое замыкание будет на всех остальных деталях, которые подключены параллельно этой.

    Для выявления неисправных конденсаторов одного визуального осмотра мало и необходимо либо менять все неисправные электролитические конденсаторы в цепях проблемного узла устройства на заведомо рабочие, либо отбраковывать путем измерения прибором ESR-метром.

  • Если вы нашли какую-либо сгоревшую деталь, не торопитесь менять её на новую, а ищите причину, которая привела к её сгоранию, иначе рискуете получить еще одну сгоревшую деталь.
  • Видео о ремонте блока питания компьютера:


    Ремонт блока питания компьютера.

    Неисправный блок питания при ремонте компьютера зачастую просто заменяют новым. Это быстрое решение проблемы, но цена такого ремонта высока, да и хорошо заработать мастеру при этом не получится – просто замена блока больших денег не стоит. В любом сервисном центре, как правило, гора неисправных блоков питания, которые могут быть отремонтированы или послужить «неиссякаемым» источником запасных элементов. Сам ремонт блока задача, вполне решаемая и по плечу даже среднему ремонтнику.

    Основные узлы блока питания

    Состоит блок питания компьютера из двух основных половин. Первая часть гальванически связана с питающей сетью и содержит фильтр, выпрямитель, схему источника питания дежурного режима, транзисторные ключи преобразователя. При ремонте этой половины нужно соблюдать необходимые меры безопасности!

    Также, здесь подключается схема коррекции фактора мощности (PFC), если предусмотрено ее использование.

    Вторая часть включает в себя выпрямители и фильтры выходных напряжений, схему управления и стабилизации на микросхеме ШИМ-контроллера, выпрямитель и стабилизатор напряжения дежурного режима. Эта часть схемы развязана от питающей сети, поэтому работа с ее элементами безопасна.

    Отделяют части три импульсных трансформатора. Силовые элементы схемы размещены на двух радиаторах охлаждения.

    Общее представление о компьютерном блоке питания получили, переходим к практике.

    Поиск неисправности в блоке питания компьютера лучше производить в определенном порядке. Поэтому разделим действия на шаги, которые в результате приведут к определению и устранению поломки. Даже если на одном из этапов будет найдена неисправная деталь, нужно пройти все шаги до последнего, на котором и включим блок для проверки.

    Разберите блок, снимите плату и разрядите конденсаторы сетевого выпрямителя лампой накаливания.

    Начинаем с внешнего осмотра. На этом этапе выявляются вздутые конденсаторы, сгоревшие элементы схемы – варисторы, резисторы. Также нужно внимательно осмотреть плату с обратной стороны для выявления плохой пайки или подгоревших участков. Обнаруженные детали заменяются, плата очищается и пропаивается. Соблюдайте полярность при установке элементов.

    Проверьте, насколько легко вращается вентилятор охлаждения, зачастую именно он является причиной перегрева блока.

    Проверяем сетевой предохранитель, диоды моста выпрямителя. Если предохранитель сгоревший, в цепи есть короткое замыкание, которое нужно найти и устранить. Для этого проверяем отдельно каждый диод моста выпрямителя. Помните, диод может быть не только пробит, но и иметь незначительную утечку в обратном направлении – при проверке отпаивайте один контакт элемта.

    Читать еще:  Схема подсоединения лампочки через выключатель

    Исправный мост должен иметь бесконечное сопротивление на входе. На выходе моста, при подключении тестера, сопротивление должно измениться от низкого до высокого. Это происходит из-за заряда подключенных параллельно конденсаторов.

    Шаг 3, если есть схема активного PFC

    Транзисторы ключей схемы PFC (см. схему в первой части) подключены через дроссель параллельно выпрямителю напряжения сети. При пробое транзисторов вход оказывается закороченным и сгорает предохранитель. Как правило, вместе с ключами выходят из строя резисторы, подключенные к затворам и микросхема PWM-контроллера. Как проверить работу схемы PFC, рассмотрим ниже.

    Проверяем транзисторы ключей преобразователя. Транзисторы подключены таким образом, что пробой одного из них может не вызвать замыкания питания и сгорания предохранителя, при этом блок питания просто не запускается.

    Причиной неисправности в этом узле часто служат электролитические конденсаторы, подключенные к базе. При их утечке или потере емкости, транзистор переходит из ключевого режима работы в усилительный, что вызывает перегрев элемента.

    Эти элементы и конденсатор, обозначенный синим кругом на схеме выше, также являются причиной потери выходной мощности блока питания компьютера. При этом подключенный к системной плате блок не запускается, а без нагрузки работает. Из-за неисправности этих конденсаторов повышаются пульсации на выходе блока питания, что приводит к перезагрузкам и сбоям в работе системы. Эти элементы нужно обязательно выпаивать и проверять.

    Если пробиваются транзисторы ключей, резисторы и диоды, подключенные к базе, часто также сгорают.

    Неисправность, рассмотренная в предыдущем шаге, зачастую вызвана завышенным напряжением питающей сети. Источник питания +5в дежурного режима работает постоянно и из-за скачков напряжения страдает первым. Наступила очередь его проверки.

    При пробое силового транзистора нужно проверить, а лучше вообще заменить на заведомо исправные все полупроводниковые элементы схемы – транзисторы, диоды, оптопару. Затем проверяем все резисторы и конденсаторы, выпаивая их по очереди. Почему все?

    Это очень капризная и важная часть блока питания, от нее запитана микросхема ШИМ-контроллера и схема включения материнской платы. При выходе источника из режима стабилизации, на эти узлы подается завышенное напряжение, что в лучшем случае приводит к сгоранию ШИМ-контроллера блока, а в худшем – потере материнской платы.

    Второй случай, когда источник не запускается, +5 дежурного на выходе просто нет. Начальное напряжение для запуска схема получает через резисторы, подключенные к +310в. Зачастую они подгорают, изменяя значение своего сопротивления на гораздо большее, хотя внешне выглядят исправными. Учитывая высокие значения сопротивления резисторов при проверке детали нужно обязательно выпаивать.

    Схема также может не запускаться из-за замыкания или перегрузки выходных цепей. Виновником этого может быть пробитый диод выпрямителя, сгоревший ШИМ-контроллер или устанавливаемый в качественных блоках питания защитный стабилитрон.

    Всегда проверяйте конденсатор, обозначенный на схеме выше восклицательными знаками. От его исправности зависит значение выходного напряжения блока питания, а расположен он в зоне с повышенной рабочей температурой. Если в схеме блока не установлен защитный стабилитрон, именно из-за этого конденсатора выходит из строя материнская плата.

    Переходим к выпрямителям выходных напряжений. Выпрямители собраны на спаренных диодах, проверяем от центрального вывода оба крайних на наличие пробоя. Нужно обязательно проверить все элементы схемы стабилизатора 3.3в, потому что блоки с микросхемой ШИМ-контроллера TL494 не имеют обратной связи для контроля этого выхода. Блок питания будет запускаться вхолостую, но не работать под нагрузкой.

    Также проверьте диоды выпрямителей для напряжений -5в, -12в. Учитывайте, что каждый выход блока нагружен низкоомным резистором, если появились сомнения в исправности одного из диодов, элемент лучше выпаять.

    Добрались до микросхемы ШИМ-контроллера. Возможности проверки исправности микросхемы без включения блока питания ограничены. Но, если в шаге 5, были обнаружены какие либо неисправности, а тем более, если при внешнем осмотре найден сгоревший резистор в цепи питания ШИМ-контроллера, микросхему нужно заменить заведомо исправной.

    Выходы микросхемы подключены к двум транзисторам (C945 или 2N2222), если меняете микросхему, проверьте их также.

    После устранения всех неисправностей обнаруженных в предыдущих шагах, блок можно подключить к питающей сети, конечно при соблюдении всех мер предосторожности.

    Если при подключении сгорел сетевой предохранитель – возвращаемся к шагу 1 и следующим, чтобы найти пропущенную неисправность.

    Измеряем значение напряжения дежурного режима +5в на 9 (фиолетовый) контакте разъема. Подключаем нагрузку, подойдет резистор сопротивлением 3-4Ом мощностью около 7Ватт. Снова измеряем напряжение.

    Если блок питания выдает заниженное значение (4.3в — 4.8в) нужно заменить оптопару, TL431 и электролитические конденсаторы схемы стабилизатора. Напряжения нет вообще, повторяем шаг 5.

    При нормальной работе источника дежурного питания, напряжение на входе PS ON (14,зеленый) в пределах 2.3-5в, на остальных– 0в. Замыкаем 14 и 15 контакты перемычкой, блок должен запуститься.

    Если старта не произошло, возвращаемся к шагу 4. Возможна ситуация, когда блок питания запустился на короткий промежуток времени, при этом дернулся вентилятор. Это происходит при неисправности выходных выпрямителей или микросхемы ШИМ-контроллера, снова проходим шаги 6 и 7.

    Для блоков с системой активной PFC на этом этапе нужно проверить работоспособность схемы. Измеряем напряжение на конденсаторе сетевого выпрямителя, схема PFC поддерживает его значение в пределах 380-400в, если прибор показывает 310в – схема не работает и нужно повторить шаг 3.

    У запущенного блока измеряем напряжение на выходе PG (8, серый), правильное значение +5в. Затем проверяем все выходные напряжения — +12в, -12в, +5в, -5в, +3.3в. Нагружать при тестировании все выходы блока было бы правильно, но часто проблематично. Поэтому можно ограничиться нагрузкой каждого выхода по-отдельности. Для нагрузки можно использовать автомобильные лампы накаливания подходящей мощности.

    Компьютер после ремонта блока питания обязательно нужно тестировать в течение 3-6 часов.

    В заключение дадю несколько советов по доработке БП, что позволит сделать его работу более стабильной:

    во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);

    диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;

    выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;

    бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;

    если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.

    Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.

    ЗАПОМНИТЕ. Измерять непосредственно на контактах БП с нагрузкой и не доверять программам мониторинга! (у прибора должны быть надлежащего качества и напряжения элементы питания (не аккумы!))

    ЗЫ: Взял где взял, обобщил и добавил немного.

    ЗЫ2: Кому не нужно — проходим мимо.

    ЗЫ3: LF! ,kzl rjgbgfcnf!

    Простите за качество некоторых картинок (чем богаты).

    Ссылка на основную публикацию
    Adblock
    detector