Экструдер для 3d принтера своими руками чертежи - Строительство домов и бань
442 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Экструдер для 3d принтера своими руками чертежи

Levsha1988 › Блог › Экструдер филамента для 3Д принтера. Начало.

Решили мы собрать некий девайс, который из гранул пластика (пока АБС, т.к. другого найти сложно) при расплаве оных в шнеке будет выдавливаться в калиброванное сопло в диаметре 1.75 мм сверлом по дереву. Стандартная катушка филамента для 3Д принтера из магазина.
Именно этот некий проект был последней каплей покупки токарника.

Началось все с малого: маленькая дрочепотка, похожая на флюненгехаймен была собрана из алюм. профиля 20х20, на 3Дпринтере были рассчитаны и распечатаны шестерни в редуктор для вращения шнека, на трубу была намотана грелка, при этом перематывалось все там раз 5, для оптимальной длины намотки катушки, диаметра нихрома, мощности и температуры разогрева.
Мозги сделали на дуйне (плата на ардуино. Мозги от 3Д принтера). Прикрутили на него 2 термодатчика, написали ПИД регулятор что бы правильно дрыгать грелкой (1 термо на конце, второй на самом нагревателе). Ну и экран с простяцкой менюшкой (температуру там подрегулировать и что б вообще видеть что такм как.).

Но когда пришло время опробовать выдавить пластик, наш редуктор послал нас в пешее эротическое, заклинив намертво из за очень вязкого расплавленного пластика между трубой и сверлом. В общем очень мало мощности. Далее купили редуктор стеклоподъемника для жигулей, довольно дорогой кстати. Момент у него вроде аж 6 Нм. Но… нет. Так же он заклинил, потом еще и задымился от перегрева, хотя начало было очень бодрое.

Намотка грелки еще пока вручную

В общем психанули и купили на авито старый ГДРовский редуктор для коневеера (1982 год вроде). На валу 36 об.мин. Момент 80 Нм. Это реально жесткая штука. А немецкое качество позволило оставаться этому чугунному монстру внутри и снаружи как новому. Очень крутая штука. Сделана качественно.
Пора переходить на более взрослую и капитальную систему. Купили профиль, резанули, сварили каркас.
На станке проточили 2 здоровенные гайки на 30 для посадки подшипников. Была найдена в загашнике болванка, выточили вал. Все это приделали и получилась задуманная нами концепция самого аппарата. Привод ремнем ГРМ от жигулей. Направляющий ролик, тож ГРМ. Передаточное число на ремне 2:1. Но рулиться будет частотником, т.к. нужна регулировка оборотов, ибо даже при этом раскладе скорость мотора нада понижать раза в 4.
На автоподаче винтом на станке намотали грелку. Нихром 0.5 мм. Мощность 750 ватт. Шаг 1мм. Ну типа резьба, но не резьба. (как я вообще раньше что-либо рукожопил без токарника? Он одним своим видом показывает полезность, не говоря уж о том, когда его включить и начать работать. Любое, относительно круглое железное говно, которое лежало годами, зажав в патрон в один момент превращается в заготовку для переточки в охренительно полезную приблуду.)))
Мозги- та же дуйня на меге с 2 датчиками температуры на грелке. Но ПИД регулятор надо ковырять. Инерционность грелки (скорость перетекаемости тепла от центра грелки к соплу сильно заторможена, и если нагреть центр катушки скажем, до 400 градусов, дождаться пока на сопле будет 240 отрубить грелку, то темп с середины плавно перейдет на сопло.) А пластик греть до 300-400 это уже кощунство. Его оптимальная рабочая темп около 240. На видео пластик перегрет и он весь прыщавый и нифига не однородный.
Коммутация грелки — твердотельное реле с опторазвязкой на 5А.

Сопло считаю нужно сделать длинным из латунной шпильки. С равномерным отверстием длиной около 30-50 мм, и охлаждением (водянка или радиатор с обдувом), что бы на выходе сопла формировался калиброванный немного остывший филамент нужного диаметра.
Так же нужен термобарьер в середине шнека, в сторону воронки.

Пока вот так. Сегодня был первый запуск этого франкенштейна (за полчаса до закрытия гаражей). Ну и пара кривых видосов бонусом.

В общем получается довольно интересное неизведанное устройство. Будем рукожопить далее)
Производительность экструдера кстати получается очень на уровне.

Как сделать экструдер для 3d принтера своими руками?

Каждый 3D-принтер имеет конструктивные особенности. Главную роль в любом устройстве играет экструдер 3d, второе название которого – печатающая головка. Суть ее работы проста: она выдавливает пластик через специальное сопло, благодаря чему и складывается трехмерный рисунок.

Особенности конструкции

3D-принтер работает на основе нитевидного пластика нескольких видов, но чаще всего применяются пластик ABS и PLA. И несмотря на разнообразие расходных материалов, все печатающие головки создаются по одному принципу и мало чем отличаются друг от друга. Устройство экструдера 3d принтера следующее:

  • Блок cool-end подает филамент. Он включает в себя шестерни и привод от электрического мотора, а также прижимной механизм. Под воздействием вращения шестерни из катушки извлекается пластиковая нить, пропускается в нагреватель, где под воздействием высокой температуры пластик становится вязким. Такая структура дает возможность выдавить нить через сопло, чтобы придать ей нужную форму.
  • Блок hot-end представляет собой сопло с нагревателем. Для его создания используются латунь или алюминий, отличающиеся высокой теплопроводностью. В состав нагревательного элемента также входят спираль из нихромовой проволоки, пара резисторов, термопары, регулирующие температуру. Во время работы hot-end разогревается, за счет чего и происходит плавление пластика. Важную роль играет своевременное охлаждение рабочей платформы, что обеспечивается специальной термоизолирующей вставкой между hot-end и cool-end.

Разновидностью печатающей головки является боуден экструдер, который отличается тем, что hot-end и cool-end разнесены с точки зрения расположения: нагреватель с соплом располагаются на печатающей голпринтер промышленныйовке, в то время как подающее устройство расположено на раме принтера. Пластиковая нить подается посредством длинной тефлоновой трубки. Главное ее назначение – оберегать нить от возможных изгибов, чтобы она подавалась в hot-endс оптимальной скоростью и давлением. Боуден экструдер хорош тем, что позволяет сделать меньше и легче печатающую головку, но с другой стороны, передача пластика к соплу не так надежна.

Как выбирать экструдер?

Экструдер для 3d принтера нужно выбирать правильно, учитывая несколько важных моментов:

  1. Материал. современные печатающие головки оснащаются литыми элементами или созданными на основе 3d-печати. Конечно, литые модификации отличаются прочностью, что особенно важно для участков, на которые приходится большая нагрузка. С другой стороны, напечатанные на 3D-принтере детали гораздо дешевле.
  2. Подача филамента. Качество этого механизма играет важную роль, поскольку нить должна подаваться к нагревателю постоянно и аккуратно. Только так можно обеспечить бесперебойную печать. Во время пути к соплу пластик может запутаться, поэтому нужно выбирать принтеры с электрическим двигателем высокой мощности – так запутывания можно свести к минимуму.
  3. Тип подающего ролика. Очень часто в результате плохого сцепления материала с подающим роликом нить начинает проскальзывать. Особенно часто такие ситуации возникают при использовании нейлоновой нити на тех устройствах, где можно применять только ABS или PLA-пластик.
  4. Размер сопла. Экструдер может оснащаться соплами разного диаметра. Важную роль при выборе играет назначение самих изделий. Например, если объекты должны быть тщательно и детализированно прорисованы, то сопло выбираются меньшего диаметра. Чем меньше сопло, тем выше вероятность его засорения, поэтому лучшее выдавливание пластика обеспечивается при мощном электрическом двигателе.

Как сделать своими руками

Чтобы сделать экструдер для 3D-принтера экструдер своими руками, потребуется подобрать шаговый двигатель. Однако в этом качестве можно использовать и моторы от старых сканеров или принтеров. Для крепления двигателя потребуется корпус, прижимной ролик и хот-энд. Корпус создается из разных материалов, при этом его конструкция может быть самой разной. Прижимной ролик должен регулироваться пружиной, поскольку толщина прутка не всегда идеальна. Материал сцепляется с подающим механизмом, но сцепление не должно быть слишком сильным – в ином случае кусочки пластика будут откалываться.

Хот-энд можно купить (покупка обойдется примерно в 100 долларов), а можно скачать чертежи и создать его самостоятельно. Радиатор создается из алюминия и нужен для того, чтобы отвести тепло от ствола хот-энда. Это позволит предотвратить преждевременное нагревание материала для печати. Хорошее решение – светодиодный радиатор, а охлаждение выполнять посредством вентилятора. Ствол хот-энда создается из полой металлической трубки, которая служит для соединения радиатора и нагревательного элемента.

Тонкая часть трубки – это термобарьер, который исключает попадание тепла в верхнюю часть экструдера. Главное в хот-энде – добиться того, чтобы филамент не плавился раньше времени, что приведет к засорению сопла.

Нагревательный элемент в 3d-экструдере своими руками создается из алюминиевой пластины. В ней сверлится отверстие для крепления ствола хот-энда, затем сверлятся еще отверстия для болта крепления, резисторов, терморезистора. Пластина нагревается резистором, а задача темистора – регулировать рабочую температуру. Сопло можно создать из глухой гайки с закругленным концом. Лучше, если гайка латунная или медная – эти металлы отличаются простотой обработки. В тисках крепится болт, затем на него накручивается гайка, а в центре сверлится отверстие. Таким образом, легко создается экструдер в домашних условиях.

Читать еще:  Тиристор в цепи постоянного тока схема

Некоторые модели принтеров оснащаются двойными экструдерами – это позволяет печатать двухцветные объекты или создавать структуры поддержки из растворимого полимера. То есть одновременно на таком устройстве можно использовать сразу два вида пластика. Правда, одновременная печать все равно невозможна, поэтому каждый экструдер задействуется в случае необходимости.

Как сделать экструдер для 3D принтера самому

Детали для сборки экструдера

О сборке принтера Mosaic из набора деталей от компании MakerGear рассказано в статье Собираем 3D принтер своими руками. Наверное, вы обратили внимание, что там подробно рассмотрено устройство 3D принтера, но не идет речь о печатающей головке. Это тема сегодняшнего разговора.

Мы рассмотрим виды экструдеров и способы изготовления отдельных деталей этого сложного механизма, чтобы понять как сделать экструдер своими руками (видео о сверлении сопла в конце статьи).

Принцип работы и разновидности

Печатающая головка 3-d принтера протягивает пруток пластика, разогревает его и выталкивает горячую массу через сопла.

Wade extruder

На картинке представлена упрощенная схема экструдера типа Wade. Устройство состоит из двух частей. Вверху расположен cold-end (холодный конец) – механизм, подающий пластик, внизу – hot-end (горячий конец), где материал разогревается и выдавливается через сопло.

Экструдер Боудэна

Существует и другая конструкция устройства, где холодная и горячая части разведены, а пластик поступает в hot-end по тефлоновой трубке. Такая модель, где cold end жестко закреплен на раме принтера, получила название Bowden extruder.

К ее несомненным достоинствам стоит отнести следующее:

  • материал не плавится раньше времени и не забивает механизм;
  • печатающая головка значительно легче, что позволяет увеличить скорость печати.

Однако и недостатки имеются. Нить пластика на таком большом расстоянии может перекручиваться и даже запутываться. Решением этой проблемы может стать увеличение мощности двигателя колдэнда.

Cold end

Пруток филамента проталкивается вниз шестерней, приводящейся в движение электродвигателем с редуктором. Подающее колесо жестко крепится на валу двигателя, в то время как прижимной ролик не закреплен стационарно, а находится в плавающем положении и, благодаря пружине, может перемещаться. Такая конструкция позволяет нити пластика не застревать, если диаметр прутка на отдельных участках отклоняется от заданного размера.

Hot-end

Пластик поступает в нижнюю часть экструдера по металлической трубке. Именно здесь материал разогревается и в жидком виде вытекает через сопло. Нагревателем служит спираль из нихромовой проволоки, или пластина и один-два резистора, температура контролируется датчиком. Верхняя часть механизма должна предотвратить раннее нагревание филамента и не пропустить тепло вверх. В качестве изоляции используется термостойкий пластик или радиатор.

Подающий механизм

Схема униполярного шагового двигателя

Прежде всего, нужно подобрать шаговый двигатель. Лучше всего купить аналог Nema17, но вполне подойдут и моторы от старых принтеров или сканеров, которые на радиорынках продаются совсем дешево. Для нашей цели нужен биполярный двигатель, имеющий 4 вывода. Собственно, можно использовать и униполярный, его схема показана на рисунке. В этом случае желтый и белый провода просто останутся неиспользованными, их можно будет отрезать.

Как правило, моторчики от принтеров слабые, но вот EM-257 (Epson), как на рисунке ниже, с моментом на валу 3,2 кг/см, вполне подойдет, если вы собираетесь использовать филамент Ø 1,75 мм.

Для прутка Ø 3 мм, или при более слабом двигателе, понадобится еще и редуктор. Его тоже можно подобрать из разобранных старых инструментов, например, планетарный редуктор от шуруповерта.

Двигатели от принтеров

Переделка понадобится, чтобы насадить шестерню двигателя шуруповерта на шаговик, совместить ось вращения моторчика с редуктором. И крышку для подшипника выходного вала тоже нужно изготовить. На выходной оси устанавливается шестерня, которая и будет подавать пруток пластика в зону нагрева.

Корпус экструдера служит для крепления двигателя, прижимного ролика и хотэнда. Один из вариантов показан на рисунке, где через прозрачную стенку хорошо виден красный пруток филамента.

Изготовить корпус можно из разных материалов, придумав собственную конструкцию, или, взяв за образец готовый комплект, заказать печать на 3-d принтере.

Экструдер с прозрачным корпусом

Главное, чтобы прижимной ролик регулировался пружиной, так как толщина прутка не всегда идеальна. Сцепление материала с подающим механизмом должно быть не слишком сильным, во избежание откалывания кусочков пластика, но достаточным для проталкивания филамента в hot-end.

Нужно отметить, что при печати нейлоном лучше использовать подающую шестерню с острыми зубчиками, иначе она просто не сможет зацепить пруток и будет проскальзывать.

Цельнометаллический хотэнд

Широко распространены и пользуются популярностью хотэнды фирмы E3D. Можно купить его на ebay.com за 92 $ (без доставки) или скачать чертежи, находящиеся в свободном доступе на официальном сайте компании ( http://e3d-online.com/ ), по которым и сделать, прилично сэкономив.

Устройство hot end

Радиатор изготавливается из алюминия и служит для отвода тепла от ствола хотэнда и предотвращения преждевременного нагревания материала для печати. Вполне подойдет светодиодный радиатор, для усиления охлаждающего эффекта можно направить на него еще и вентилятор небольшого размера.

Ствол хотенда – полая металлическая трубка, соединяющая радиатор и нагревательный элемент. Изготавливается из нержавеющей стали из-за ее низкой теплопроводности.

Вот как выглядит деталь в разрезе и ее чертеж с размерами под пруток Ø 1,75 мм.

Тонкая часть трубки служит термобарьером и предотвращает распространение тепла в верхнюю часть экструдера. Важно, чтобы филамент не начал плавиться раньше времени, ведь в этом случае прутку придется толкать слишком много вязкой массы. В результате увеличивается сила трения, и забиваются трубка и сопло.

С проблемой сталкиваются не только авторы самодельных конструкций. Такое частенько случается в цельнометаллических хотэндах, даже если экструдер изготовлен на производстве.

Если вы сами просверлили деталь, нужно отполировать отверстие ствола. Для черновой шлифовки подойдет мелкая наждачная бумага «нулевка», закрепленная скотчем на сверле меньшего диаметра.

Обязательна чистовая полировка до зеркального блеска (нитью и пастой ГОИ № 1), затем полезно прожарить отверстие подсолнечным маслом для уменьшения силы трения. Чтобы предотвратить слишком раннее разогревание пластика, можно покрыть нижнюю часть трубки, находящейся в радиаторе, тонким слоем термопасты.

Еще одна возможная проблема: расплавленный пластик под давлением поступающего прутка может просочиться вверх и остыть в зоне охлаждения, что приведет к забиванию ствола и прекращению печати. Бороться с этим можно с помощью тефлоновой изоляционной трубки, которая вставляется в ствол хотэнда до зоны начала разогрева филамента.

Нагреватель

В качестве нагревательного элемента используется алюминиевая пластина. Если вам не удалось найти подходящего по размеру толстого бруска, вполне подойдет алюминиевая полоса толщиной 4 мм, которую можно приобрести в магазинах стройматериалов. В этом случае нагревательный элемент будет состоять из двух частей. Необходимо просверлить центральное отверстие для ствола хотэнда, и скрутив болтом, зажать всю конструкцию в тисках. Затем насверлить нужное количество отверстий для составляющих элементов нагревателя:

  • болта крепления,
  • двух резисторов,
  • терморезистора.

Для нагревания пластины можно использовать керамический 12v нагреватель или резистор на 5 Ом. Но для нашего блока лучше подойдут два резистора на 10 Ом, так как они гораздо меньше по размеру, а соединение параллельно как раз и даст нужное сопротивление в 5–6 Ом.

Нагревательный элемент в сборе

Контролировать температуру будет NTS-термистор 100 кОм марки B57560G104F, с максимальной рабочей температурой 300 °C. Терморезисторы с меньшим сопротивлением использовать нельзя, они, как правило, обладают большой погрешностью при высоких температурах.

Необходимо обеспечить плотное соединение резисторов с пластиной, так как воздушная прослойка тормозит нагревание. Здесь важно правильно выбрать герметик. Лучше всего использовать керамико-полимерные пасты (КПДТ), рабочая температура которых не менее 250 °C. Для дополнительной теплоизоляции неплохо весь hot-end замотать стеклотканью.

Сопло

Приспособление для сверления сопла

Глухая гайка с закругленным концом идеально подойдет для изготовления сопла. Лучше взять деталь из меди или латуни, так как эти металлы относительно легко обрабатываются. Нужно закрепить в тисках болт, накрутить на него гайку и просверлить в центре закругления отверстие нужного диаметра.

Сделать это можно так: на сверло, зажатое в обычную дрель, закрепить цанговый патрон со сверлышком нужного диаметра. Получается интересная конструкция.

Наиболее удачным считается отверстие 0,4 мм, так как при меньшем диаметре замедляется скорость, а при большем – страдает качество печати.

Вот еще один способ просверлить сопло (видео на английском).

Как видите, изготовить экструдер для 3-d принтера своими руками достаточно сложно. Но если вы знаете, что сделать какую-то деталь самостоятельно не удастся из-за отсутствия необходимых материалов или инструментов, необязательно приобретать готовый комплект полностью, можно купить отдельно любую часть экструдера и продолжить работу.

Infinum3d — 3D-принтер своими руками

вторник, 6 августа 2013 г.

Экструдер. Часть I.

Продолжим на тему того, каким образом филамент подается в зону плавления (HotEnd’а).

На фото классический репраповский экструдер — родоначальник всех 3d-печатающих механизмов у самодельщиков.

Стоит отметить тот факт, что редуктор (с отношением не менее1:5) обязательно нужен для привода филамента диаметром 3,0 мм. Назначение редуктора — повысить момент на валу за счет уменьшения частоты вращения. Другими словами, будет крутить сильнее, но медленнее, а нам, как раз, большая частота вращения и не нужна — пластик должен успевать плавиться.
Если имеем дело с прутком 1,75 мм либо еще меньшего диаметра, то редуктор нам делать необязательно. Хотя, если используется совсем слабый двигатель (например, от старого принтера Epson, который я использовал поначалу), то редуктор все-таки придется делать.

Читать еще:  Трехфазный счетчик электроэнергии схема подключения

Так как пластик 3 мм значительно (!) дешевле более тонких вариантов (к тому же распространеннее), то и привод мы будем делать, рассчитывая на более тостый филамент. А уже пластик 1,75 (и подобные) мы сможем «толкать» этим экструдером вообще без проблем. В этом случае потребуется лишь небольшая модификация хотэнда (об этом позже).

Для начала нам нужен двигатель. Причем шаговый и очень желательно биполярный, иначе с управлением придется повозиться. Отличить его от униполярного (еще одна разновидность шаговиков) можно по количеству выводов. Их должно быть 4. В этом случае можно будет использовать типовой драйвер управления (Pololu). Схема такого двигателя:

В принципе, можно подключить и двигатель, который имеет 6 выводов — главное правильно определить где какие обмотки, после чего просто останется 2 ненужных провода, которые можно просто отрезать.

В данном случае у нас останутся неподключенными «желтый» и «белый» провода.

Из старых принтеров можно наковырять много полезного, но движки там стоят очень слабые, особенно в новых струйниках, поэтому годятся для применения только с редукторами с очень большим передаточным отношением. Вот пример таких двигателей:

Из всего этого многообразия для использования в качестве привода филамента пойдет разве что Epson EM-257 — он как раз имеет нужное количество выводов (4), а также более-менее неплохой момент на валу. Вот еще несколько подобных двигателей:

Они конечно слабоваты для нашей цели, и, в идеале, лучше использовать аналог Nema17 (тот, что применяется в оригинальном репрапе), зато их можно купить за копейки на любом радиорынке или выковырять из старого железа. К слову — не стоит брать за основу экструдера советские ДШИ-200, которые очень популярны у станкостроителей, т.к. они слишком тяжелые, чтобы их тягать в качестве печатающей головы.

Донор выглядит примерно так как на фото. А в разобранном виде что-то вроде:

Фото не мое, но принципиально эти планетарные редукторы сильно друг от друга не отличаются. Поэтому ищем дохлый шуруповерт и вперед — разбирать.

Как и раньше, нам понадобится толковый токарь, который поможет насадить приводную шестерню от оригинального шуруповертного движка на наш шаговик. Также необходимо будет выточить крышку-корпус для подшипника выходного вала. Фотографии моего варианта выложу позже (придется разобрать готовый экструдер). Можно, в принципе, сделать чертеж крышки, которая была выточена из алюминия, хотя токарю обычно хватает простого объяснения «на пальцах» чего именно мы хотим от него получить.

Вроде бы пора брать фотоаппарат в руки и начинать детальную фотосессию всех тонкостей процесса, а то в интернете кончились картинки, которые идеально подойдут к моему описанию.

3D принтер на рельсах своими руками: описания и кейсы

Содержание

Выбор типа направляющих — один из принципиальных вопросов при самостоятельном изготовлении 3D принтера. Пары в кинематике принтера, такие как круглый линейный вал с подшипником и рельсовая направляющая с кареткой, имеют свои достоинства и недостатки. Так, схемы на круглых валах более распространены, из-за относительной простоты и дешевизны такого решения, но рельсовые направляющие обеспечивают заметно меньший прогиб, более точны, а значит способны обеспечивать заметно более высокую точность позиционирования, что особенно важно для 3D-печати.

В этом материале мы собрали несколько актуальных решений для использования рельсовых направляющих при строительстве 3d принтера своими руками.

3D-принтер с большой областью печати

Преимущества рельсовых направляющих наиболее заметны в по-настоящему больших принтерах, в которых перемещение по осям осуществляется на значительные расстояния. Возможность закрепить рельс по всей его длине (а не только в подвесах по крайним точкам) позволяет не потерять в точности позиционирования при больших областях печати.

Неплохой пример самодельного принтера на рельсах с большой областью печати — принтер BA3DP созданный Бобом Дарроу (Bob Darrow) и доступном на OpenBuild. Его работа не слишком хорошо документирована, но автор может предоставить свои чертежи 3d printer-а по запросу. Подробные чертежи 3d принтера для сборки своими руками выкладывает не так много самодельщиков. Тем не менее, его работа определенно заслуживает внимания, ведь благодаря использованию рельсовых направляющих и обеспечению дополнительной прочности рамы, ему удалось обеспечить высокую точность печати даже очень больших моделей.

Вот что пишет сам автор о своем 3D принтере:

Для точной 3D-печати главным требованием является жесткость рамы. Если она скручивается, изгибается или перемещается при изменении веса, приложенного к оси X с установленным экструдером, то вам никогда не удасться добиться должного уровня печати. Для укрепления рамы были разработаны специальные крепежные элементы (на фото — оранжевые), форма которых идеально совместима с используемым профилем.

В качестве рабочего стола использован лист закаленного стекла. Его конструкция первоначально включала дополнительный стальной лист, который использовался для точного позиционирования по вертикали с помощью датчика приближения и концевого выключателя, но оказалось, что проще проводить юстировку по девяти точкам с помощью только выключателей и вносить правки в настройки ПО. Также, в одном из первоначальных вариантов конструкции вместо стола была использована толстая плита из алюминия (1,4 дюйма), но ее вес оказался слишком большим для шагового двигателя и приводил к пропуску шагов.

Хотэнд этого 3d принтера на рельсах, построенного своими руками также заслуживает отдельного внимания. Он работает сразу с двумя филаментами, которые подаются двумя отдельными приводами, закрепленными на раме. Головка же перемещается по рельсовой направляющей, которая обеспечивает практически полное отсутствие прогибов.

Видео сборки аналогичного по размерам 3D принтера на рельсах с большой областью печати

И еще больше

В больших проектах, где используются большие экструдеры на длинных осях не обойтись без использования рельсовых направляющих. В следующем проекте автор строит 3D-принтер с рабочим пространством общим объемом в один кубический метр и планирует использовать гранулированный пластик и пеллетный экструдер) для печати.

Проект Питера Стонехема (Peter Stoneham) Double H-Bot на основе Openbuilds 2040 v-slot пока еще не завершен, но уже содержит ряд моделей, которые можно использовать для постройки своей версии 3d принтера своими руками.

По словам автора, целью проекта является создание простого, относительно доступного (ценой менее $1000) и относительно компактного 3D-принтера с рабочим объемом 1 м3. В качестве исходного сырья планируется использовать гранулированный пластик в смеси с измельченной пластмассой, пригодной для вторичной переработки.

Основная конфигурация H-belt? но в отличие от подобных конструкций, на каждой оси будет работать сразу два двигателя — это поможет снизить вероятность вибраций на основной балке, позволит уменьшить длину приводных ремней и уменьшить размер используемых двигателей ( до NEMA17). Кроме того, такое расположение позволяет снизить скручивающие нагрузки,, действующие на раму. используемое решение оптимально подходит для больших принтеров, ведь длина ремней составляет более 7,2 м.

Предполагается возможность использовать сопла разного диаметра от 0,8 до 2,5 мм. Что же касается профилей, то после долгих экспериментов и расчетов было решено остановиться на профиле 2040 для всех элементов конструкции.

Перемещения по оси Z также осуществляются через ременный привод двумя шаговыми двигателями с планетарными редукторами. Общие внешние размеры — X=1200мм Y=1300 Z=1380, а полезный внутренний объем; x=1000 мм y=1050 z=1100

Видео аналогичного по размерам принтера в процессе работы:

Delta на рельсах

Delta-компоновка имеет свои преимущества, позволяя печатать высокие модели, при этом сам принтер остается достаточно компактным. Использование рельсовых направляющих позволяет обеспечить необходимую плавность и равномерность движения по осям, к наличию которой особенно чувствительны устройства с подобной компоновкой.

Автор этого проекта Геральд Клейн (Gerald Klein) построил 3d принтер на рельсах своими руками высотой 1 метр и диаметром основания рабочей поверхности 30 см.

В основе конструкции три метровых отрезка линейных рельсовых направляющих C-Beam. Перемещение печатающей головки осуществляется через ременный привод от трех шаговых двигателей. Основа рабочего стола и верхней части принтера — алюминиевые пластины толщиной полдюйма. Автор особенно подчеркивает, что при такой компоновке особенно важна их идеальная плоскость. В предложенном им варианте пластина получена водной резкой.

Чтобы построить такой 3d принтер своими руками нужны чертежи, которые вы сможете найти по этой ссылке. Кроме того, там же размещена информация об использованных в проекте деталях.

Double D-Bot на рельсах

Рельсовые направляющие разумно использовать только там, где они обеспечат высокую точность. Иными словами перемещение стола вверх и вниз можно организовать с помощью винтовых направляющих, используя рельсы только на X и Y осях.

Читать еще:  Секционный выключатель на схеме

Проект именно такого 3D принтера (название автора — Double D-Bot 400mm x 400mm x 600mm) создан на openbuilds пользователем Troy Proffitt. На момент написания статьи он еще не завершен, но по имеющимся фотографиям уже можно получить представление о том, как будут использоваться рельсовые и винтовые направляющие.

Рельсы Vslot вместе с C-Beam

В этом проекте 3D-принтера использованы два типа рельсовых направляющих. Vslot обеспечивает перемещение только для оси X, а две других работают на C-Beam. Автор проекта — mytechno3d.

Помимо вариаций с использованием рельсовых направляющих, этот проект отличает наличие водяного охлаждения для хотэнда, а значит на нем можно печататть высокотемпературными пластиками, например — нейлоном.. В описании автор приводит только спецификацию проекта и несколько чертежей деталей, которые были разработаны чтобы сделать этот 3d принтер своими руками.

Вот краткие характеристики:

  • Питание: 24V
  • Плата управления: Smoothieboard
  • Водоохлаждаемый экструдер : Duyzend
  • Рабочая поверхность: Боросиликат 400×380 или алюминиевая пластина
  • Подогрев: 24 V
  • Оси Z и Y: C-BEAM
  • Ось X : 2040 рельсовая направляющая Vslot
  • Охлаждение: старая система охлаждения воды для ПК Thermaltake

Вот видео работы этого принтера:

D-Bot Core-XY на рельсах

Вариант постройки с 3D принтера своими руками, предложенный пользователем spauda01 сервиса Thingiverse, подразумевает использование рельсовых направляющих на всех осях, кроме подъема стола: для него используются винтовые. Но поскольку в вертикальном направлении колебания не столь велики, решение вполне имеет право на существование.

Для этого 3d принтера своими руками доступны чертежи, спецификации и даже видео с процессом сборки и настройки. Сам проект представляет собой значительно измененный Core-XY C-Bot с несколько увеличенным в высоту доступным объемом печати (300мм x 200мм x 325мм) и использованием более простых и доступных версий комплектующих. В результате итоговая стоимость проекта оценивается автором примерно в $200, что очень даже неплохо для 3D принтера на рельсовых направляющих.

Ниже вы можете увидеть процесс постройки принтера и печати на нем.

Полный плейлист видео постройки принтера можно смотреть здесь.

Плейлист процесса печати демо-моделей здесь.

Модификация принтера на круглых валах

Готовые принтеры на круглых валах заметно дешевле, чем их аналоги на рельсовых направляющих, но далеко не всегда покупатели более дешевых устройств оказываются удовлетворены результатом печати. Что же, практически всегда есть альтернатива: можно модернизировать свой принтер. Один из вариантов предлагает пользователь Thingiverse с ником Blv. В его распоряжении был принтер Anet A8 (решение актуально и для AM8, а также клонов Prusa I3).

В пояснении к проекту Blv говорит о преимуществах чуть более дорогих, но обеспечивают значительно более высокую точность линейных рельсовых направляющих. Кроме того, их использование позволяет несколько расширить область печати для принтера и получать заметно более высокие результаты на большой скорости печати. .Автор предлагает заменить на рельсы привод стола и ось Y, снабдив весь процесс подробнейшими инструкциями,спецификациями и CAD-моделями необходимых деталей, которые вполне можно распечатать на принтере до его модификации. Вам останется только следовать инструкции, чтобы получить более совершенную и качественную версию бюджетного 3D принтера.

Voron: Сборка 3D принтера по инструкции

Скажем сразу — этот 3d принтер относительно дорог, но представляет собой одно из лучших решений — максимально качественное и надежное. Проект Voron разрабатывался и оттачивался несколько лет. В результате, обзавелся огромным сообществом и массой реализаций, кроме того у этого принтера есть собственный сайт http://vorondesign.com/ . На сегодняшний день есть сразу две версии — начальный Voron1 и более продвинутый Voron2 (актуальная реализация — 2.1).

Но самое главное — пользователям доступен конфигуратор. Нужно просто выбрать тип профиля, линейные размеры и получить полностью актуальную спецификацию деталей — до последнего винтика. Также, на сайте представлена подробнейшая инструкция по сборке (каждый этап максимально визуализирован), поэтому собрать 3d принтер Voron не сложнее, чем кухонный шкаф. Если хотите больше подробностей, то подробную спецификацию с вариантами замен можно найти здесь.

Для тех, кто предпочитает идти до конца и сделать 3d принтер полностью своими руками, а не из покупных деталей, на сайте есть раздел, посвященный экструдеру. Там можно найти чертежи и подробную инструкцию по сборке собственной версии хотэнда.

Выбор качественных комплектующих

Конечно, можно купить 3d принтер на рельсах и не тратить время и силы на комплектацию, проектирование и изготовление деталей. Тем более, что мы готовы предложить очень интересные модели по привлекательным ценам. Но если ваш выбор — самостоятельное изготовление 3D принтера, не забывайте о том, что самый широкий ассортимент качественных комплектующих вы сможете найти в Top 3D Shop.

Как сделать 3Д принтер своими руками: пошаговая инструкция сборки самодельного большого печатающего устройства 3D

В 2015 году в интернете была опубликована пошаговая инструкция по сборке 3D принтера своими руками — Vulcanus V1. Также в это время велась работа над проектом CoreXY, и когда мы увидели Vulcanus V1, мы сразу же решили сделать его.

Благодаря опыту мы расширили Prusa i3 (Mega Prusa i3), и переработали части Vulcanus V1, чтобы суметь делать модели размерами 32x32x32, 42x42x42 и 52x52x52 (эта последняя версия до сих пор не проверена).

Vulcanus Max 30 имеет габариты 32x32x32, экструдер E3D V6 lite, «auto bed leveling» и систему прямого привода MK8.
Max 40 имеет габариты 42x42x42, экструдер E3D V6 lite, «auto bed leveling» и систему прямого привода MK8.
Таким образом, Vulcanus Max представляет собой увеличенную версию V1 со структурными модернизациями, металлическими прямыми приводами, функцией «auto bed leveling», подшипниками LM10UU и LMK12L Z, также он оснащён акриловыми панелями, создающими визуальный эффект лавы.

Посмотрите видео с V MAX в действии на The Maker Faire Lisbon 2015:

Шаг 1: Открытые чертежи — Vulcanus Max 30 и Max 40

Чертежи большого 3D принтера RepRap 3Д открыты, поэтому, пожалуйста, не стесняйтесь загружать файл эскиза. Масштаб эскизов — один к одному.

Есть 2 версии, которые мы тестировали, и они работают на 100%. Vulcanus MAX 30 и MAX 40.

Используйте эскиз для измерений и инструкции к Vulcanus V1, чтобы собрать свой аппарат.

Шаг 2: Как построить Vulcanus MAX 30 и MAX 40

Начните с открытия 3D-эскиза из предыдущего шага. Там вы найдете все размеры гладких стержней, алюминиевых профилей и акриловых панелей. Используйте эскиз максимально полно, чтобы получить из него всю необходимую информацию. Процесс сборки такой же, как V1, с использованием материалов и деталей от V MAX.

Шаг 3: Список различных частей от Vulcanus V1

У людей, собирающих девайс часто возникают вопросы по спецификации, поэтому, ниже приведён документ с ней: [гуглдокумент]

Vulcanus Max 30 и 40 сложнее, чем 3D-принтер V1, поэтому большинство деталей отличаются:

  • Длина гладких стержней оси Z составляет 12 мм вместо 8 мм (для жесткости).
  • Длина гладких стержней оси XY составляет 10 мм вместо 8 мм (для жесткости).
  • Для оси XY будут использоваться подшипники LM10UU вместо LM8UU.
  • Для оси Z будут использоваться подшипники LMK12L вместо LM8UU.
  • Экструдер — это MK8 Direct Drive вместо оригинального экструдера Vulcanus V1.
  • Все детали перепроектированы таким образом, чтобы поставить более крупные подшипники и большие стержни, за исключением углов и держателей двигателей оси Z.
  • Алюминиевая печатная пластина имеет толщину 5 мм.
  • Красные акриловые панели вместо металлических.
  • Светодиодная лента сверху и в нижней части второго основания.
  • Индуктивные датчики V MAX используют для автоматического выравнивания.
  • Использование прошивки repetier вместо прошивки Marlin (потому что я больше привык к repetier).

Шаг 4: Загрузите все файлы с Thingiverse

Все файлы доступны на thingiverse: Все детали подходят как к Vulcanus MAX 30, так и к 40.

Шаг 5: Силиконовая платформа с подогревом

У VMAX есть силиконовый нагревательный слой толщиной 40×40 см и мощностью 800 Вт. Платформа прикреплена к алюминиевой пластине с использованием устойчивого к высоким температурам силикона. После закрепления силикона на пластине, вам необходимо подключить кабели к твердотельному реле.

Шаг 6: Твердотельное реле

Твердотельное реле на самодельном 3D принтере должно включать и выключать силиконовую платформу.

Шаг 7: Двойной экструдер

Все еще в процессе проверки.

Шаг 8: Обновления подшипников COREXY

Vulcanus 1 использует 2 подшипника в оси XY, это решение позволяет ремням свободно перемещаться по подшипникам, но из-за этой свободы ремни касаются друг друга, в то время как ось XY работает. Решая эту проблему, мы обнаружили, что один подшипник отлично работает и это позволяет системе избегать касания ремней.

Шаг 9: Некоторые напечатанные 3D-детали

Вот несколько фотографий первых деталей.

Шаг 10: Дополнительные фотографии девайсов

Шаг 11. Обновление прошивки для Arduino Mega

Загрузите прошивку для VMAX 30 или VMAX 40 в соответствии с вашим устройством. Прошивка — это прошивка Repetier.

Примечание: используйте Arduino IDE 1.0.5 r2

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Ссылка на основную публикацию
Adblock
detector